
Configuration Manual for Phishing 
 

1 System Requirements 
This whole project takes into the account three important steps, 

RAM: 16GB DDR2 

OS: Windows 11 pro 

Processor: i7 9th generation 

Technology required: Python, Anaconda, Spyder, Streamlit 

2 Code execution 

 

Figure1. This code logs into your Google Account and demonstrates how to mount your Google Drive 

into Colab; subsequently, you can drag files from Google Drive into the Colab notebook.

 

Figure2. This code reads a CSV file that is named Phishing_Email. It then loads `data|filename:data. it 

moves the file named `(file_type|extension|date). csv` from Google Drive to a DataFrame called `df`.

 

Figure3. This code converts the ‘Email_Text’ as the column of the DataFrame ‘df’ as string data type. 

 



 

Figure4. These are the statements that import several required libraries and modules that will be 

used in data manipulation, text preprocessing, machine learning, and data visualization. The 

imported libraries are pandas for data manipulation, textblob and nltk for text manipulation, sklearn 

for machine learning solution, and matplotlib, seaborn, and wordcloud for data visualization. 

Further, it sets the plot sizes by using the `matplotlib` and mutes all the warnings thrown by 

`matplotlib` to clean the output. 

 

Figure5. The `tokenize_and_lemmatize` function processes a given text by:The 

`tokenize_and_lemmatize` function processes a given text by:  

  



 1. Resulting in tokenization of the text, which can be further defined as splitting the text into 

individual words.  

 2. Removing any non-alphanumeric tokens.  

 3. Lowercasing the remaining tokens and lemmatizing them which in other words means reducing 

more complex words to their base form.  

 The function returns words after preprocessing them. Otherwise, the function will return `None`, it 

means that the regular expression does not match.

 

Figure6. Here this code is separated by the custom tokenizer function and the maximum number of 

total features is defined as 5000 terms. The `TfidfVectorizer` fits our text data and then transforms it 

into matrix of TF-IDF values, relative to each word to document and to the entire text. 

 

Figure7. This code includes the data split where the data splits are about 80% to 20% where the 80% 

is trained and the 20% is tested. It then fits the `TfidfVectorizer’ on the training data to transform the 

data into a TF-IDF matrix which is referred to as `X_train_tfidf’ and uses the same to transform the 

test data into `X_test_tfidf’.

 

Figure8. This code initializes a dictionary with various machine learning classifiers, each associated 

with its model:This code initializes a dictionary with various machine learning classifiers, each 

associated with its model:  

 - Logistic Regression: Set at a maximum of 1,000 iterations but; can be adjusted depending on the 

difficulty in solving a particular problem.  

 - SVM (Support Vector Machine): Falling from the linear kernel.  

 - Random Forest: Refers to a configuration which is comprehensible in any context by practically all 

technical fields.  

 - Naive Bayes: Defining the model of communication and using the Multinomial Naive Bayes 

approach.  

 - K-Nearest Neighbors: Standard process, that can be used with modifications.  

  



 In this dictionary, the key to the classifier’s name contains the value that points to the model 

instance of the classifier.

 

Figure10. This code trains and evaluates each classifier listed in the `classifiers` dictionary:This code 

trains and evaluates each classifier listed in the `classifiers` dictionary:  

 1. Training and Evaluation:  

 - Training: Superposition was made of the data used for the training of each model, namely the 

transition matrix of the TF-IDF vectors `X_train_tfidf` and the vector of the corresponding target 

values `y_train`.  

 - Prediction: The model predicts outcomes on the test data and shown in the above portion where 

`X_test_tfidf` represents the vectors for the test data.  

 - Accuracy: Calculates and prints the accuracy score between the predicted and the actual labels.  

 - Classification Report: Automates the production of a report that gives the precision, recall, and F1 

score of each classifier.  

 - Confusion Matrix: Conduct metrics true positive and true negative with the help of the confusion 

matrix that is presented in the form of heatmap. 



 

Figure11. This particular algorithm defines a dictionary named `metrics` which holds the 

performances of different machine learning models. For each model, the metrics include:For each 

model, the metrics include:  

 - Accuracy: The measure of accuracy of the totals of the model.  

 - Precision: This would provide the precision scores for each of the class ‘-1’ and ‘1’.  

 - Recall: Remember the scores of each of the classes.  

 - F1-Score: Table of F1 scores for each of the classes.  

 These metrics help provide a clear and all rounded evaluation of each of the models. 

 



 

Figure12. This code generates a bar chart to visualize the accuracy of various machine learning 

models:This code generates a bar chart to visualize the accuracy of various machine learning models:  

 1. Data Preparation: Calls the `extract_model_accuracy()` function and passes the `metrics` 

dictionary as an argument; the function extracts only model names and their scores.  

 2. Plotting: Produces a bar chart with labels on the x-axis and the models on the y-axis, while the 

accuracy scores are on the y-axis.  

 3. Annotations: Plots accuracy values over each bar and makes dashed lines from top of the bar to 

the X-axis.  

 4. Formatting: This code sets up the labels, title, y axis limits and rotates the x axis labels by 90 for 

better reading.  

 5. Display: Presents the bar chart with the possibility of comparing the corresponding elements and 

knowing which model is best among them. 

 

Figure13. The code implementation generates a bar chart that quantifies the precision of a number 

of models of two classes (-1 and 1). It compares the precision-curve ratings of each model side by 



side while putting additional notes to qualify the curves. This chart proves useful in performance 

evaluation and comparing the models according to their precision of the two classes in the set. 

 

Figure14. The code produces a bar chart that depicts the recall of different models with regard to 

the two classes, namely, -1 and 1. It shows the recall scores of all the models and on the right axis to 

help understand every bar we have. This chart is ideal in presenting the extent to which the models 

can preserve examples of the two classes. 

 

Figure15. The code then generates a bar chart that plots the F1 scores between two classes, namely 

-1 and 1, for the different models. It provides F1 scores of each model and annotations to properly 

link them with the corresponding models. It also assists in the evaluation of the region of interest of 

the Precision and Recall for each model of the two classes. 

Phishing 



 

Figure16. The code consists of data pre-processing and creation of a neural network through Keras. 

It involves identifying text data for reading the model, specifying a sequential model with the 

embedding layer, a GRU layer, and the dataset splitting, training, and optimizing processes. 

 

 

Figure17. The code reads a text file with a name of Phishing_Email and an extension of csv. the ‘csv’ 

file from a given path on Google Drive and loads it into a pandas DataFrame called ‘df’. 

 

Figure18. The code starts with importing a random environmental library for the random numbers 

and importing tensorflow as ‘tf’ which is widely used for various machine learning and deep learning 

operations. 

 

Figure19. These hyperparameters are crucial for configuring a deep learning model:These 

hyperparameters are crucial for configuring a deep learning model:  

 - `MAX_NB_WORDS`: This is the largest number of distinctive words that can be included when the 

tokens are being generated.  

 - `MAX_SEQUENCE_LENGTH`: The maximum size of input sequences including the padding.  

 - `EMBEDDING_DIM`: The size of the word vectors in the embedding layer with the three most 

common architectures of deep learning models.  

 - `epochs`: The number of epochs that was run through the full set of the data set in the training 

faze of the model.  

 - `batch_size`: The number of samples that go through the network before the weights of the model 

are adjusted. 



 

Figure20. The code sets up a deep learning pipeline for text classification, including:The code sets up 

a deep learning pipeline for text classification, including:  

 1. Preprocessing:  

 - Tokenizer: Maps text into list of integers.  

 - pad_sequences: It is used to pad sequences to match the length of longest sequence in all 

sequences or truncate those that are longer than the longest.  

 2. Model Configuration:  

 - Sequential Model: Piles them up in a sequential manner.  

 - Embedding Layer: Maps integer sequences into rarely sparse, high-dimensional space.  

 - GRU Layer: Responsible for processing sequential data with a combination of the GRU unit.  

 - Dense Layer: Fully connected layer final layer for classification into the appropriate class.  

 3. Training Setup:  

 - Callbacks: There shall be a use of early stopping and also model saving measures.  

 - Train-Test Split: Splits data into training and validation set.

 

Figure21. The code updates column names in the DataFrame `df` to ensure consistency:The code 

updates column names in the DataFrame `df` to ensure consistency:  

 - Field name `Email Text` is changed to a new name which is `Email_Text`.  

 - Thus, the column name `Email Type` is modified to `Email_Type`.

 

Figure22. This code enables one to access files which are stored in the Google Drive within the Colab 

environment. It mounts Drive, so the contents of Drive become accessible in this directory: 



/content/drive.

 

Figure23. The following code first fit a keras tokenizer to the `Email_Text` column of the DataFrame, 

and then use this tokenizer to transform this feature into a sequence of tokens. It sets up the 

tokenizer defining parameters such as `MAX_NB_WORDS` to reduce the number of words, and 

characters that should be omitted, plus transforming all the text to lower case. Following the fitting 

of the tokenizer, it then prints out the total numeric count of unique tokens that has been identified 

to exist within the `Email_Text` column.

 

Figure24. This code sets up and uses a Keras `Tokenizer` for text data processing:This code sets up 

and uses a Keras `Tokenizer` for text data processing:  

 1. Initialize Tokenizer: In the building of a `Tokenizer` object, there are some parameters 

predetermined such as `MAX_NB_WORDS` where the number of words is to be restricted in use, 

eliminate characters (e. g. , ‘,’ and ‘. ’) and lower casing of the text.  

 2. Fit Tokenizer: The tokenizer is fitted on the column of DataFrame ‘df’ denoted as ‘Email_Text’, 

where the word index is created based on the texts.  

 3. Print Unique Tokens: It prints the total number of different tokens (words) which is discovered by 

the help of tokenizer. 

 

Figure25. This code prepares the data for training a neural network model:This code prepares the 

data for training a neural network model:  

 1. Tokenize and Sequence Texts: Converts the text from the `Email_Text` column into sequences of 

integers using the `tokenizer` whereby every word to a unique integer.  

 2. Pad Sequences: To make the input of all these integer sequences uniform for the model the 

current integer sequences are padded to a length of `MAX_SEQUENCE_LENGTH` using zeros.  

 3. Print Shape: Shows the shape of the resulting data tensor, it is clear from the figure below that 

the input features are of 7200 rows and 6 columns.  

 4. Prepare Labels: Proceeds to transform the `Email_Type ` to feature and use `OneHotEncoder ` to 

convert the labels into a binary matrix form. The process of applying this transformation is to 



convert a categorical label into a format that can be understood and learned by a model with much 

improvements it will transform into a binary matrix. 

 

Figure26. Dataset Splitting: Below is the code that split the entire dataset into the training and 

testing set, the testing set contain 30% of the overall records. It then follows by printing the shapes 

of the training feature and label arrays that are produced. 

 

Figure27. Training Configuration: The following code determines the training process settings for the 

considered model, with the number of epochs set to 20 and the batch size to 64. 

 

Figure28. Model Definition and Training: First of all, this code compiles and trains a bidirectional 

GRU neural network for the involved text classify. There are an embedding layer, bidirectional GRU 

layer, dense layer, dropout layer and a Final dense output layer. Binary cross-entropy is sued as the 

loss function with Adam optimizer to optimize the model; to curb over training, early stopping is 

applied such that the training stops after 20 epochs. 

 

Figure29. Model Compilation: The following is the Keras model defined by this code:  

 - Loss Function: `BinaryCrossentropy(from_logits=True)` – Suitable for binary classification problems 

and deals with the logits directly output from the model.  

 - Optimizer: `Adam(1e-4)` – The name of an optimization which uses 1. e-4 as its learning rate. 0001 

– describes the current learning rates and performs changes in the process of training.  



 - Metrics: `['accuracy’] – Measures the accuracy of the model when the model is trained abd tested.

 

Figure30. Model Training: The following parameters for Keras model training is set in this code:  

 - Epochs: Number of iterations passes over the entire training data set (as identified earlier).  

 - Batch Size: Silver count before the model is updated, given in the section above.  

 - Early Stopping Callback: It can stop the training if the validation loss does not augment for three 

epochs, and save the weights of the best model to avoid overfitting.

 

Figure31. Library Imports for Model Evaluation: The code also brings in libraries that will be used to 

assess the performance of the model:  

 - `matplotlib. pyplot`: It is used in developing plot and visualization.  

 - `sklearn. metrics. ConfusionMatrixDisplay` and `confusion_matrix`: Regarding their use: for 

computing and displaying confusion matrices.  

 - `classification_report`: Helps to generate a report that will contain the values of precision, recall, 

and F1-score of the model.

 

Figure32. Model Evaluation: On completing the code, the system creates a classification report that 

provides precision, the recall and F1-score. They also give a heatmap of the confusion matrix to 

present the actual class against the predicted one in the class distribution. 

LSTM 

 

Figure33. Library Imports: The code is used to import the core packages that are essential for deep 

learning text classification such as, TensorFlow & Keras for the model development and training, 



Sklearn for data pre-processing and splitting the data set & several Keras layers, useful utilities for 

text tokenization & padding of the LSTM based neural network. 

 

Figure34. The code initializes random seeds for the Python’s built-in random module and libraries, 

numpy, and Tensorflow to avoid replicability. This has the consequence that, when these seeds are 

used to initialize the random number generator, every time the same piece of code is executed, the 

same results are obtained, which is very useful for the debugging phase and for comparisons. 

 

Figure35. The code defines key parameters for text processing and model training:The code defines 

key parameters for text processing and model training:  

 - MAX_NB_WORDS: Restricts the number of different words in the text to fifty thousand.  

 - MAX_SEQUENCE_LENGTH: Cuts of sequences’ length to the 250 tokens and applies padding to the 

sequences shorter than it.  

 - EMBEDDING_DIM: Uses 32-dimensional vectors for the word embeddings.  

 - epochs: That is why to train the model for 50 iterations over the entire dataset is an optimal 

solution.  

 - batch_size: Trains on 64 samples at a time during the training session.

 

Figure36. The code typecasts the ‘Email_Text’ column of the DataFrame `df` to string data type so 

that all the entries in this column are treated as string variables. This is very useful in preprocessing 

of text and training of the models.

 

Figure37. The code renames columns in the DataFrame `df` to avoid naming conflicts: In noun 

compound, prefix or suffix is added with the separator underscore (_) in between forming a new 

word respectively ‘Email Text’ is replaced by ‘Email_Text’ and ‘Email Type’ replaced with 

‘Email_Type’. 



 

Figure38. The code specifies a `Tokenizer` to work with text data by identifying the maximum 

number of words to be used `MAX_NB_WORDS` and filtering out symbols. It then applies the 

tokenizer on the email text data and then prints the number of tokens in the data set. 

 

Figure39. The code converts text data into sequences of integers using a tokenizer, pads these 

sequences to a fixed length defined by `MAX_SEQUENCE_LENGTH`, and then prints the shape of the 

resulting data tensor. 

 

Figure40. The code performs these actions:The code performs these actions:  

 1. Extract Target Variable: It sets `Y` equal to the Dframe’s column called ‘Email_Type’, which has 

the email labels.  

 2. One-Hot Encoding: For the target variable, which is the species of iris, it further encodes the 

categorical nature of `Y` as a binary vector using `OneHotEncoder`. This change is used for the 

classification tasks which involved reformatting the labels and encoding them in numbers. 

 

Figure41. The code sets up and trains a text classification neural network using a Bidirectional LSTM 

model with the following components:The code sets up and trains a text classification neural 

network using a Bidirectional LSTM model with the following components:  

 - Embedding Layer: Translates the words into high-dimensional vectors, that puts the text in the 

numerical form for its analyzing.  



 - Bidirectional LSTM Layers: Computes sequence forward and backward making this model also 

aware of contexts after and before any location in a sequence.  

 - Dense Layer: A Dense layer connected layer that takes features generated by the LSTM layers and 

provides the prediction.  

 - Dropout Layer: Guards against over fitting by eliminating a randomly selected unit at training with 

an aim of making the model to learn to perform on any given set of units.  

 - Output Layer: Gives out probabilities of the results in a binary classification.  

 The model is compiled with:The model is compiled with:  

 - Loss Function: Binary Crossentropy, for binary classification problem.  

 - Optimizer: Adam which changes the learning rate in the process of training.  

 Training is carried out to a maximum of 50 iterations using dropout regulation based on the 

validation set loss. Accuracy rate AUC and precision are the common model performance measuring 

standards.

 

Figure42. The code imports libraries for visualizing the performance of machine learning models:The 

code imports libraries for visualizing the performance of machine learning models:  

 - `matplotlib. pyplot`: It is used for the development of a range of plots and graphics such as line 

plots, scatter plots, distributes and many more.  

 - `sklearn. metrics. ConfusionMatrixDisplay` and `confusion_matrix`: For measuring and showing the 

confusion matrices.  

 - `classification_report`: Outputs an elaborate result report which contains precision, recall, and a 

F1-score to compare the efficiency of the model.. 

 

Figure43. The code evaluates the model on the test set by:The code evaluates the model on the test 

set by:  

 1. Estimating Class Probabilities: Applying the model to predict probabilities for each class on the 

test data.  

 2. Converting Probabilities to Class Labels: Deciding on the predicted class by choosing the index of 

the maximum probability for each instance, thus, converting the probabilistic results obtained into 

distinct classes.. 



 

Figure44. The code evaluates the model's performance by:The code evaluates the model's 

performance by:  

 1. Printing the Classification Report: It includes precision, recall, and F1-score measures for each 

class to describe the model’s performance in detail.  

 2. Computing the Confusion Matrix: Computes for the matrix consisting of true positive values, true 

negatives, false positives and false negatives.  

3. Visualizing the Confusion Matrix: For the visualization of the confusion matrix, it plots the 

heatmap to enhance the performance interpretation of the model. 

 



 3..  

 



 



 

Figure45. Here’s a summary of what each section of the code does for plotting model performance 

metrics:Here’s a summary of what each section of the code does for plotting model performance 

metrics: 

 1. Accuracy Comparison:  

 - Data Preparation: Pulling out the accuracy values from the `metrics` dictionary for each model.  

 - Plotting: Produces a bar chart of the models’ performances; the y-axis represents the accuracy of 

the model and the labels add clarity.  

 2. Precision Comparison:  

 - Data Preparation: Pulls the precision values for both classes (-1 and 1) from the `metrics` 

dictionary.  

 - Plotting: Builds the grouped bar chart to compare the precision of each model for both classes 

with annotations on the values.  

  

 3. Recall Comparison:  

 - Data Preparation: Pulls out the recall values for classes -1 and 1 from the `metrics` dictionary.  



 - Plotting: Decision: presents a grouped bar chart with the recall scores for each model and class, 

labeling the axes and the chart with recall values.  

 4. F1-Score Comparison:  

 - Data Preparation: Gets the F1-Score averages of every class (-1 and 1) from the ‘metrics’ 

dictionary.  

 - Plotting: Generates a grouped bar to give F1-Scores of each model on different classes with 

additional commentaries for F1-Score.  

 All presented charts use grouped bars for different classes, have some value annotations, and have 

a legend so it would be easier to compare models by various metrics. 

3 Steps to Run and execute the codes 

Step 1: Initially the user has to go to the google drive which contain the codes and data.  

 Step 2: Run the colab file.  

 Step 3: Access authentication for the drive must be made.  

 Step 4: Now record the application by start running it in the Anaconda Prompt.  

 Step 5: Run the code python -m streamlit run app. py 
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