
Configuration Manual

MSc Research Project

Msc Cybersecurity

Vasu Singh
Student ID: 22243674

School of Computing

National College of Ireland

Supervisor: Prof. Raza Ul Mustafa

www.ncirl.ie



National College of Ireland
Project Submission Sheet

School of Computing

Student Name: Vasu Singh

Student ID: 22243674

Programme: Msc Cybersecurity

Year: 2023-24

Module: Msc Reserach Project

Supervisor: Prof. Raza Ul Mustafa

Submission Due Date: 12/10/2024

Project Title: Blockchain-Integrated Identity and Access Management
Framework for Secure IoT Device Management

Word Count: 558

Page Count: 14

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature: Vasu Singh

Date: 16th September 2024

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). □
Attach a Moodle submission receipt of the online project submission, to
each project (including multiple copies).

□

You must ensure that you retain a HARD COPY of the project, both for
your own reference and in case a project is lost or mislaid. It is not sufficient to keep
a copy on computer.

□

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):



Configuration Manual

Vasu Singh
22243674

1 Introduction

To set up and configure the Blockchain-Integrated Identity and Access Management
Framework for Secure IoT Device Management, the detailed instructions provided in this
configuration manual. System prerequisites, software tool installation instructions, and
the process of integrating smart contracts with the Ethereum blockchain and Keycloak
for identity management are all described.

2 System Configuration

The below table provide details about the System Configuration used to implement the
model.

Component Specification

Model Name MacBook Air

Model ID MacBookAir 10,1

Processor/Chip Apple M1 2020

RAM/Memory 8 GB

Total Number of
Cores

8 (4 performance and 4 efficiency)

Storage 50 GB free space

Operating System macOS Monterey

Operating System
Version

12.2.1

Table 1: System Configuration

3 Software Configuration

This section discuss about the software and tools used to carry out the research. The
below table the all the details.

1



Software Version Dependencies

Node.js v14.17.0 or later NPM

NPM v6.14.13 (comes
with Node.js)

None

Truffle v5.4.29 Node.js, NPM

Ganache v2.5.4 Node.js, NPM

OpenSSL v1.1.1 or later None

Keycloak v16.1.1 JDK 8+

Solidity v0.8.13 Node.js, NPM

Slither v0.8.3 Python 3.x, Pip

Web3.js v1.5.2 Node.js, NPM

LaTeX (For re-
porting)

TeX 2021 or
later

None

Google Chrome 127.0.6533.26 None

Table 2: Software Configuration for IAM Framework Setup

4 Installation of Tools and Software

4.1 Installation of Node.js and NPM

Below command used to install node packages whihc are required for interacting with
Blockchain.

brew install node1

1https://formulae.brew.sh/formula/node

2



4.2 Truffle and Ganache

Figure 1: Model Blockchain IP

This is required to setup local test environment for Ethereum blockchain.
npm install -g truffle 2

npm install -g ganache-cli 3

To start Ganache, run below command.
ganache-cli 4

4.3 Keycloak Setup

Manually downloaded the Keycloak5 package in installed on the system.
After downloading the .zip file, unzipped it and ran below command to start the

keycloak server over port 8080.
./bin/kc.sh -Djboss.socket.binding.port-offset=100 6

And we can see from below figure that keycloak is accessible on ’http://localhost:8080/’

2https://archive.trufflesuite.com/docs/truffle/how-to/install/
3https://www.npmjs.com/package/ganache
4https://www.npmjs.com/package/ganache
5https://www.keycloak.org/downloads
6https://www.keycloak.org/server/configuration

3



Figure 2: Keycloak IP

Realm creation: Created ’IoTrealm’ by adding new over admin console.
Client Creation: created new client named ’Blockchain-client’ to obtain client ID

and secret which further used to obtain JWT Tokens.
User creation: created new user and assign him roles, user credentials are also

required to generate JWT token.

4.4 OpenSSL installation

OpenSSL is used for generation and management of PKI certificates.
brew install openssl

5 Solidity smart contract

Smart contract solidity code IoT device management.
// SPDX-License-Identifier: MIT pragma solidity = 0.8.13;
contract IoTDevice struct Device string id; string owner; string deviceType; string

publicKey; string certificate;
mapping(string =¿ Device) public devices;
function createDevice(string memory id, string memory owner, string memory device-

Type, string memory publicKey, string memory certificate) public devices[id] = Device(id,
owner, deviceType, publicKey, certificate);

function getDevice(string memory id) public view returns (string memory, string
memory, string memory, string memory, string memory) Device memory device =
devices[id]; return (device.id, device.owner, device.deviceType, device.publicKey, device.certificate);

Migrations scripts written in JSON to compile and deploy smart contracts.
Below command used to deploy the smart contracts.
Migration.js
const Migrations = artifacts.require(”Migrations”);

4



module.exports = function (deployer) deployer.deploy(Migrations); ;
Deployment script
const Migrations = artifacts.require(”Migrations”);
module.exports = function (deployer) deployer.deploy(Migrations); ;
truffle compile
truffle migrate –network development 7

Figure 3: Migration script Deployment

7https://archive.trufflesuite.com/docs/truffle/concepts/networks-and-app-deployment/

5



Figure 4: Device script Deployment

6 Node.js Backend Code to interact with Blockchain

6.1 Importing libraries and modules

Figure 5: importing required modules

6.2 Web3 setup and smart contracts

Web3 is setup and connected ethereum blockchain running on ’http://127.0.0.1:8545’
and along with address of smart contract.

6



Figure 6: Web3 setup and smart contracts

6.3 Interface for user input

Figure 7: defined user interface

6.4 Fetching Public Key from Keycloak

Keycloak certificate endpoint- ’http://localhost:8080/realms/IoTrealm/protocol/openid-
connect/certs’

Figure 8: Public key function

7



6.5 JWT Validation Function

Figure 9: Token validation function

6.6 Registering a Device on the Blockchain

Create Command: Prompts the user for device details and a JWT token, then calls
createDevice.

Figure 10: Create device function

6.7 Fetching Device Information

Get Command: Prompts the user for a device ID and a JWT token, then calls get-
Device.

8



Figure 11: Get device function

9



6.8 Command-Line Interaction

Figure 12: CLI setup

7 JWT Token Generation

Figure 13: JWT Token generation

8 Evaluation

8.1 Latency

Measured the latency using the time command while running your CLI.js scripts.

10



Figure 14: Create device with time output

Figure 15: Get device with time output

8.2 Slither Security Audit

Installed slither using below command-
pip install slither-analyzer8

Tested both solidity scripts for the audited using Slither.

Figure 16: Slither output for Migration.sol

8https://pypi.org/project/slither-analyzer/0.8.3/

11



Figure 17: Slither output for IoTDevice.sol

8.3 JWT Token Validation

Valid Token

Figure 18: Creating device with valid token

Tampered Token

12



Figure 19: Creating device with tampered token

Expired Token

Figure 20: Creating device with expired token

13



8.4 Privacy Testing

Only metadata such as transaction hash, gas usage is stored on the blockchain after
device registration.

Figure 21: Blockchain transaction

14


	Introduction
	System Configuration
	Software Configuration
	Installation of Tools and Software
	Installation of Node.js and NPM
	Truffle and Ganache
	Keycloak Setup
	OpenSSL installation 

	Solidity smart contract
	Node.js Backend Code to interact with Blockchain
	Importing libraries and modules
	Web3 setup and smart contracts
	Interface for user input
	Fetching Public Key from Keycloak
	JWT Validation Function
	Registering a Device on the Blockchain
	Fetching Device Information
	Command-Line Interaction

	JWT Token Generation
	Evaluation
	Latency
	Slither Security Audit
	JWT Token Validation
	Privacy Testing


