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Leveraging Large Language Models (LLM) for the Detection of 

Spear-phishing Emails as Indicators of Advanced Persistent 

Threats (APTs) 
 

1. System Configuration 

1.1 Hardware Requirements 

• Processor: Quad-core processor (Intel i5 or AMD Ryzen equivalent). 

• Memory: Minimum 16 GB RAM. 

• Storage: 5 GB free disk space for datasets, models, and dependencies. 

• GPU: Recommended for BERT fine-tuning; CUDA-compatible GPU (e.g., NVIDIA 

GTX 1660 or higher). 

• Operating System: Windows 10, macOS 10.15+, or Linux (Ubuntu 20.04+). 

1.2 Software Requirements 

• Python Version: Python 3.10 or higher. 

• Development Environment: Jupyter Notebook, Google Colab, or VS Code. 

 

2. Python Library Dependencies 

Below are the required libraries for data preprocessing, machine learning, and BERT-based 

NLP tasks: 

Library Version Purpose 

pandas >=2.2.2 Data manipulation and analysis. 

numpy >=1.26.4 Numerical computations. 

scikit-learn >=1.5.2 Gradient Boosting and evaluation metrics. 

matplotlib >=3.8.0 Data visualization. 

seaborn >=0.13.2 Enhanced statistical visualizations. 

tensorflow >=2.17.1 Deep learning and BERT integration. 

transformers >=4.46.2 BERT model and tokenizer. 
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datasets >=3.1.0 Hugging Face datasets for BERT. 

joblib >=1.4.2 Model serialization. 

nltk >=3.9.1 Text preprocessing. 

torch >=2.5.1 PyTorch backend for BERT. 

wordcloud >=1.9.4 Visualizing frequent words in text data. 
 

 

3. Dataset Information 

3.1 Data Sources 

• Phishing Dataset: Contains email URLs and metadata labeled as phishing or 

legitimate. 

• Legitimate Email Dataset: Includes legitimate email metadata and text. 

3.2 Data Insights 

• Phishing Dataset Fields: 

o url: URL found in phishing emails. 

o target: Entity targeted by the phishing attempt. 

o Labels: 1 for phishing and 0 for legitimate emails. 

• Legitimate Dataset Fields: 

o message: Raw email text. 

o Labels: 0 for legitimate emails. 

 

4. Data Preprocessing 

1. Cleaning and Labelling: 

o Phishing Data: 

▪ URLs were cleaned to remove special characters and extract domains. 

▪ Label: 1 (phishing). 

o Legitimate Data: 

▪ Text data was cleaned of HTML tags, special characters, and non-

alphabetic symbols. 

▪ Label: 0 (legitimate). 

2. Combining Datasets: 

o Unified the cleaned phishing and legitimate data into a single data frame. 
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o Added datatype field to distinguish between phishing and legitimate. 

3. Text Vectorization: 

o Applied TF-IDF (Term Frequency-Inverse Document Frequency) with a 

maximum of 1000 features. 

 

 

5. Machine Learning Models 

5.1 Gradient Boosting Classifier 

• Vectorization: TF-IDF for converting text to numerical features. 

• Data Split: 80% training, 20% testing. 

• Evaluation: 

o Metrics: Confusion matrix, accuracy, precision, recall, and ROC-AUC. 

o Model saved as phishing_detector.pkl. 

5.2 BERT-based Classification 

• Model: DistilBERT and BERT (bert-base-uncased) for sequence classification. 

• Tokenizer: Converts text to token IDs compatible with BERT. 

o Padding and truncation enabled for uniform input sizes (max tokens: 512). 

• Training: 

o Framework: Hugging Face Trainer API. 

o Batch size: 4 (training), 8 (evaluation). 

o Learning rate: 2e-5. 

o Epochs: 1 (with fine-tuning capability for downstream tasks). 

• Evaluation: 

o Metrics: Accuracy, precision, recall, and F1 score (all achieved 1.0 on test 

data). 

 

6. Configuration and Execution Steps 

6.1 Installation Commands 

Install the required Python libraries using the following command: 

➢ pip install pandas numpy scikit-learn nltk tensorflow transformers seaborn 

matplotlib wordcloud joblib datasets torch 

6.2 Execution 
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1. Preprocess datasets: 

o Clean phishing URLs and legitimate email text. 

o Combine datasets with proper labeling. 

 

 

2. Train Gradient Boosting: 

o Split data into training and testing sets. 

o Train the model using GradientBoostingClassifier (). 

3. Train BERT-based Classifier: 

o Tokenize text data with BertTokenizer. 

o Fine-tune BERT using the Hugging Face Trainer API. 

6.3 Saving Models 

• Gradient Boosting Model: phishing_detector.pkl. 

• BERT Model: bert_phishing_model. 

• TF-IDF Vectorizer: tfidf_vectorizer.pkl. 

 

7. Results and Observations 

Model Accuracy Precision 

(Phishing) 

Recall 

(Phishing) 

F1-Score 

(Phishing) 

Gradient Boosting 93.5% 93% 92% 92.5% 

BERT-based 

Classifier 

100.0% 100% 100% 100% 

 

 

8. Notes and Recommendations 

• Best Practice: Use BERT-based classifiers for highly accurate phishing detection. 

• Future Work: Integrate additional data sources and explore multilingual phishing 

datasets. 

• Deployment: Models can be deployed using Flask or FastAPI with saved model 

artifacts. 

 


