~

N\ National
College
Ireland

Blockchain-Integrated Identity and Access
Management Framework for Secure [oT
Device Management

MSc Research Project
MSc Cybersecurity

Vasu Singh
Student 1D: 22243674

School of Computing
National College of Ireland

Supervisor:  Prof. Raza Ul Mustafa




National College of Ireland National

Project Submission Sheet Col]ege of
School of Computing Ireland
Student Name: Vasu Singh
Student ID: 2243674
Programme: Msc Cybersecurity
Year: 2023-24
Module: Msc Research Project
Supervisor: Prof.Raza Ul Mustafa
Submission Due Date: 12/10/2024
Project Title: Blockchain-Integrated Identity and Access Management
Framework for Secure IoT Device Management
Word Count: 5978
Page Count:

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature: Vasu Singh

Date: 16th September 2024

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). O
Attach a Moodle submission receipt of the online project submission, to | [
each project (including multiple copies).
You must ensure that you retain a HARD COPY of the project, both for | J
your own reference and in case a project is lost or mislaid. It is not sufficient to keep
a copy on computer.

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only
Signature:

Date:
Penalty Applied (if applicable):




Blockchain-Integrated Identity and Access
Management Framework for Secure IoT Device
Management

Vasu Singh
22243674

Abstract

In the evolving landscape of Internet of Things (IoT) devices, the
secure management of non-human entities is important. This research
Deals with creating a strong Identity and Access Management (IAM).
solution that can be embedded on the IoT devices and based on the
blockchain technology, Public Key Infrastructure (PKI), and Keycloak
for the improvement. security. The model was deployed on Ethereum
blockchain for transaction integrity, data encryption using PKI and
Keycloak for authentication and authorization. The study involved a
comprehensive evaluation of the framework’s performance, focusing on
latency, security vulnerabilities and privacy preservation. Results in-
dicated that while the framework effectively managed IoT devices and
protected sensitive data and model successfully ensured privacy by lim-
iting blockchain data exposure to non-sensitive metadata, aligning with
best practices for privacy preservation.

Keywords- Ethereum, Solidity, PKI, Keycloak, smart contract

1 Introduction

In recent years, non-human entities such as automated systems and deployments of In-
ternet of Things (IoT) devices have become increasingly in demand, transforming various
sectors, including healthcare, manufacturing, transportation, and smart cities as a result
creating a complex ecosystem where multiple identities and access points interact. There
is consistent transition of critical information between these devices and software and
protecting sensitive identification and access data in this environment is vital, given the
critical role these entities play in processing information. Although automated devices
such as sensors etc. and software are trending now days however the security and privacy
are still one of the major hurdles in adoption of these systems. As per the research done
by P6hn and Hommel| (2023) underscores the importance of ensuring strong security and
privacy for automated technologies to prevent data breaches and unauthorized access.
Also, non-human accounts are and will be attackers favorite point for gaining access if
these non-human entities are not managed like the user accounts Williamson et al.| (2022).
With advancement of automation, there is a high need to secure identities and attributes
in these systems to ensure security within the ecosystem.



The Identity and Access management (IAM) is a fundamental aspect of cybersecurity
including the procedures, guidelines and tools utilized to regulate resource access and
manage digital identities. In regards with automation, IAM plays a crucial role due to
their unique characteristics and system design.

1) Security Challenges: Due to the fact that IoT devices are often applied in a number
of extreme conditions, [oT devices are exposed to different types of security threats. Some
of these are unauthorized access, data leaks, controlling the device, and the controlling
of some of its functions. The inherent structure of Internet of Things is quite distributed
and lightweight and therefore may not find the traditional ITAM solutions useful since
they are designed for the large IT systems Sicari et al.| (2015).

2) Privacy Issues: 10T devices are used for collecting a lot of confidential data like
environmental data, manufacturing processes, health data and personal data are collec-
ted and are sent from the devices. Meeting user’s privacy and following the legislation
from the territories, such as GDPR, this data should be safe and accessible only to the
authorized users [Ziegeldorf et al.| (2014)).

The above research and related studies generate a below research question: How
can a secure identity and access management framework be implemented for automated
devices, addressing the challenges of securing identities and ensuring privacy?

This research is motivated by need to implement solutions that extend beyond human-
centric approaches. By integrating blockchain, PKI and federated identity management
and focusing on non-human accounts and zero-trust models, this research seeks to advance
the field of IAM, ensuring robust security and privacy for automated devices systems.

Objectives-

e Gather more relevant articles and papers, deep dive into their solutions.

e Review of existing IAM Technologies and their implementation on IoT devices
environments, focusing on strengths and weakness of current IAM solutions.

e One of the ongoing challenges is that TAM are failed to preserve privacy which
so need to gather real time incident data where privacy was impacted. Along with it,
analyze data on security breaches and attacks related to IAM and access control.

e Also, will explore open source IAM frameworks.

e Practical implementation and evaluation of IAM to validate its effectiveness.

2 Related Work

2.1 Blockchain-Based Identity Management in IoT

Kettani and Carnley}; 2019 recommend the discovery of IAM solutions that integrate
with cloud. Here they also refer about the “Ethereum” which is an open source block-
chain platform which does expose it to an independent decentralized global computing
infrastructure that helps to integrate a chain of trust into the blockchain technology.
Nuss et al. (2018) present a blockchain-based identity model for such entities Bots,
[oT devices, etc. It indicates that identity management is necessary for ensuring that
data is protected against an unauthorized actor. That is, the management of devices
by their owners through blockchain transactions is realised through this framework. It
is noteworthy that most of the existing solutions in Identity and Access Management
(IAM) have been tailored to the management of human entities Nuss et al.;[2018and while
pointing to the problem of scalability of managing non-human entities’ identities, they fail
to address this problem effectively. The proposed model addresses this by incorporating



PKI for lightweight encryption and leveraging Keycloak to handle large-scale identity
management, allowing for more efficient scaling in IoT environments.

2.2 Blockchain-Based Identity Management for Healthcare IoT
Devices

By improving the blockchain-based identity management solution, the work by |Alamri
et al| (2023) suggests the general framework for healthcare IoT blockchain-based iden-
tity solutions where they present a detailed security model concentrating on Health IoT
devices, including wearables, in a multi-layered approach because IoT devices and auto-
mation have become prevalent nowadays. Here, they defined all the entities present in
[oT environment and their inherent weaknesses which include no physical security and
no authentication and authorization, the threats associated with these weaknesses which
include device tracking, signal jamming and battery drain attacks necessary for the form-
ation of a strong security architecture. Nevertheless, the research by |Alamri et al.| (2023))
doesn’t recognize a particular type of IoT devices since each gadget comes with its prob-
lems, and it fails to address the issues of Health IoT systems or devices / software that
is used a part of daily life such as wearable intelligent devices or any sensor that is ap-
plied in supply chain businesses. Also, the proposed solution has not been practically
implemented and not been evaluated by experts as this technology is new in the secur-
ity domain. Practical implementation and evaluation are crucial step for validating new
security technology.

2.3 IoT Identity Management Using Distributed Ledger Tech-
nology

The proposed system by Sadique et al.| (2023) involves an identity management model
for edge [oT devices, DLT, and smart contracts. The model is founded on the use
of both private permissioned distributed ledgers and private consortium ledgers since
identification details need to be protected. The material is geo-situated, its general,
extensible and includes strict consensus procedures. It employs a two-tier structure for
its layers namely- Fog layers and Cloud layers. Both devices retain their identity as well
as the identity of the connected gateway through the usage of secure public and private
key communication. credit information are exchanged beween local identity providers
and Global identity providers without revealing the private key thus enhance security.
This goes a long way to stress the great approach in strengthening the security and
privacy in IoT identity management through decentralization and usage of sophisticated
cryptographic methods. While this seem logical, but it was only done on experiments the
practical solution has not been implemented in real life problems. This raises questions
about its practicality as well as its applicability to large organisations. Secondly In DLT
technologies, transparency is inherently built which does trust but restricts the privacy
hence the sensitive information can be easily leaked to an insider threat.

2.4 ERC-20 Smart Contract

This paper by |Priest et al. (2023) explains the process of how to compile and launch
an ERC-20 smart contract on Ethereum, while at the same time stressing the long-term



stability as a key factor for the development of cryptocurrencies. Here the authors suc-
cessfully discuss both the topic of smart contract development and the context of its
impact on the earth’s environment thereby contributing to the discussion of matters re-
lated to environmentally friendly blockchain platforms. Nevertheless, despite the fact that
the paper is somewhat informative in giving a background about sustainable practices,
it is rather weak in outlining the methodologies for implementing sustainable practices’
measures within the ERC-20 systems. Discussions aimed at reducing the energy con-
sumption rate of blockchains are general with no common guidelines or benchmark that
could be applied across various blockchain projects with the intention of containing the
carbon footprint. In addition, the paper lacks appropriate depth of the analysis of po-
tential economic effects arising from the use of sustainability features in smart contracts.
Altogether, the work is a good reference point to start the contamination around the
theme of sustainable blockchain technology but it lack more specific and practical ped-
estrian suggestion. The proposed model adopts Ethereum’s Proof-of-Stake mechanism,
which reduces energy consumption compared to Proof-of-Work, thereby offering a more
sustainable solution suitable for resource-constrained IoT systems.

2.5 Blockchain-Based IoT Security Models

In the work of [Spadavecchia et al.| (2024), some new ideas on the action of using block-
chain to deliver secure data in IoT, especially for using Hyperledger Fabric and Ethereum
in the multi-layer architecture. From the provided directions of the authors, the authors
are able to present how this architecture can be implemented practically using a Rasp-
berry Pi, argue the applicability of the blockchain solutions in the smart city contexts. In
this case, while the paper presents a solid foundation, it is weak in exemplifications and
actually does not go deep into analyzing the feasibility of applying the proposed solution
on a large scale, especially in an environment with a great number of IoT devices. Fur-
thermore, the use of both public and private blockchains, which is rather original, also
has certain concerns as to the efficiency of such a model for the future and the complexity
of its management. This research is somewhat connected to my proposed model since
it focuses on the use of a blockchain-based model for safe transmission of data in IoT
networks. The proposed model builds on this by focusing solely on Ethereum’s public
blockchain, simplifying management while maintaining security. The actual experiences
obtained from its application can be used to improve our model concerning the interac-
tion of multiple layers of the blockchain system in order to maximize their security and
performance.

2.6 Blockchain Solutions with Secure PKI Systems

The research by Singla and Bertino| (2018) analyses the problems associated with the
mainstream CA-based (PKI) system and suggests the three different blockchain-oriented
solutions with the help of the Emercoin NVS technique, the use of the Ethereum-based
smart contracts, and the Light mode synchronization in Ethereum. The authors have also
compared all these blockchain approaches appropriately that these approaches are better
in term of computational complexity, storage complexity, and security as compared to the
PKI approaches. This performance occurs due to the right benchmarking with IoT devices
and a real-world implementation of the paper’s algorithms, which indicates blockchain’s
utility for scalable and secure PKI systems. Nevertheless, there is a possibility that



the authors should have covered more extended investigation into the career direction
for scalability and the threats of security of the blockchain with the rising size of the
network, especially with IoT restricted resources. It correlates with the application of
Ethereum in building secure decentralised applications for [oT and understand how smart
contracts and block chain technology can improve the security and functionality of IoT.
The proposed model integrates PKI with blockchain to handle device authentication
while addressing scalability concerns through Keycloak’s federated identity management
system and makinf sure that solution should remain efficient in case there are high volume
of devices.

2.7 Challenges in Ethereum

Blockchain network has its own barriers, especially time to scalability and for security,
Ethereum network suffered a lot. |Chen et al. (2020)accurately presented a list of security
concerns pertaining to Ethereum and the possible areas that may be attacked within
the Ethereum network. His analysis highlights the importance of security mechanisms to
secure the integrity of contracts as well as the blockchain network. The security issues are
directly addressed in the proposed model through security audits of the smart contracts
using tools like Slither.

2.8 Comarison of Ethereum and Hyperledger

Zhao| (2022))in his paper done detailed comparison of available both open source block-
chain. The blow table summarize the comparison done.

Parameters Ethereum Hyperledger

Governance Managed by Ethereum developers | Managed by the Linux Founda-
(open-source community) tion

Type Public, Permissionless Private, Permissioned

Smart Con- | Uses Solidity for writing smart | Uses Chaincode (supports mul-

tracts contracts tiple languages like Go, Java)

Use Case Mostly for Peer-to-Peer (P2P) | Mostly for Business-to-Business
and Business-to-Consumer (B2C) | (B2B) operations

Privacy and | Public data is accessible to all | Supports private and confidential

Confidential- participants transactions through channels

ity

Table 1: Comparison of Ethereum and Hyperledger

Ethereum blockchain is relatively decentralized and has no restrictions on the users.
Therefore, suiting my research for the application of the decentralized applications. Auto-
mated and trustless transactions are vital to provide a secure system and its smart
contracts written in Solidity are crucial for it. Sustainability is applied to blockchain
operations, altering the mechanism of choosing the block creator from Proof of Work to
Proof of Stake in Ethereum. Although Ethereum has certain issues with performance
and scalability, which have been already mentioned by |Chen et al.| (2020), the general

bt



acceptance of Ethereum and its well-developed ecosystem offer necessary prerequisites
for the implementation of decentralized solutions, which makes Ethereum an appropriate
solution for my research.

The overall analysis of the topics under review shows how identity management for
blockchain-enabled IoT devices is advancing. Existing frameworks offer a good point of
origin however they have issues with scalability, privacy and actual deployment. This pro-
posed solution fills in these gaps by utilising PKI for strong encryption and authentication,
Keycloak for scalable identity management and Ethereum’s decentralised blockchain for
secure and immutable identity management. The model overcomes the theoretical limits
found in earlier publications by demonstrating its applicability in real-world IoT scenarios
through practical implementation and evaluation.

3 Methodology

The focus of this research is on the deployment of Ethereum blockchain technology by
incorporating Smart Contracts, Keycloak for Identity Management and Public Key In-
frastructure (PKI) to implement an effective and efficient IoT device management system
that has privacy constraints. The research employed a systematic approach of which it
followed several steps that include literature review, design of the model, implementation
of the model and finally evaluation of the proposed model. In this section, the research
procedure followed will be described, tools and technologies that were used and an eval-
uation of the model will be made.

The study was initiated by identifying the current IAM technologies and the ways
in which they are implemented in the IoT and automated settings. The literature re-
view also underlined what are the proposed IAM solutions in the current literature and
their strengths and weaknesses concerning scalability, privacy, and security in decentral-
ised contexts. Previous works by Kettani and Carnley| (2019)), |[Nuss et al. (2018) have
defined ideas that our works embraced as a backbone of the developed TAM framework.
The framework was developed using various tools and technologies: OpenSSL for PKI,
Keycloak for authentication management and Ethereum with solidity smart contracts for
secure transaction management. The selection of these tools was done with the view of
their effectiveness, reliability and suitability in achieving the intended research goals as
earlier other studies had utilised.Adams and Lloyd| (2003)).

One of the critical design choices in this research was the selection of Ethereum as
the blockchain platform for managing secure transactions. Ethereum is one of the most
mature blockchain platforms makes it a reliable choice for integrating decentralized ap-
plications and smart contracts. In addition to that, Ethereum has a well-established
security framework and many vulnerabilities have been identified and addressed over the
years, making it one of the most secure public blockchains available. Also, to guarantee
that data transferred between IoT devices and the blockchain is encrypted and author-
ised, PKI was integrated into the design. PKI is widely utilised in many secure systems
and provides an effective method for secure communication. The choice of Keycloak as
the Identity and Access Management (IAM) solution for this framework was based on its
capacity to manage large-scale users’ and devices’ identities and access. It was considered
the best option for handling user identification and authorisation in a decentralised sys-



tem because of its support for federated identity, role-based access control (RBAC), and
interoperability with contemporary authentication protocols like OAuth2 and OpenlD
Connect.

The experiments were targeted to the main features of the IAM framework that con-
tains latency assessment, security audit, and privacy-preserving analysis. The collection
of specific data was done through the performance of certain CLI commands to get the
time required to create as well as invoke IoT devices from the Ethereum blockchain. The
time taken by these operations was noted down with the help of time command in the
shell of the MacOS and the split up of the user time, system time and total time was car-
ried out to see the reasons for the time lag observed. Security assessments were conducted
using Slither, a Solidity static analysis tool that would help determine the various loop-
holes that may have been made in the smart contracts. The identified problems included
wrong use of modifiers or the presence of outdated versions of Solidity that may cause
security vulnerabilities |Chen et al.| (2020); |Sadique et al. (2023)). Comparison was also
made between the creation of devices and the retrieval so as to find out areas that have
poor performance. The aspect of privacy was assessed from the metadata generated on
the blockchain during transactions without exposing the PII. (Christidis and Devetsikiotis
(2016)); |Singla and Bertino (2018)).

The given approach was carefully planned to avoid missing any aspect of IAM frame-
work’s efficiency in protecting IoT device management. In line with that, the research
applied systematic use of Technologies and Tools to maintain reliability and validity of
the outcomes.

4 Design Specification

The main objective of this research is to propose a model that integrate IoT systems
with Block chain technology with PKI for authentication and Keycloak for access control
mechanism to build up a secure and privacy preventing device management model.

4.1 Core Components

Ethereum Blockchain: In the case of IoT devices, Ethereum which is an open source
blockchain Kettani and Carnley (2019) utilizes blockchain as a decentralised record of
transactions so that the recording of transactions is credible, transparent and immutable.
This is important in IoT specifically because the devices involved are expected to transmit
data and self-organize. As discussed by |Wood et al.|(2014), it runs smart contract that
enable automated registration of devices, data storage and access management. The
below figure will provide blockchain architecture and actual model blochain blocks.

Smart contracts: Help in the execution of the complex processes recognised to be
involved in the management of Internet of Things devices. Information acquired by these
contracts keeps user and device rights, verifies device data and logs Ethereum blockchain
transactions. Smart contracts enable security and privacy in the performance of activities,
such as device registration, developed under Solidity |Christidis and Devetsikiotis| (2016)).
Smart Contracts contain access control policies based on the permissions in the JWT
token which results from the authenticated user’s identity and any effort to gain access
with a different token is forbidden.



Keycloak Login

User CLI Interface

HTTP _iv’

Public Keys

>_ K4

JWT Token

Frontend

Authentication
JWT
Validation &

Management )

]

PKI System
(Encryption &
Certificate
Management )

=

Smart Contract
Functions

= =)

Encrypted Data

Smart
Contracts

—

Blockchain Node

Backend Mechanism

Figure 1: Proposed Model Design

/Header

\

Hash Block N-1

Ethereum Blockchain

e

(T

=

neader

Nonce
Timestamp
Hash of Block Data

Transactions List

Hash Block N Hash Block N+1
Nonce Nonce
Timestamp | | F———~— Timestamp
Hash of Block Data Hash of Block Data

-

2

Block N

Transactions List

Transactions List

s

P, =

/

Block N+1

Block N+2

Figure 2: Blockchain architecture BOURIAN et al.| (2023))




i

"id": 1,

"jsonrpc": "2.0",

"result": {
"number": "0x0"
"hash": h0x592a33831841972d663f14b289780003f58ba9cb714b6044b1d5b97e6666d23c"
"parentHash": "0x0000000000000000000000000000000000800000000000000000000000000000",
"mixHash": "0x0000000000000000000000000000000000000000000000000000000000000000",
"nonce": "0x0000000000000000",
"sha3Uncles": "Oxldcc4de8dec75d7aab85b567b6ccd41ad312%51b948a7413f0al42fd4s0ds9347",

"logsBloom": "0x00000000000000000000000000000000000000\P0000000000000V000000VV0000000000000000000000000000€
0000000000000000000000000000000000000000000000000000000000800000000000000000000000000000000000000000000000000¢€
0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000¢€
0000000000000000000000000000000000000000000000000000000000010000000000000000000000000000000000000000000000000¢€

000000000000",

}

100 2784 0 2705 100 79 237k 7101 ——:i-—:i—— —-—:

{

% Total % Received % Xferd Average Speed Time

"transactionsRoot": "0x56e81f171bcc55a6ff8345e692c0f86e5048e01b996cadc001622fb5e363b421",

"stateRoot": "Oxdcl629e94a7a6081c813f870fdf7f6b185e0f1cOf{chb8235528309ea766ff3be",
"receiptsRoot": "Ox56e81f171bcc55a6ff8345e692c0f86e5b48e01p996cadcO01622fb5e363bs21",
"miner": "0x0000000000000000000000000000000000000000",
"difficulty": "ox0",

"totalDifficulty": "oxe",

"extraData": "Ox",

"size": "Ox3e8",

ngasLimit": "0x6691b7", Hash of block 0*0= Previous hash of block 0*1
"gasUsed": "0x0",
"timestamp": "Oxé66b50c7d",
"transactions": [],
"uncles": [1]

}

Time Current
pent Left Speed
—t—— ——i-—i-— 247k

Dload Upload Total S

"id": 1’
"jsonrpc": "2.0",
"result": {
"number": "ox1",
“hash": "eXCSO o) D20 L0
"parentHash": ['0x5922a3831841e72d66af14b28e780003f58ba9ch714b6044b1d5b97eb6666d2ac”

Figure 3: Model Blockchain Blocks



Public Key Infrastructure (PKI): As discussed by |Adams and Lloyd (2003]) PKI
solutions are critical for safeguarding the data breaches and unauthorized access specific-
ally for the systems dealing with important IoT data. It safeguards the communications
occurring between devices and the Blockchain Network. Oversees digital certificates
which are utilized to encrypt the data transmission and also assure the legitimacy of
device identities in order to safeguard the confidentiality and integrity of the data.

KeyCloak: In the same manner that Keycloak regulates user, device and backend
services interactions in more secure manner, Internet of Things systems can incorporate
it to achieve a similar objective. It can safely connect the IoT devices by creating a new
realm account with Keycloak. Each of the devices has the client identification and secret,
these can be considered as the further client identification. It will be possible through
Jason Web Token (JWT), which Keycloak issues and that devices use to authenticating
requests to backend services |Chatterjee and Prinz (2022)). It ensures that only those
devices that are permitted can access the available system resources. Tokens that are
used in IoT devices are typically of a short duration and need to be replaced occasionally
to ensure that there is no potential threat to security.

4.2 Backend Processs

As a middleware, backend implements the layer between the front end (CLI) and the
back end comprising of blockchain and IoT devices. It translates and process CLI calls,
ensuring that proper action is performed on the blockchain and data is properly addressed.
Let’s have a deep discussion how backend handling and interacting with each components
of model.

Keycloak Integration: Authorization and authentication in the backend of the pro-
ject is managed by Keycloak. If for instance, specific device sends a request to Keycloak,
it then validates the credentials using the database. It ensures that all the backend ser-
vices are accessible only by the verified and rightful users or only by the devices that have
been approved. After a user has been authenticated, Keycloak provides tokens (JWTs)
which the backend uses to subsequently authenticate the request. This token assists in
the backend to enforce the security policies since it contains information about the role
and the rights of the user.

PKI: PKI is also utilized by the backend to handle the storage and security of data
in and leading to the foundation of ensuring safe transmission. Public keys are used to
encrypt data from the IoT devices or the user interface (CLI). Backend utilize matching
private key to decrypt the processed and/or stored data before actual processing or
storage. The backend also ensures that the data in its communication with IoT units,
the backend, as well as Blockchain, are encrypted throughout the process to prevent
unauthorized access or interference.

Smart Contracts and Ethereum Blockchain: The backend generates the re-
quired transaction, signature with the corresponding private key and pushes it to Eth-
ereum network when an event occurring and initiates a blockchain operation. Thereafter,
it waits for acknowledgement from the template before it sends back the result to the

CLL

10



4.3 Model Overview

This models are an extended model with the ability to protect IoT devices and interact
with them since they incorporate several technologies. Fundamentally it uses Ethereum
blockchain which is a backbone of this model to make sure that any interaction with IoT
devices has their activities noted in such a manner that cannot be manipulated or altered.
This is accompanied by smart contracts, which are self-executing programs that perform
such functions like registering of devices and regulating the access to them based on the
predefined parameters such as only allowed users can register or handle devices etc. Also,
using PKI the retriever system incorporates parts of protecting data and identification
of devices and users where the information is encrypted and can be decrypted only by
use of the correct keys. Keycloak is being employed for the roles and permissions, which
defines who can do what in the system. It is an identification and authentication tool that
uses secure tokens to verify the user and his or her rights. Altogether, these components
will build a strong security system to restrict the unauthenticated individuals’ access
to IoT devices in addition to ensuring the security and immutability of any interaction
with those devices. This makes it a good and secure IAM framework that is specifically
designed to address the needs of entities, especially IoT devices.

4.4 Workflow of Model

Let’s discuss the step by step workflow of the model-

User Authentication: The user start the login process through CLI, there user
have to provide their Keycloak username and passwords. Then CLI will authenticate
user through Keycloak server from a specific endpoint. After successful authentication
the Keycloak server issue a JWT token which returned as a output over CLI.

Device Registration: The authenticated user request to register a device through
CLI with details such as device ID, its type, public key and JWT token and then CLI
sends this request to backed middleware.

Token Validation: The backend validates the provided JW'T token using Keycloak’s
public key to make sure that request is made from valid user. After successful validation
it the backend encrypts all the details using user’s public key (which was provided at
time of registering the device).

Blockchian Transaction: These encrypted package sent to Ethereum Blockchain
in the form of transaction. Then smart contract receives the encrypted package and
register device. And upon successful registration it display message on CLI that “Device
successfully created”.

Device Data Retrieval: The user submit request through CLI to get the device
information, where it asks for JW'T token which contains user’s identity. This JWT
token again validated by backend to check user’s information. After this, backend sends
query transaction to blockchain which further processed by smart contracts and retrieves
encrypted device data using device ID provided by user.

Data Decryption: After successful data retrieval, the backend decrypts the data
using private key obtain from PKI system. Then decrypted details displayed over CLI to
user.

11



5 Implementation

The implementation part is focused on creating secure Identity and Access management
framework for IoT device management integrating with various technologies. It incor-
porated with Ethereum blockchain which in open source as discussed by |[Kettani and
Carnley| (2019)), along with Public Key Infrastructure for encryption and Keycloak for
authorization ad authentication. The interaction with model takes place through CLI for
making operations smooth and maintaining security of core components. Let’s discuss
the implementation of each part with tools and technologies used.

5.1 PKI Installation

For the purpose of providing and maintaining a secured method of communication and
data transfer between the various components of the system by handling the digital
certificates and encryption keys. OpenSSL[| was installed to create and control the PKI
system, including the public and private keys as well as digital certificates. The PKI
system adopted is used for management of certificates for both the users and the Iot
devices which it issues. Digital certificates were created for each IoT device and the
users, this helped in encryption of data flow as well as ensuring that even the devices and
users accessed the system in a correct manner.

5.2 Keyclaok Setup and Configuration

As for the user authentication and the restriction of the access to the IoT devices and the
blockchain, the user management module should be designed to allow interaction only
with the authenticated users and provide the role-based access to the system. Keycloak,
an open source identity and access management as discussed by |Chatterjee and Prinz
(2022) was used in the project to control authentication, sessions and to generate Jason
Web Tokens (JWT) for API access.

Realm Creation : A new realm, called IoTrealm, was developed in Keycloak and it
is the specific environment for managing user identities and their rights in the [oT system
only.

Client Configuration: Within the IoTrealm, a client called Blockchain-client was
developed with the access type of confidential to help with the communication between
the CLI and the Keycloak server securely. It is also configured to accept authentication
requests from the CLI as will be seen later in this paper.

Token Endpoints setup: Token generation and certificates download endpoints
were configured, thus the CLI was capable of authenticating users and obtain imperative
cryptographic keys from Keycloak.

Token Endpoint: http: //localhost:8080/realms/Io Trealm/protocol/openid-connect/token
Certificate Endpoint: http://localhost:8080/realms/Io Trealm/protocol /openid-connect/certs

Therefore, an operational Keycloak realm backed with a client meant for securing users
in their interaction with the system using the CLI and for the issuance of JW'T tokens
that granted authenticated and authorized access to the blockchain.

Thttps://www.openssl.org/

12



5.3 Smart Contract Deployment

For the efficient handling of the IoT devices on the blockchain as well as the processes of
the IoT device registration, storing and access. Smart contracts also work to guarantee
that all the process that is carried out is secure and has enough transparency. Solidity [
version 0.8.13 was used to write the smart contracts and Truffle, a development framework
for Ethereum, was employed to compile, test and deploy these contracts to the Ethereum
network. Ganache was used as a local blockchain for development and testing.

Smart contacts compilation: Smart contracts were coded in Solidity to perform
[oT device registration and record management as well as entry authority. These contracts
made it possible to make all the interactions to be secure, permanent and traced. The
contracts were compiled through Truffle so as to confirm that the structures would be
correct and there were no typo mistakes before deployment.

Migrations scripts: Scripts were created specifically to use the in the Ethereum
blockchain for the deployment of smart contracts. These scripts also oversaw the process
of deployment and where contracts are to be deployed on the blockchain.

Smart Contract Deployment: The contracting systems that can autonomously
execute the contractual terms the smart contracts were deployed to the local Ethereum
using the Ganache. This deployment was done through Truffle, migration scripts are used
to manage the sequence of deployment

Complied and deployed smart contracts on the Ethereum blockchain in the overall
successful manner. They regulate the functioning of IoT devices and guarantee the data’s
consistency and protection in the blockchain. Deploying of smart contracts became easier
by using migration scripts and minimizing on the chances of getting errors.

5.4 Data Encryption and Storage

Before storing it on the blockchain, device data was secured with the help of the PKI
system. This process guaranteed that so much information would not be easily visible,
even if the actual blockchain was open to public viewing. Using the smart contracts,
encrypted data was saved in the Ethereum blockchain. That is why, the data itself was
stored in the blockchain with references (in the form of hashes) to it.

5.5 Command Line Interface (CLI)

The CLI uses Web3.js E] to communicate with the deployed smart contracts on the Eth-
ereum blockchain. The FTC core performs tasks such as; sending transactions, getting
data, and handling device details in an efficient and safe manner. The CLI was linked
to Keycloak to perform user authentication with the help of JWT tokens. Thus, the
integration rendered only the legitimate user capable of performing the commands.

A fully functional CLI which enables the user to control IoT devices and ensure the
security of the system. The CLI provides guarantees that all the performed actions are
identified and approved, all transactions with the system being recorded on the block-
chain. Customers can register new devices, perform read operations to get data of the
devices, and even manipulate the state of the devices from the CLI.

Zhttps://soliditylang.org/
3https://web3js.org/

13



6 Evaluation

6.1 Model Latency

This testing is conducted with the intent of determining the latency that is incurred by
CLI implementation of creating and retrieving loT devices. The latency of the system
will be calculated in terms of time taken to create one of the devices and to fetch some
of the data. Here “time” command is used to capture the time which takes to run the
script with the given functions.

6.1.1 Device Creation/Registration

Following command was executed to create device-

Command: time node cli.js with create function and further provided necessary
device details such as device ID, type with valid tokens and certificates which are required
for the device registration.

The duration of the command to complete was ascertained by making use of the shell’s
timing facilities.

Output: node cli.js 0.53s user 0.07s system 1 cpu 54.431 total

Time recorded: user time 0.53sec

System time 0.07sec

Total- 54.431 seconds

Actual CPU time used in user and system mode is much lesser than total time which
means that most of the time is spent in waiting either for valid tokens, block chain
confirmation etc.

6.1.2 Device data Retrieval

Following command was executed to get device information-

Command: time node cli.js with get function where we provided device ID and only
valid JWT token.

Output: node cli.js 0.41s user 0.05s system 2 cpu 16.581 total

Time recorded: user time 0.41sec

System time 0.05sec

Total- 16.581 seconds

That a total time is lower than the time of the device creation step can be explained by
the fact that retrieval operations are shorter, presumably, because there is no confirmation
of blockchain transactions, which always take more time.

6.2 Smart Contract Security Audit

The goal of this experiment is to evaluate smart contract with the help of Slitherf] an
open-source Solidity static analysis tool. The purpose is to find out security risks, bad or
suboptimal code, and deviation from standard conventions in the Solidity language.

The analysis is done by running the command slither contracts/jsolidity filename; in
the command line interface. The tool is able to scan for different problems like the wrong
application of modifiers, prescripted versions of Solidity and error in declaring variables.
contracts/jsolidity filename

4https://pypi.org/project /slither-analyzer/0.8.3/

14



Output: The technical analysis performed using the Slither tool found out that the

restricted modifier in the migration.sol contract does not always execute the function
body or revert a transaction. This can lead to unpredictable behavior in the smart con-
tract, meaning that a function may not do what is required of it when certain conditions
are met.
This vulnerability has a significant impact since it puts the system’s integrity at risk by
allowing unauthorised operations or incomplete transactions. Due to the restricted mod-
ifier unpredictable behaviour, transactions may not be properly validated, which leaves
the system vulnerable to attacks like unauthorised access or function abuse like false
device registration.

Furthermore, as for the Solidity language used, both migration. sol and a IoT-
Device. sol the version of Solidity contract (=0. 8. 13 ) is known to have several
critical problems, for example, memory management, selector access and changes in the
location of data. These issues can lead to vulnerabilities or unexpected behaviour in
smart contracts but while working with its latest version 0.8.20, it was leading to compil-
ation error. So, after thorough analysis on open forums it is found that moving to version
0.8.13 will resolve compilation issue.

6.3 JWT Token Validation

The main reason why this is required is to assess the performance of JWT (JSON Web
Token) validation via the CLI by coming up with different varieties of tokens, valid and
invalid, altered and old, and see how the CLI will utilize them. This will be useful to
enhance our capability in distinguishing token states to the system.

Here, generated a JW'T token using below command by providing required details-

curl —data 7client-id=" —data 7client-secret=""—data "username=" —data “pass-
word=""—data ”grant-type=password” "http://localhost:8080/realms/Io Trealm /protocol /openid-
connect/token”

As a result, it generates JWT token along with expiration time and refresh token
which can be used to re-generate the JWT token again using that.
6.3.1 Valid Token

The generated JW'T token was provided to while executing cli.js script with create device
function along with all required details.

Output: Successfully able to create/register device with message display ”Device
created successfully”

6.3.2 Tampered Token

This time the same JWT token was altered by changing few bits of it, and executed the
same process as above.
Output: Getting error message that ”Inavild Token” and unable to create device.

6.3.3 Expired Token

As mentioned above, the JWT token generated with expiration time, token was provided
after set expiration time while running the script.

15



Output: Getting error message that ”Inavild Token” and unable to create device.

Valid, tampered and expired token are used to test the capability of the system to offer
appropriate authentications for the JWT tokens to restrict certain actions. This is im-
portant in terms of security and restricting unauthorized people from accessing such an
application whenever JW'T is used for the authentication of an application.

6.4 Privacy Preserving Evaluation

The privacy-preserving capabilities of the proposed model using the Ethereum block-
chain, particularly focusing on the visibility of transaction details and the protection of
Personally Identifiable Information (PII). Whenever a new device is registered or created
into the system after executing the command, the transaction was recorded on the Eth-
ereum blockchain.
Outcome: Only following transaction details were observed on the blockchain which can
be observed from the below figure:

Transaction Hash

Gas usage

Block number

Timestamp

Transaction: @xe6d7822ddd4a48a9712a028c85e1445a9ab94d830ccO7cd2bd393500ad295a91
Contract created: 0x9e581021535eldfd3adbb9115ace5bb3c074a002

Gas usage: 272788

Block Number: 2

Block Time: Thu Aug 08 2024 20:07:04 GMT+0100 (Irish Standard Time)

Figure 4: Blockchain Transactions

The actual data to be recorded on the blockchain are only the transaction inputs
and outputs, but the data stored on the block includes only certain essential details like
transaction hash, gas used, block number, and block time. While sharing data on the
device or using it, no specific facts like a person’s identity or PII information is written
on the blockchain. While blockchain ensures virtually all the participants in the network
have equal visibility into transactions, and the implementation of the smart contract does
occur on a public ledger, some preconditions ensure that no detrimental information can
be released.

6.5 Discussion

The assessment of different aspects of the proposed model and how they can be strengthened,
the overall assessment of the effects of the proposed solution in the context of managing
[oT devices as facilitated by Ethereum blockchain, Keycloak, and PKI. The latency ana-
lysis shown: Although the model is fast in device discovery phase ever creating involves
certain delay which is mainly due to time being taken in receiving acknowledgement
from the blockchain network. This imply that while the model leverages on the secur-
ity of blockchain system and the immutability it has inconveniences of blockchain system

16



performance. The security audit of smart contracts revealed that there are some risks, es-
pecially connected with the non-uniform application of the restricted modifier during the
migration. sol contract. Moreover, having chosen an older Solidity version, the product
became vulnerable to known vulnerabilities. Earlier, the latest version of Solidity was
used; however, due to the compilation error problem prevalent in the new version con-
tinuing with the previous version is a feasible solution.

The model was able to perform well in the validation of JWT token, and the system was
able to differentiate between the three types of tokens which included; valid, tampered
and expired tokens. This capability is rather important for the purpose of sustaining the
access control in the unconventional environment of DEP. The privacy preserving features
of the model were verified with the help of an analysis of the data on the blockchain. The
results included the following; one could only observe other non-identifying details such
as the transaction hash, gas consumption, and block numbers and no PII. In this regard,
this approach fits well with privacy best practice so that even though blockchain is re-
volutionary, the transparency that comes with it never infringes on the privacy of the
users.

7 Conclusion and Future Work

The aim of this work was to devise and assess the first stable IAM paradigm for non-
human identification, that is IoT devices, which is to include blockchain, PKI, and Keyc-
loak TAM systems. This framework was intended to solve such problems as identity
protection and, in general, privacy in the world where new entities such as IoT devices
and Which will be important. Thus, this research was able to develop and test a model
that incorporates the above mentioned technologies. The model showed good signs of
achieving efficient protection of IoT devices in terms of the identities themselves and the
data associated with those identities. The model delivered device registration and device
retrieval commands utilizing a command line interface (. CLI). But the measurements
of latency showed that although device deletion or retrieval took a very short amount of
time, device creation took a lot longer because of the time involved in completing the
blockchain transaction. Security checkpoints analysis with the help of the tool Slither
revealed certain risks, such as those connected to modifiers and used Solidity version.
Though it was necessary to use an older version of Solidity to prevent the issues with
the compilation, this situation has drawn attention to the fact of the existence of the
risks related to the usage of the outdated software. Further, the proposed model was
less transparent in the sense that only transaction data was stored on the blockchain
while other details were kept anonymous. Meta-information is only logged, which is not
sensitive, for instance, data including the hash of the transaction and the amount of gas
used; no Personal Identifiable Information (PII) is saved. It is in concordance with the
recommended measures of personal privacy which further supports the credibility of the
model in the expectation to safeguard the users’ information.

Future Works: It is clear from the research that blockchain, PKI, and Keycloak can
be effectively utilised for the identity management of IoT devices and provide privacy.
Nevertheless there are some drawbacks revealed within the use of this approach includ-
ing the delay in the creation of device type contracts and potential security weaknesses
connected to utilization of less variant Solidity versions. In addition to that, the model

17



doesn’t have a proper user interface as all the interactions were performed using CLI, a
proper integration of Ul can be considered for further advancements. Also, this model
is implemented on a single personal computer and with simulation environment. So, the
implementation and evaluation of model with added layer of security mechanisms must
be conducted in real world enterprise environment with actual IoT devices as real world
implementation has their own set of unique challenges.

References

Adams, C. and Lloyd, S. (2003). Understanding PKI: concepts, standards, and deploy-
ment considerations, Addison-Wesley Professional.

Alamri, B., Crowley, K. and Richardson, I. (2023). Cybersecurity risk management frame-
work for blockchain identity management systems in health iot, Sensors 23(1): 218.

URL: https://doi.org/10.3390/s23010218
BOURIAN, 1., SEBBAR, A., CHOUGDALI, K. and Amhoud, E. M. (2023). Sshceth:

Secure smart home communications based on ethereum blockchain and smart contract,
GLOBECOM 2023 - 2023 IEEE Global Communications Conference, pp. 2674-2679.
URL: https://doi.org/10.1109/GLOBECOM54140.2023.10437193

Chatterjee, A. and Prinz, A. (2022). Applying spring security framework with keycloak-
based oauth2 to protect microservice architecture apis: A case study, Sensors 22: 1703.
URL: https://doi.org/10.3390/s22051703

Chen, H., Pendleton, M., Njilla, L. and Xu, S. (2020). A survey on ethereum systems
security: Vulnerabilities, attacks, and defenses, ACM Comput. Surv. 53(3).
URL: https://doi.org/10.1145/3391195

Christidis, K. and Devetsikiotis, M. (2016). Blockchains and smart contracts for the
internet of things, IEFFE Access 4: 2292-2303.
URL: https://doi.org/10.1109/ACCESS.2016.2566339

Kettani, H. and Carnley, P. (2019). Identity and access management for the internet
of things, International Journal of Computers, Communications Control (IJCCC)
8: 129-133.

URL: https://doi.org/10.18178 /ijfcc.2019.8.4.554

Nuss, M., Puchta, A. and Kunz, M. (2018). Towards blockchain-based identity and
access management for internet of things in enterprises, in S. Furnell, H. Mouratidis
and G. Pernul (eds), Trust, Privacy and Security in Digital Business, Vol. 11033 of
Lecture Notes in Computer Science, Springer, Cham.

URL: https://doi.org/10.1007/978-3-319-98385-1,2

Priest, J., Cooper, C., Lovell, S.; Shi, Y. and Lo, D. (2023). Design and implementation
of an erc-20 smart contract on the ethereum blockchain, 2023 IEEE International
Conference on Big Data (BigData), pp. 2334-2338.

URL: https://doi.org/10.1109/BigData59044.2023.10386258

18



Pohn, D. and Hommel, W. (2023). New directions and challenges within identity and

access management, IEEE Communications Standards Magazine 7(2): 84-90.
URL: https://doi.org/10.1109/MCOMSTD.0006.2200077

Sadique, K., Rahmani, R. and Johannesson, P. (2023). Didm-eiotd: Distributed identity
management for edge internet of things (iot) devices, Sensors 23: 4046.
URL: https://doi.org/10.3390/s23084046

Sicari, S., Rizzardi, A., Grieco, L. and Coen-Porisini, A. (2015). Security, privacy and
trust in internet of things: The road ahead, Computer Networks 76: 146—-164.
URL: https://www.sciencedirect.com/science/article/pii/S1389128614003971

Singla, A. and Bertino, E. (2018). Blockchain-based pki solutions for iot, 2018 IEEE jth
International Conference on Collaboration and Internet Computing (CIC), pp. 9-15.
URL: https://doi.org/10.1109/CIC.2018.00-45

Spadavecchia, G., Fiore, M., Mongiello, M. and De Venuto, D. (2024). A novel approach
for fast and secure data transmission using blockchain and iot, 2024 13th Mediterranean
Conference on Embedded Computing (MECO), pp. 1-4.

URL: https://doi.org/10.1109/MECOG62516.2024.10577932

Williamson, G., Koot, A. and Lee, G. (2022). Non-human account management (v4),
IDPro Body of Knowledge 1(11).
URL: https://doi.org/10.55621 /idpro.52

Wood, G. et al. (2014). Ethereum: A secure decentralised generalised transaction ledger,
Ethereum project yellow paper 151(2014): 1-32.

Zhao, Z. (2022). Comparison of hyperledger fabric and ethereum blockchain, pp. 584-587.
URL: https://doi.org/10.1109/IPEC54454.2022.9777292

Ziegeldorf, J., Morchon, O. and Wehrle, K. (2014). Privacy in the internet of things:
Threats and challenges, Security and Communication Networks 7.
URL: https://doi.org/10.1002/sec. 795

19



	Introduction
	Related Work
	Blockchain-Based Identity Management in IoT
	Blockchain-Based Identity Management for Healthcare IoT Devices
	 IoT Identity Management Using Distributed Ledger Technology
	ERC-20 Smart Contract
	Blockchain-Based IoT Security Models
	Blockchain Solutions with Secure PKI Systems
	Challenges in Ethereum
	Comarison of Ethereum and Hyperledger

	Methodology
	Design Specification
	Core Components
	Backend Processs
	Model Overview
	Workflow of Model

	Implementation
	PKI Installation
	Keyclaok Setup and Configuration
	Smart Contract Deployment
	Data Encryption and Storage
	 Command Line Interface (CLI)

	Evaluation
	Model Latency
	Device Creation/Registration
	Device data Retrieval

	Smart Contract Security Audit
	JWT Token Validation
	Valid Token
	Tampered Token
	Expired Token

	Privacy Preserving Evaluation
	Discussion

	Conclusion and Future Work

