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1 Introduction

To set up and configure the Blockchain-Integrated Identity and Access Management
Framework for Secure IoT Device Management, the detailed instructions provided in this
configuration manual. System prerequisites, software tool installation instructions, and
the process of integrating smart contracts with the Ethereum blockchain and Keycloak
for identity management are all described.

2 System Configuration

The below table provide details about the System Configuration used to implement the
model.

Component Specification

Model Name MacBook Air

Model ID MacBookAir 10,1

Processor/Chip Apple M1 2020

RAM/Memory 8 GB

Total Number of
Cores

8 (4 performance and 4 efficiency)

Storage 50 GB free space

Operating System macOS Monterey

Operating System
Version

12.2.1

Table 1: System Configuration

3 Software Configuration

This section discuss about the software and tools used to carry out the research. The
below table the all the details.
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Software Version Dependencies

Node.js v14.17.0 or later NPM

NPM v6.14.13 (comes
with Node.js)

None

Truffle v5.4.29 Node.js, NPM

Ganache v2.5.4 Node.js, NPM

OpenSSL v1.1.1 or later None

Keycloak v16.1.1 JDK 8+

Solidity v0.8.13 Node.js, NPM

Slither v0.8.3 Python 3.x, Pip

Web3.js v1.5.2 Node.js, NPM

LaTeX (For re-
porting)

TeX 2021 or
later

None

Google Chrome 127.0.6533.26 None

Table 2: Software Configuration for IAM Framework Setup

4 Installation of Tools and Software

4.1 Installation of Node.js and NPM

Below command used to install node packages whihc are required for interacting with
Blockchain.

brew install node1

1https://formulae.brew.sh/formula/node
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4.2 Truffle and Ganache

Figure 1: Model Blockchain IP

This is required to setup local test environment for Ethereum blockchain.
npm install -g truffle 2

npm install -g ganache-cli 3

To start Ganache, run below command.
ganache-cli 4

4.3 Keycloak Setup

Manually downloaded the Keycloak5 package in installed on the system.
After downloading the .zip file, unzipped it and ran below command to start the

keycloak server over port 8080.
./bin/kc.sh -Djboss.socket.binding.port-offset=100 6

And we can see from below figure that keycloak is accessible on ’http://localhost:8080/’

2https://archive.trufflesuite.com/docs/truffle/how-to/install/
3https://www.npmjs.com/package/ganache
4https://www.npmjs.com/package/ganache
5https://www.keycloak.org/downloads
6https://www.keycloak.org/server/configuration
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Figure 2: Keycloak IP

Realm creation: Created ’IoTrealm’ by adding new over admin console.
Client Creation: created new client named ’Blockchain-client’ to obtain client ID

and secret which further used to obtain JWT Tokens.
User creation: created new user and assign him roles, user credentials are also

required to generate JWT token.

4.4 OpenSSL installation

OpenSSL is used for generation and management of PKI certificates.
brew install openssl

5 Solidity smart contract

Smart contract solidity code IoT device management.
// SPDX-License-Identifier: MIT pragma solidity = 0.8.13;
contract IoTDevice struct Device string id; string owner; string deviceType; string

publicKey; string certificate;
mapping(string =¿ Device) public devices;
function createDevice(string memory id, string memory owner, string memory device-

Type, string memory publicKey, string memory certificate) public devices[id] = Device(id,
owner, deviceType, publicKey, certificate);

function getDevice(string memory id) public view returns (string memory, string
memory, string memory, string memory, string memory) Device memory device =
devices[id]; return (device.id, device.owner, device.deviceType, device.publicKey, device.certificate);

Migrations scripts written in JSON to compile and deploy smart contracts.
Below command used to deploy the smart contracts.
Migration.js
const Migrations = artifacts.require(”Migrations”);
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module.exports = function (deployer) deployer.deploy(Migrations); ;
Deployment script
const Migrations = artifacts.require(”Migrations”);
module.exports = function (deployer) deployer.deploy(Migrations); ;
truffle compile
truffle migrate –network development 7

Figure 3: Migration script Deployment

7https://archive.trufflesuite.com/docs/truffle/concepts/networks-and-app-deployment/
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Figure 4: Device script Deployment

6 Node.js Backend Code to interact with Blockchain

6.1 Importing libraries and modules

Figure 5: importing required modules

6.2 Web3 setup and smart contracts

Web3 is setup and connected ethereum blockchain running on ’http://127.0.0.1:8545’
and along with address of smart contract.
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Figure 6: Web3 setup and smart contracts

6.3 Interface for user input

Figure 7: defined user interface

6.4 Fetching Public Key from Keycloak

Keycloak certificate endpoint- ’http://localhost:8080/realms/IoTrealm/protocol/openid-
connect/certs’

Figure 8: Public key function
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6.5 JWT Validation Function

Figure 9: Token validation function

6.6 Registering a Device on the Blockchain

Create Command: Prompts the user for device details and a JWT token, then calls
createDevice.

Figure 10: Create device function

6.7 Fetching Device Information

Get Command: Prompts the user for a device ID and a JWT token, then calls get-
Device.
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Figure 11: Get device function
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6.8 Command-Line Interaction

Figure 12: CLI setup

7 JWT Token Generation

Figure 13: JWT Token generation

8 Evaluation

8.1 Latency

Measured the latency using the time command while running your CLI.js scripts.
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Figure 14: Create device with time output

Figure 15: Get device with time output

8.2 Slither Security Audit

Installed slither using below command-
pip install slither-analyzer8

Tested both solidity scripts for the audited using Slither.

Figure 16: Slither output for Migration.sol

8https://pypi.org/project/slither-analyzer/0.8.3/
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Figure 17: Slither output for IoTDevice.sol

8.3 JWT Token Validation

Valid Token

Figure 18: Creating device with valid token

Tampered Token
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Figure 19: Creating device with tampered token

Expired Token

Figure 20: Creating device with expired token
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8.4 Privacy Testing

Only metadata such as transaction hash, gas usage is stored on the blockchain after
device registration.

Figure 21: Blockchain transaction
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