

Using Machine Learning Algorithms to Detect Phishing

attack

MSc Research Project

MSc Cybersecurity

Shreyas Chandrakanth Kulkarni
Student ID: X23173106

School of Computing

National College of Ireland

Supervisor: Jawad Salahuddin

National College of Ireland MSc Project

Submission Sheet School of Computing

Student Name: Shreyas Chandrakanth Kulkarni

Student ID: X23173106

Programme: MSc In Cybersecurity Year: 2024

Module: MSc Research Practicum

Supervisor: Jawad Salahuddin

Submission Due
Date:

12/08/2024

Project Title: Real-Time Detection of Social Engineering Threats in Social Media
Posts.

Word Count: Page Count 26

I hereby certify that the information contained in this (my submission) is

information about research I conducted for this project. All information other

than my contribution will be fully referenced and listed in the relevant

bibliography section at the rear of the project.project.

ALL internet material must be referenced in the bibliography section. Students

are required to use the Referencing Standard specified in the report template. To

use other author's written or electronic work is illegal (plagiarism) and may result

in disciplinary action.

Signature: Shreyas Chandrakanth Kulkarni

Date: 12/08/2024

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple
copies)

□

Attach a Moodle submission receipt of the online project

submission, to each project (including multiple copies).
□

You must ensure that you retain a HARD COPY of the project,
both for your own reference and in case a project is lost or mislaid. It is
not sufficient to keep a copy on computer.

□

Assignments that are submitted to the Programme Coordinator Office must be

placed into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

Using Machine Learning Algorithms to Detect Phishing

attack

Abstract

Cyberfraud, particularly through phishing attempts, is a significant issue in corporate operations. This

might impede business operations but also deprive valuable and critical information. This study's main

objective is to address the issue of identifying phishing and not disturbing employees with these harmful

email attacks. The proposal is to make an intelligent pipeline using machine learning to mitigate the

case of phishing attacks. Various Machine Learning techniques including deep learning models, will be

evaluated to determine their effectiveness in detecting inappropriate behavior in greedy search-based

pipeline networks. Since machine learning has been identified as a crucial instrument in combating

cybercrime, this response system can work agnostic to any organization and data to give a proper

security service and maintain the server networks. These results further emphasize the significance of

employing adaptable techniques to address emerging security challenges.

Keywords: DDoS attack, Phishing Email attacks, Machine Learning, Deep Learning, Response System

Chapter 1: Introduction

Phishing is one of the social engineering attacks commonly used by hackers to obtain user information,

such as login passwords and credit card data. Phishing refers to the deliberate act of tricking a target

into accessing an email, instant message, or text message by assuming the identity of a reliable source.

Afterwards, the receiver is deceived into clicking on a harmful hyperlink, which can install harmful

software.

Figure 1: An example depicting the suspicious email link (Source: www.impreva.com)

Phishing is a fraudulent technique in which false communications are transmitted across the internet,

usually in the form of emails or messages, to give the false impression that they come from reliable

sources. The primary objective is to deceive the receivers into sending sensitive information, such as

credit card details, usernames, and passwords, along with other personal details. Phishing attacks can

lead to theft, significant financial loss, and the unapproved disclosure of private data. The objective of

the phishing scam depicted in Figure 1 is to contact as many users (in this case academic people) as

possible using the dissemination of a phishing email that appears to have originated from

myuniversity.edu (can be any link related to the organization or individual). By clicking on the link and

give access to the entire system to the hackers.

1.1 Research Motivation

Despite two-factor authentication (2FA) being one of the most effective methods one can use to protect

against phishing attempts, companies may take a variety of other measures to reduce the chance of

phishing and spear phishing attacks. There is an extra layer of verification added when access is granted

to essential applications. The availability of a physical device, such as a smartphone, and the user's

awareness of and ability to use a password and username are the two primary aspects of two-factor

authentication. Because compromised credentials are not sufficient to grant access, two-factor

authentication (also known as 2FA) ensures that even compromised users are unable to utilize them.

Both tight rules for password management and two-factor authentication (2FA) are equally critical

practices. An example of such a policy would prohibit employees from using the same password for

several apps and mandate that they change their passwords regularly. As a result of the fact that phishing

attacks can take on specific forms and behaviors, it would be advantageous to make use of machine

learning and artificial intelligence to recognize these attacks as well as other types of distributed denial

of service (DDoS) attacks. This would allow the user or organization to take the appropriate precautions

to protect themselves.

1.2 Research Aim

The integration of machine learning-based techniques with cybercrime detection is crucial for

safeguarding online transactions and enhancing customer trust. Organizations can effectively combat

fraudulent practices by employing machine learning algorithms (Pranali Landge, 2023). The utilization

of a combination of machine learning and cyber security in this technique aids in overcoming challenges

posed by harmful attacks and guarantees the ability to identify threats in real-time.

1.3 Research Questions

Based on the above discussions, we will be focusing on the following research questions,

RQ1: How can we develop machine learning algorithms so that they can recognize changing phishing

strategies that take into consideration elements like content, sender behavior, and contextual cues?

RQ2: How can we differentiate between a valid legitimate link and a phishing link?

RQ3: How can we construct phishing detection systems that can adapt to new attack methods, keep

detection rates high while minimizing the number of false positives, and make use of ensemble learning

approaches such as integrating several classifiers or utilizing data from numerous sources?

Chapter 2: Literature Review

The field of research and development of methods for identifying fraudulent activity in online

transactions has become an increasingly significant area of study. To safeguard both businesses and

their customers, researchers from all over the world have been focusing their attention on developing

algorithms and other approaches that can halt fraudulent activity in its tracks.

2.1 Research done towards different data imbalance techniques and anomalous data

handling

The problem of class imbalance in transaction datasets has been the subject of a significant amount of

study in the field of financial fraud detection. Rebalancing datasets by data stratification, minority over-

sampling, and majority under-sampling has been done to enhance the ability of machine learning models

to detect fraudulent patterns (Jose' A. Saez,' Bartosz Krawczyk, and Michal Wozniak, 2016). Some

examples of methods include synthetic minority oversampling (SMOTE), Adaptive Synthetic Sampling

(ADASYN) and Rebalancing datasets by data stratification. The SMOTE algorithm was developed by

(Chawla et al., 2002)(Mengran Zhu, 2024) to improve the performance of models in fraud detection

scenarios. Synthetically generating data from minority groups is one method that may be utilized to

address the issue of class imbalance. These approaches have as their primary objective the improvement

of model performance through the correction of class imbalance.

Figure 2: The structure of a phishing email (Source: Nengran Zhu, 2024)

As the above link shows, a phishing email contains a certain structure, this structure contains the

information that can be used to mitigate the phishing. Research on the robustness of ML models against

harmful attacks is becoming crucial to fraud detection. Advanced methods to modify machine learning

models for evasion are at the heart of harmful attacks. It is vital to use strong machine learning models

to protect fraud detection systems and successfully fight against such attacks. Some of the methods

being studied to strengthen models against adversarial acts include adversarial training (Weimin Zhao,

2022), anonymity detection (Ali Bou Nassif, 2021), and model diversification. The goal is to guarantee

accurate fraud detection by making the models more resistant to harmful attacks. An important area of

focus in fraud detection research is making ML models resilient against adversarial attacks. To avoid

detection, harmful attacks use sophisticated methods to manipulate ML models. To successfully defend

against these threats and keep fraud detection systems secure, robust ML models are needed. To make

models more resistant to adversarial behaviors, researchers are looking into methods such as adversarial

training (Weimin Zhao, 2022), model diversification (Zhiqiang Gong, Ping Zhong, and Weidong Hu,

2019), and anomaly detection (Ali Bou Nassif, 2021). Emerging adversarial methods in fraud detection

necessitate real-time detection strategies.

2.2 Machine Learning models towards the anomalous data prediction

The training method (Alnemari, S. and Alshammari, M., 2023) of the Random Forest ensemble

learning approach makes use of several decision trees that were generated independently of one another.

After totaling all the predictions given by each tree, we can derive the final forecast. Due to its

exceptional performance on high-dimensional data, Random Forest is effective in facilitating the

collection of intricate feature correlations. When applied to the phishing problem, Random Forest can

identify trends in URLs or language that give the impression of malicious intent. Random Forest is

responsible for searching for small irregularities that are related to phishing attempts. This is done to

improve the accuracy of phishing detection systems. To accomplish this, it is quite beneficial to study

the text and URLs from a semantic and structural point of view.

Modelling the likelihood (Shirazi, H., et. al., 2023) of a binary result given one or more predictor

elements may be accomplished through logistic regression, which is a linear classification

technique. Although it is known by a different name, logistic regression is utilized for classification

applications most of the time. Logistic regression is a powerful method for detecting phishing because

it calculates the chance that a certain phrase or URL is related to malicious intent. This makes it an

effective strategy for phishing detection. This approach is easier to employ for locating crucial textual

or structural indications of phishing attempts since it provides insights into the significance of features

and results that may be interpreted after they have been obtained. By examining the correlations

between the input data and their labels, logistic regression can help identify potentially malicious

websites or material.

The XGBoost algorithm (Apruzzese, G., 2023), which is well-known for its accuracy and efficiency,

is an example of a gradient-boosting strategy that performs exceptionally well when presented with

large datasets. It does this by including weak learners into the model in a sequential manner, with each

learner correcting the faults of its predecessor. Some examples of weak learners are decision trees.

Phishing attempts may be easily spotted by XGBoost, which has a flair for recognizing subtle but

revealing patterns and irregularities in URLs or linguistic characteristics. This makes it possible for

XGBoost to identify phishing attempts. XGBoost searches for structural, semantic, and contextual

characteristics in URLs or text that distinguish real things from fraudulent ones. This is done to make

phishing detection systems more effective in general across the board. To do this, the text or URLs are

analyzed.

One of the many ensembles learning (Ajala, O.A., 2024) approaches that is becoming increasingly

popular is called AdaBoost. This method is an example of an approach that combines numerous weak

classifiers into a single powerful one. It's possible that we can enhance the effectiveness of the classifier

by redistributing the weights of data points that were mistakenly classified. When AdaBoost is used for

phishing detection, the accuracy and robustness of the model also experience improvements. To do this,

the categorization of text or URLs is modified on several occasions. The number of false positives may

be reduced using AdaBoost, and the identification of subtle phishing attempts can be increased. This is

accomplished by adjusting the weighting of the model appropriately and focusing on challenging

situations.

Support vector machines (Kuraku, D.S. and Kalla, D., 2023), are supervised learning models that

come in useful for tasks like classification and regression. By identifying the optimal hyperplane for

the separation of data points into many categories, support vector machines (SVMs) attempt to optimize

the margin between classes. In circumstances in which the class boundary is readily obvious, support

vector machines (SVMs) perform remarkably well when working with high-dimensional data. When

identifying phishing, support vector machines (SVMs) use the geographical distribution of textual

qualities or URLs to determine if they are genuine or counterfeit. By evaluating the geometric

relationships between data points, support vector machines (SVMs) can discern between real and fake

items. This is accomplished by studying the data points. This dissimilarity may cause them to classify

site URLs or text contents differently and cause confusion.

It is possible to utilize decision trees for both regression and classification tasks; decision trees are a

sort of non-parametric supervised learning (Shombot, E.S., Dusserre, G., Bestak, R. and Ahmed,

N.B., 2024). Through the process of recursively splitting the feature space into subsets depending on

the feature values, they strive to either reduce the amount of impurity or improve the amount of

information gained with each split. Decision trees can be useful for phishing detection since they enable

pattern identification and feature importance comprehension. Because of this, they can be beneficial.

Their legibility and simplicity make them ideal for analyzing textual or structural indicators of phishing

attempts. Because decision trees can differentiate between actual and fraudulent entities, they can

increase the accuracy of phishing detection systems. To accomplish this, decision trees recursively

divide the feature space.

2.3 Research towards mitigating Phishing and DDoS attacks using Machine Learning

The accuracy of the model (Ahmed, S., et. al, 2023 is evaluated based on the proportion of positive

occurrences, such as URLs used for phishing, correctly identified compared to the total number

of positive cases predicted. To determine how accurate the model's positive predictions are, this

statistic is applied. It is computed by dividing the total count of true positives by the sum of both true

positives and false positives. When it comes to phishing detection, accuracy is an essential parameter

since it demonstrates how well the model can identify dangerous URLs without simultaneously creating

false positives. With a high accuracy score and a low false positive rate, the likelihood of the algorithm

wrongly labelling valid URLs as phishing attempts is reduced. This is because the algorithm is less

likely to make a mistake.

When compared to the total number of positive examples in the dataset (Alashhab, A.A., et. al, 2024),

"recall," which is often referred to as "sensitivity," is the ratio of the number of occurrences that have

been positively recognized (such as phishing URLs). We can assess whether the model can recognize

all real positives by dividing the total number of positive findings by the sum of all positive and negative

results. The capacity of the model to identify phishing attempts is evaluated by recall, and it ensures

that no dangerous URLs are overlooked despite this evaluation. In the process of phishing detection, it

is an essential component. As shown by its high recall value and low false negative rate, the model can

effectively identify most phishing attempts.

Given that it provides an accurate evaluation of the overall classification accuracy, the F1 Score is useful

in situations where reducing the number of false positives and false negatives is a top concern. As the

value goes closer and closer to 1, the performance of the model gets better. By keeping a healthy

equilibrium between recall and accuracy, the phishing detection model can reduce the number of false

positives and negatives, resulting in a better F1 Score. This contributes to the phishing detection system

being more robust (Ramprasath, J., 2024).

Table 1: Summary of the research papers read

Sl. No Paper Name Authors Name Dataset Used Models Used Results Summary

1 Phishing Website De- Rishikesh Mahajan, PhishTank Decision Tree, Ran- They achieved
 tection using Machine Irfan Siddavatam dom Forest, SVMs 97.14% detection
 Learning Algorithms accuracy using

 random Forest
 algorithm with
 lowest false positive
 rate.

2 Detecting Phishing Shouq Alnemari, Ma- UCI Phishing Web-
Artificia
l neural net- The overall

 results

 Domains Using jid Alshammari sites works, Support Vec- show random

 Machine Learning
tor machine,
Decision forest (RF)

 model

 Tree, Random Forest achieved the highest
 performance

3 A Deep Learning- Zainab Al- -
LSTM
, CNN, and CNN

architecture

 Based Phishing shingiti,Rabeah LSTM–CNN provides excellent
 Detection System Alaqel,Jalal Al- results compared to
 Using CNN, LSTM, Muhtadi,Qazi Emad LSTM–CNN and
 and LSTM-CNN Ul Haq, Kashif LSTM
 Saleem, Muhammad
 Hamza Faheem

4 Phishing URL detec- SK Hasane Aham- PhishTank

Light GBM,

Random

Light GBM produced
 tion using machine mad, Sunil D. Kale, Forest, Decision Tree, good results
 learning methods Gopal D. Upadhye, Logistic Regression,

 Sandeep Dwarkanath
and
SVM

 Pande, E Venkatesh
 Babu, Amol V. Dhu-
 mane, Mr Dilip Ku-
 mar Jang Bahadur

5 Detection of Phish- Naresh Kumar D - Random Forest, Random Forest classi-
 ing Websites using Logistic Regression, fier has better phish-
 an Efficient Machine KNN, Decision Tree ing detection accu-

 Learning Framework racy

6 Detecting phishing Ashit Kumar Dutta AlexaRank and
LURL, Hung Le et
al, Performance

 of

 websites using PhishTank Hong J et al LURL is better
 machine learning comparing to other
 technique URL detectors

7 Phishing Detection Arathi Krishna V, Phish Tank or Open- Logistic Regression Random Forest gives
 using Machine Anusree A, Blessy Phish (LR), K-Nearest better results in most
 Learning based URL Jose, Karthika Neighbour (KNN), scenarios
 Analysis: A Survey Anilkumar, Ojus Support Vector

 Thomas Lee Machine (SVM),
 Decision Tree (DT),
 Naive Bayes (NB),

XGBoost
, Random

 Forest (RF) and

Artificia
l Neural

 Network (ANN)

Chapter 3: Methodology

3.1 Dataset

In all, the dataset has a total of 18,634 samples of emails and out of these 11,322 are safe emails and
the rest 7,312 the emails that are regarded as suspicious. ’item’ contains records that encompass the

textual content of the email body as well as the associated email type. Below is a brief guide for research

on the specific characteristics of phishing emails inclusive of the characteristics of other types of emails.
This dataset is very helpful in training machine learning models in which the primary goal is to identify

secure and phishing emails. Due to the availability of enriched text bodies, analysis can be quite

extensive, which helps to identify desirable aspects and trends to improve the performance of detection
of Phishing emails.

3.2 Data Preprocessing Techniques

The next step the preparatory process of the dataset that is needed for machine learning tasks is the

splitting of the data into training and test sets. The goal of this is to enable a section of data to be used

for training the model while the other part is used for testing the model which will help in making a
perfect judgement of the model. Specifically, the data set is split into the training set and testing set in

terms of an 80:20 ratio and ensuring data randomization to make the experiment reproducible. The next

step the preparatory process of the dataset that is needed for machine learning tasks is the splitting of
the data into training and test sets. The goal of this is to enable a section of data to be used for training

the model while the other part is used for testing the model which will help in making a perfect

judgement of the model. Specifically, the data set is split into the training set and testing set in terms of
an 80:20 ratio and ensuring data randomization to make the experiment reproducible.

𝑊𝑥,𝑦 = 𝑡𝑓𝑥,𝑦 𝑥 log (
𝑁

𝑑𝑓𝑥
)

In other words, the above equation is the statistical feature extraction method’s formula. This attempts

to create statistical features with the corpus and the words contained in the entire document. After this

preprocessing of data has been made, the training subset of data is proceeded with vectorization by
using the TF-IDF vectorizer, which has been explained above. This vectorizer transforms the textual

data into numerical data for analysis. This operation is entirely indispensable for translation purposes

to transform the text into a format that could be used in machine learning algorithms.

Figure 3: An example depicting the generation of TF-IDF value

As for the vectorizer just fitted to the training data, we can subsequently calculate the term frequencies

relevant to the training data as well as the inverse document frequencies corresponding to the obtained
term frequencies. Following that, the testing subset is to go through the same operation of the TF-IDF

vectorizer mentioned above.

3.3 Machine Learning Models

3.3.1 Logistic Regression

Logistic regression is designed for binary outcomes, unlike linear regression, which handles continuous

outcomes and assumes a linear relationship between variables. In logistic regression, the logistic

function models the relationship between the dependent variable and one or more independent variables.
This function transforms the linear combination of predictors into a probability value between 0 and 1,

making it perfect for binary classification tasks, as it ensures that predicted values can be interpreted as

probabilities.

Figure 4: Sigmoid or Logistic Function

3.3.2 Random Forest Classifier

Logistic regression is primarily used for classification tasks. In ensemble learning, multiple decision

trees are created during training, and their outcomes are combined to improve accuracy and robustness.

These trees are trained on random subsets of the data, with each tree's splits based on a random selection

of features. This approach enhances the model's generalizability and reduces the risk of overfitting, a

common issue with individual decision trees.

Figure 5: An example of how the results is generated as can be seen multiple trees are generated

3.2.3 Naïve Bayes Classifier

Naive Bayes classifiers calculate the posterior probability for each class by utilizing the given predictors

to make predictions. To begin this process, the initial step is to merge the prior probability of each class

with the likelihood of the predictors given that class. Subsequently, the probabilities are standardized

across all possible classes. Due to its simplicity and efficiency, this approach is highly useful in handling

complex and large datasets.

Figure 5: Naïve Bayes Algorithm using the Bayes Theorem

3.3.4 Support Vector Machine

Support Vector Machines (SVMs) are a group of supervised learning algorithms effective in both

classification and regression tasks. They excel at handling large datasets and complex decision

boundaries, making them highly efficient for distinguishing between data classes. SVMs work by

placing hyperplanes (or multiple hyperplanes for multi-class problems) in higher-dimensional space to

separate different classes. The main goal is to find the hyperplane that maximizes the margin, which is

the distance between the hyperplane and the nearest data points from each class. A larger margin

enhances the model's robustness, reducing classification errors on unseen data.

Figure 6: The example of how the gain margin is fixed based on the hyperplane and how the classes

are differentiated

3.3.5 K-Nearest Neighbours

The k-nearest Neighbours (k-NN) algorithm is a widely recognized supervised learning method used

for both classification and regression tasks. When it comes to organizing various types of data, it is

widely recognized for its simplicity and effectiveness.

Figure 7: Example showcasing the clusters, or the classes formed based on the distance from one point

i.e neighbours

Due to the need to calculate distances between the query point and all points in the training set, the k-

nearest neighbours (k-NN) algorithm has several challenges, with computing complexity being one of

the most critical, especially when working with large datasets. To address this problem, several

optimizations and data structures, such as k-d trees and ball trees, can be employed to expedite the

search for the closest neighbouring item.

3.4 Recurrent Neural Networks

3.4.1 GRU (Gated Recurrent Units)

Gated Recurrent Units, commonly referred to as GRUs, are a type of recurrent neural network (RNN)

structure that is highly effective for tasks involving sequence modelling. These applications encompass

the fields of time-series analysis and natural language processing.

Figure 8: GRU cell

3.4.2 LSTM (Long Short-Term Memory)

Long Short-Term Memory (LSTM) networks are a specific type of recurrent neural network (RNN)

designed to address the challenges of learning long-range dependencies in sequential input. LSTMs are

highly advantageous for tasks that require the handling of natural language and time-series data due to

their ability to retain and utilize information from long sequences.

Figure 9: LSTM cell

3.5 Evaluation

Precision – It illustrates how successful the approach can be in preventing falsely identifying legitimate

transactions as fraudulent ones. The accuracy of a test may be calculated by dividing the total number

of positive and negative findings by the number of real positives.

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃

Recall –To determine it, take the total number of positive results and divide it by the sum of all positive

results and false negatives. This value is the outcome of the calculation. By analyzing all the valid cases,

it is possible to determine what percentage of the forecasts were accurate.

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁

F1 Score –This allows just one score to be obtained. It is helpful to have the F1 Score available in

situations when the dataset is skewed toward fraudulent behaviours in comparison to non-fraudulent

behaviours.

𝐹1 𝑆𝑐𝑜𝑟𝑒 =
2 𝑥 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑥 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

Threshold calibration, which involves altering the model's classification threshold, is one method that

may be used to achieve the optimal balance between accuracy and recall characteristics.

Chapter 4: Implementation

Figure 10: Architecture diagram used for this machine learning-based cybersecurity detection of

phishing

Algorithm Flow

Step 1 – Data collection and preprocessing: We need to collect many emails, both legitimate and fake.

Preprocess the emails to extract important information such as the sender's email address, the email

message, any attached files, and any URLs. To get the data ready for training, the group of features need

to be transformed into numerical values and the numerical features normalized. The technique of

creating new features from existing ones or changing already features in a dataset to improve the

performance of a machine-learning model is known as feature engineering.

The most crucial step is to determine the most relevant features for the categorization of actual and false

messages by extracting the important features and evaluating the features. To detect any slight changes

that would point to the sender's involvement in phishing, include other data such as the words used in

the email content, URLs, senders' reputations, and many more.

Step 2 – Process of selecting and training a model: We need to select some of the mainstream ML

techniques for classification such as, random forests and logistic regression. We will be utilizing

statistical characteristics like TF-IDF because text data is available.

𝑊𝑥,𝑦 = 𝑡𝑓𝑥,𝑦 𝑥 log (
𝑁

𝑑𝑓𝑥
)

We then split the data into a training set and a validation set such that no data from the training set

leaks into the validation set and both the classes are equally represented.

We will perform training of several models employing different hyperparameters to compare between

different models and increase the learning capability.

Step 3 – Evaluation of the model: Evaluate the training models against the validation set and compare

the outcomes using metrics like accuracy, precision, recall, and F1-score to assess the models.

Through cross-validation, or on the other hand, a separate test set, to evaluate the models' capacity to

apply the knowledge to data that was not examined before.

 Step 4 – Deployment and monitoring of models: This project has used some of the best models for

deploying and results are displayed for evaultion.

To establish mechanisms to regularly check the working of the model and make the corresponding

changes to adapt to changes in the types of phishing strategies and guarantee effectiveness in the

future.

Integrating the model into the existing cybersecurity framework to provide an instantaneous

countermeasure against phishing attacks.

Step 5 – Assessment and Enhancement: To determine the efficiency of the deployed model, we will

employ an initial evaluation that compares specific variables, such as the proportion of false positive

and false negative outcomes.

We intend to gather input from both security experts and users to pinpoint areas that require

enhancement and make successive modifications to the model.

To improve the model's effectiveness in stopping phishing attacks, it should be updated often and

expanded with new elements.

4.1 Data Source

For the periods January to May 2015 and May to June 2017 (Tan, Choon Lin (2018),), there were

downloads of 5,000 phishing and 5,000 legal websites and 48 characteristics were extracted from the

datasets. Implementing feature extraction via the browser automation framework, namely the Selenium

WebDriver makes for a more accurate method of extracting features as compared to the regular

expression-based parsing method. Thus, the described dataset can be effective for phishing feature

analysis if the researcher needs fast proof of concept trials or comparing phishing classification models

among anti-phishing professionals.

4.2 Data Pre-Processing: We then split the data into a training set and a validation set such that no

data from the training set leaks into the validation set and both the classes are equally represented. We

will perform training of several models employing different hyperparameters to compare between

different models and increase the learning capability.

Step 3 – Evaluation of the model: To evaluate the training models by testing them against the validation

set and comparing the results with the parameters such as accuracy, precision, recall, and F1-score.To

check the ability of the models to apply the knowledge to unseen data by cross-validation, or on the

other a different test set.

Step 4 – Deployment and monitoring of models: This paper has implemented the most effective model

in an operational phishing detection system. To establish mechanisms to regularly check the working

of the model and make the corresponding changes to adapt to changes in the types of phishing strategies

and guarantee effectiveness in the future. Integrating the model into the existing cybersecurity

framework to provide an instantaneous countermeasure against phishing attacks

 Step 5 – Assessment and Enhancement: We will use a formative evaluation to determine the

effectiveness of the implemented model by comparing certain variables like the percentage of false

positive and false negative results. We will collect feedback from the users and security specialists to

identify the areas of improvement and adjust the model consecutively. The model should be updated

frequently, and new components should be included in it to increase its efficiency in preventing phishing

attacks.4.1 Data SourceFor the periods January to May 2015 and May to June 2017 (Tan, Choon

Lin (2018),), there were downloads of 5,000 phishing and 5,000 legal websites and 48 characteristics

were extracted from the datasets. Implementing feature extraction via the browser automation

framework, namely the Selenium WebDriver makes for a more accurate method of extracting features

as compared to the regular expression-based parsing method. Thus, the described dataset can be

effective for phishing feature analysis if the researcher needs fast proof of concept trials or comparing

phishing classification models among anti-phishing professionals.4.2 Data Pre-ProcessingAfter

that, the testing subset is subjected to the identical TF-IDF vectorizer that was described earlier.

Therefore, this guarantees that the test data is converted using the same feature space as the training

data, which helps to preserve consistency and enables an accurate evaluation of the trained model's

performance. Through the application of the vectorizer to both the training dataset and the testing

dataset, the method guarantees that the text data is appropriately prepared for the training and evaluation

of robust models.

After that, the testing subset is subjected to the identical TF-IDF vectorizer that was described earlier.

Therefore, this guarantees that the test data is converted using the same feature space as the training

data, which helps to preserve consistency and enables an accurate evaluation of the trained model's

performance. Through the application of the vectorizer to both the training dataset and the testing

dataset, the method guarantees that the text data is appropriately prepared for the training and evaluation

of robust models.

Figure 11: Code Snippet of Tokenisation

4.3 Machine Learning

We evaluated the effectiveness of several machine learning classifiers on pre-processed text data. The

classifiers used include K-Nearest Neighbours, Logistic Regression, Naive Bayes, Random Forest, and

Support Vector Machine (SVM) with a linear kernel. Each algorithm was trained using TF-IDF-

transformed data, allowing the models to identify patterns in the text. After training, these classifiers

were tested on a separate dataset, also processed with TF-IDF, to ensure consistency in predicting labels.

Figure 12: Code Snippet for Machine Learning Modelling

4.4 Deep Learning

The first deep learning model uses a bidirectional GRU architecture, while the second uses a

bidirectional LSTM architecture, both built with Keras in TensorFlow. In the first model, an embedding

layer converts input text into dense vectors, followed by a 64-unit bidirectional GRU layer that

processes the data in both directions to capture context. A second 32-unit GRU layer enhances feature

extraction, and a 64-unit dense layer with ReLU activation adds non-linearity. A dropout layer is

included to prevent overfitting, and the final output layer has two units for classification. The model is

compiled with the Adam optimizer, binary cross-entropy loss, and accuracy as the evaluation metric,

with training continuing until validation loss stabilizes to avoid overfitting.

The second model is similar but uses bidirectional LSTM layers instead of GRU layers, with 64 and 32

units, respectively, to capture long-term dependencies in the text.

Figure 13: Deep Learning code snippets

Chapter 5: Results and Analysis

5.1 Case study

This case study illustrates the ability to differentiate between genuine and fraudulent URLs, providing

users with critical protection against phishing attacks.

Figure 14: Logistic Regression performance

The first image shows the evaluation of the link www.google.com, which is recognized as legitimate.

The system verifies the URL against a database of known trusted sites and confirms its authenticity.

Figure 15: Logistic Regression performance

The second image illustrates the detection of a phishing attempt with the link

www.g0ggle.com. Here, the system identifies the subtle substitution of the letter "o" with the

digit "0" as a red flag for potential phishing. This discrepancy, while minor, is enough for the

tool to categorize the link as suspicious and alert the user to possible fraudulent intent.

5.2 Machine Learning

5.2.1 Logistic Regression

Figure 16: Logistic Regression performance

The logistic regression model exhibited strong overall performance with an accuracy of 96.08%,

effectively balancing precision and recall for both positive and negative classes. For positives, the

precision was 0.97, meaning the model made very few false-positive errors, while the recall of 0.96

indicates it successfully captured the truest positives. Similarly, for negatives, the precision was 0.94

and the recall was 0.96, showing that the model also handled negative cases well.

The high F1 scores of 0.97 for positives and 0.95 for negatives reflect the model's ability to maintain a

good balance between precision and recall, minimizing both false positives and false negatives. This

indicates that the model is not only accurate but also reliable in distinguishing between positive and

negative cases. Overall, the logistic regression model's performance is robust, making it a strong

candidate for use in scenarios where accurate classification is critical

5.2.2 SVM

Figure 17: SVM performance

The proposed Support Vector Machine (SVM) model was very accurate and estimated an overall

accuracy of 96%. The model also performed very well in the positive classifications with a precision of

0. 98, revealing that most of the positive predictions are accurate. The recall for positive cases was

therefore 0. In the second group of the same patients, the model achieved a 97% accuracy, which

indicates that the model identified nearly all true positive cases. The F1-Score for positive classifications

was 0. 97, this shows that the precision was very good and combined with the recall provided a good

balance between the two and hence the model can correctly classify the positive cases without many

wrongs. On the negative side, the SVM model kept the precision at 0. It translated to 95/100, meaning

that the negative predictions were 95% correct all through. The recall for negatives was slightly higher

at 0. 97, this shows that the model was able to correctly classify most true negative cases. The F1-Score

for negative classifications was at 0. The authors also compared the precision and recall of the model,

noting that it is 96% for negative instances, which proves the model’s ability to achieve a good balance

between precision and recall. In conclusion, the presented SVM model has high accuracy, and has

almost equal performance for both classifications as positive and negative, which proves that it is a

reliable and accurate tool for accurate predictions.

5.2.3 Random Forest Classification

Figure 18: Random Forest performance

The accuracy of the Random Forest Classifier model was found to be 96% this means that the model

was right in 96 out of 100 of the observations. 5 percent of all the occurrences contained in the given

dataset. In the positive classification, which entails identifying the parts of the text that are most relevant

to a story, the model had a precision of 0. 97 which implies that, out of the 100 instances which was

predicted to be positive, 97 were positive. The recall for positive cases was also zero. 97, which

demonstrates the ability of the model to capture most of the truly positive cases. The F1-Score regarding

positive classifications was 0.97, which is good and indicates the equal ratio of precision and recall of

the model. On a negative note, the model was able to attain a precision of 0. 95, which means the

percentage of negative classification that was correctly identified as such of the total number of negative

predictions made was 95%. The recall for negatives was 0. 95, which means that the call negative cases

that were not included in the study were also correctly left out by the model. Thus, the F1-Score of the

proposed model is 0.95 for negative classifications, the Random Forest Classifier keeps on performing

well in the process of differentiating between positive and negative instances. In conclusion, the model’s

metrics for both classes present a good balance, proving its stability and effectiveness in classification

problems.

5.2.4 Naïve Bayes

Figure 19: Naïve Bayes performance

The Naive Bayes model obtained a performance of 95% when it was evaluated. 38%, which means that

the proposed model has a high level of accuracy when solving such classification problems. Regarding

positive classifications, the model obtained a precision of 0. 97, which means that 97 percent of the

incident accurately predicted as positive. The recall for positive cases was 0. 96’ suggesting that the

model was able to correctly identify all the true positive rates at a whopping 96 percent. Specifically,

the F1-Score for positive classifications was 0. 96, which is a good compromise between precision and

recall, thus guaranteeing the correct identification of positive cases. In the case of the negative

classifications, the model achieved a precision of 0. 94, this means that in the 100 instances that were

predicted to be negative, it had a 94% chance of being negative. The specificity for recall of the negative

cases was 0. The true negative rate was estimated at 95 proving that the model is good at identifying

the false negative instances. The F1-Score of this study was 0. 94 for negative classifications, as the

above result shows that the Naive Bayes model can retain steady performance on both positive and

negative classes. This equal balance across these measures highlights the accuracy of the model for

classification tasks even if it uses a more basic probabilistic theory.

5.2.5 KNN

Figure 20: k-NN performance

The K-Nearest Neighbours (KNN) model was also not very impressive and demonstrated a skewed

performance split. Although it obtained a precision of 0. 98 for positive classifications for negative

classifications the precision was low. This clearly shows that the model labelled many true positives as

negatives, that is, it failed to predict them. This situation resulted in a rather low F1-Score of 0. 46 for

positives, which shows the difference between precision and recall. As for the negative classification,

the desired recall was achieved at 0. 99, thus correctly classifying almost all the true negatives. The

accuracy for negatives was relatively low at 0. 48, which means that more cases were diagnosed as

cancerous when in actual sense they were not. The F1-Score for negatives was 0. 64 Regarding the

above results, the model has outperformed positives but at the same time, it has shown that it has areas

of improvement. In general, the KNN model had issues with the balanced accuracy, more specifically

– it failed to provide good results with the positive cases hence it may not be the most suitable for use

in datasets with imbalanced classes.

5.3 RNN- based Models

5.3.1 LSTM Approach

Figure 21: LSTM performance

The LSTM model demonstrates robust performance across several metrics. It achieves an accuracy of

0.96, reflecting its overall effectiveness in classifying instances correctly. For positive cases, the model

exhibits a high precision of 0.99 and a recall of 0.96, resulting in a strong F1-score of 0.97. This indicates

that the LSTM is highly effective at identifying positive instances while maintaining a low rate of false

positives. For negative cases, the precision stands at 0.94, with a recall of 0.98, and an F1-score of 0.96.

These metrics suggest that the model is also proficient at detecting negative instances, ensuring a good

balance between precision and recall for both classes.

5.3.2 GRU-Based Approach

Figure 22: GRU performance

The GRU model exhibits strong performance metrics across the board. It achieves an accuracy of 0.96,

indicating a high overall classification rate. For positive cases, the model has a precision of 0.98 and a

recall of 0.96, resulting in an F1-score of 0.97. This demonstrates the GRU's effectiveness in accurately

identifying positive instances while maintaining a low rate of false positives. For negative cases, the

model reports a precision of 0.94 and a recall of 0.97, with an F1-score of 0.96. These results highlight

the GRU's ability to reliably detect negative instances, maintaining a balanced performance between

precision and recall for both classes.

5.4 Comparative analysis

5.4.1 Accuracy

Figure 23: Accuracy comparison of all the models

The graph of the comparison of the accuracy of the models demonstrates the differences between the

models. Out of all the models, SVM and LSTM have the greatest accuracy, meaning they work with

complex structures in the data stream. Finally, KNN has the lowest accuracy of 0.57 indicating that

perhaps the assumption that features are independent is not accurate in this case. Other model’s

performance lies between these two, perhaps because of the model used

5.4.2 Precision

Figure 24: Precision comparison of all the models

The paragraph explains that LSTM has the highest precision for the positive class (1) at 0.99, meaning

it makes very few mistakes in identifying positive cases. SVM and GRU also show high precision for

the positive class, around 0.98, indicating they are very accurate in identifying true positives. Random

Forest and Logistic Regression have slightly lower but still very high precision for the positive class, at

0.97, with Naive Bayes close behind.

In contrast, KNN has high precision for the positive class (0.98) but struggles with the negative class,

where its precision drops to 0.48. This means KNN is less effective at correctly identifying negative

cases. SVM, GRU, and LSTM perform well in both classes, with precision for the negative class ranging

from 0.94 to 0.95. Overall, LSTM, SVM, and GRU show better accuracy across both classes compared

to other models, while KNN has notable issues with classifying negative cases.

5.4.3 Recall

Figure 25: Recall the comparison of all the models

The graph shows that the LSTM model excels in recalling negative cases (-1) with a score of 0.98,

indicating it is very effective at correctly identifying negative instances. Similarly, SVM and GRU also

perform well in recalling negative cases, with scores of 0.97, which means they are good at minimizing

false negatives.

Logistic Regression and Random Forest have equal recall rates of 0.96 for the negative class, showing

solid performance. On the other hand, KNN has a high recall of 0.99 for the negative class but a much

lower recall of 0.30 for the positive class (1). This contrast highlights that while KNN is very good at

identifying negative cases, it struggles significantly with positive cases.

5.4.4 F1-Score

Figure 26: F1 Score comparison of all the models

The graph indicates that the LSTM model excels in terms of the F1 score for both classes, with a

particularly high score of 0.97 for the positive class (1). This score reflects a strong balance between

precision and recall. SVM and GRU also perform well, each achieving an F1-score of 0.97 for the

positive class and slightly lower, but still consistent, scores for the negative class (-1).

Logistic Regression and Random Forest maintain solid F1-scores, with 0.97 for the positive class and

0.95 for the negative class, showing that they are reliable in balancing precision and recall. Naive Bayes

has slightly lower F1 scores, with 0.96 for the positive class and 0.94 for the negative class.

KNN, however, displays a significant imbalance, with an F1-score of 0.64 for the negative class and

only 0.46 for the positive class. This large disparity indicates that KNN has trouble balancing precision

and recall, particularly for positive cases.

5.5 Summary

In all the evaluated measures, accuracy, precision, recall, and F1-score, LSTM and SVM models show

the highest results. LSTM performs especially well, and while it has an equal F1 score, this means that

it is good at avoiding both false positives and false negatives. SVM also performs well, especially in

terms of precision; thus, it can be used effectively for those tasks where a false positive rate is a critical

factor. Compared to it, K-Nearest Neighbors (KNN) is the least accurate model, with lower accuracy

and a great gap between precision and recall. This suggests that the KNN algorithm is not very

consistent and is more likely to make the wrong classification. Logistic Regression, Random Forest and

Naive Bayes are all relatively stable, average performers in all metrics, and make for good default

classifiers, but are not as excellent as LSTM and SVM. Overall, LSTM and SVM are the most accurate

models, while KNN is the least accurate; Logistic Regression, Random Forest, and Naive Bayes are

medium-accurate and stable models.

6. Conclusion

The objective of this research is to assess different machine learning models that are used to classify

emails concerning phishing attacks. Among the models, K-Nearest Neighbours (KNN), Gated

Recurrent Unit (GRU), Logistic Regression, Random Forest, LSTM, Naive Bayes, and Logistic

Regression are tested. From the study, the SVM and LSTM models are quite effective with the model

achieving accuracies of more than 96%. The algorithms have shown high performance in learning

complex patterns inside the phishing data, indicating that they can be used for accurate event discovery.

While the LSTM has a strong performance in identifying the long-term dependency in the sequential

data, the SVM model is another set of classifiers that provide high accuracy in classifying the data. The

two models help each other to refine the classifications that they come up with. However, there are

limitations with the KNN model because of the feature independence assumption resulting in the model

having a lowest accuracy of 57%. These limitations may not be suitable for the structure of data in

phishing since the data is complex and diverse. The precision and recall of the model indicate that it

might not be as efficient in detecting phishing attempts as the more complex models. Naïve Bayes and

Logistic Regression are considered to have intermediate accuracy. Compared to models of a higher

level, these have a rather low capability to analyse the patterns of phishing emails. As much as they

seem to be, they are not quite so and may not be easily comprehendible. When it comes to the KNN

model, class imbalance is a critical challenge since it significantly affects the model’s performance.

The LSTM and SVM models stand out for their strengths in reducing false positives and accurately

predicting successful phishing attempts. While KNN lags in recall and precision for positive phishing

detections, the GRU model performs well when recall is consistent across classes. LSTM and Random

Forest are the top models for phishing detection, balancing speed and accuracy. Their ability to handle

complex data patterns makes them ideal for enhancing phishing detectors. However, as phishing

strategies evolve, it's essential to continually refine these models and explore their relationship with

other techniques.

References

Ahmed, S., Khan, Z.A., Mohsin, S.M., Latif, S., Aslam, S., Mujlid, H., Adil, M. and Najam, Z., 2023.

Effective and efficient DDoS attack detection using deep learning algorithm, multi-layer perceptron.

Future Internet, 15(2), p.76.

Ajala, O.A., 2024. Leveraging AI/ML for anomaly detection, threat prediction, and automated response.

Alashhab, A.A., Zahid, M.S., Isyaku, B., Elnour, A.A., Nagmeldin, W., Abdelmaboud, A., Abdullah,

T.A. and Maiwada, U., 2024. Enhancing DDoS attack detection and mitigation in SDN using an

ensemble online machine learning model. IEEE Access.

Ali Bou Nassif, Manar Abu Talib, Qassim Nasir, and Fa-tima Mohamad Dakalbab, 2021. Machine

learning for anomaly detection: A systematic review. IEEE Access, 9:78658–78700, 2021.

Ali, T.E., Chong, Y.W. and Manickam, S., 2023. Machine learning techniques to detect a DDoS attack

in SDN: A systematic review. Applied Sciences, 13(5), p.3183.

Alnemari, S. and Alshammari, M., 2023. Detecting phishing domains using machine learning. Applied

Sciences, 13(8), p.4649.

Apruzzese, G., Laskov, P., Montes de Oca, E., Mallouli, W., Brdalo Rapa, L., Grammatopoulos, A.V.

and Di Franco, F., 2023. The role of machine learning in cybersecurity. Digital Threats: Research and

Practice, 4(1), pp.1-38.

Aslam, N., Srivastava, S. and Gore, M.M., 2024. A comprehensive analysis of machine learning and

deep learning-based solutions for DDoS attack detection in SDN. Arabian Journal for Science and

Engineering, 49(3), pp.3533-3573.

Battista Biggio, Igino Corona, Davide Maiorca, Blaine Nelson, Nedim Srndic, ́Pavel Laskov, Giorgio

Giacinto, and Fabio Roli, 2013. Evasion Attacks against Machine Learning at Test Time, page 387–402.

Springer Berlin Heidelberg, 2013.

Cyril Goutte and Eric Gaussier, 2005. A probabilistic interpretation of precision, recall and f-score, with

implication for evalua-tion. volume 3408, pages 345–359, 04 2005.

Dakota Aaron McCarty, Hyun Woo Kim, and Hye Kyung Lee, 2020. Evaluation of light gradient

boosted machine learning technique in large scale land use and land cover classification. Environments,

7(10), 2020.

Daniel Belete and Manjaiah D H, 2021. Grid search in hyperparameter optimization of machine learning

models for prediction of HIV/aids test results. International Journal of Computers and Applications,

44:1–12, 09 2021.

Enzo Grossi and Massimo Buscema, 2008. Introduction to artificial neural networks. European journal

of gastroenterology hepatology, 19:1046–54, 01 2008.

Felekidis, E., Malicious website detection using machine learning techniques on imbalanced datasets.

Guang-Bin Huang and Lei Chen, 2006. Enhanced random search-based incremental extreme learning

machine. Neurocomput-ing, 71(16):3460–3468, 2008. Advances in Neural Information Processing

(ICONIP 2006) / Brazilian Symposium on Neural Networks (SBRN 2006).

Haibo He, Yang Bai, Edwardo Garcia, and Shutao Li., 2008, Adasyn: Adaptive synthetic sampling

approach for imbalanced learning. pages 1322 – 1328, 07 2008.

Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy, 2015. Explaining and harnessing

adversarial examples, 2015.

James Bergstra and Y. Bengio, 2012. Random search for hyper-parameter optimization. The Journal of

Machine Learning Research, 13:281–305, 03 2012.

Jehad Ali, Rehanullah Khan, Nasir Ahmad, and Imran Maq-sood, 2012. Random forests and decision

trees. International Journal of Computer Science Issues (IJCSI), 9, 09 2012.

Joanne Peng, Kuk Lee, and Gary Ingersoll, 2002. An introduction to logistic regression analysis and

reporting. Journal of Educational Research - J EDUC RES, 96:3–14, 09 2002.

Jose´ A. Saez, ́Bartosz Krawczyk, and Michal Wozniak, 2016. Analyzing the oversampling of different

classes and types of examples in multi-class imbalanced datasets. Pattern Recognition, 57:164–178, 09

2016.

Karim, A., Shahroz, M., Mustofa, K., Belhaouari, S.B. and Joga, S.R.K., 2023. Phishing detection

system through hybrid machine learning based on URL. IEEE Access, 11, pp.36805-36822.

Kuraku, D.S. and Kalla, D., 2023. Phishing Website URL Detection Using NLP and Machine Learning

Techniques. Journal on Artificial Intelligence-Tech Science.

Matteo Re and Giorgio Valentini, 2012. Ensemble methods: A review, pages 563–594. 01 2012.

Matthew Jagielski, Alina Oprea, Battista Biggio, Chang Liu, Cristina Nita-Rotaru, and Bo Li, 2021.

Manipulating machine learning: Poisoning attacks and countermeasures for regression learning, 2021.

Mengran Zhu, Ye Zhang, Yulu Gong, Changxin Xu, and Yafei Xiang, 2024. Enhancing credit card fraud

detection: A neural network and smote integrated approach. Journal of Theory and Practice of

Engineering Science, 4:23–30, 02 2024.

Mohammed Zaid, M.S., Namratha, N. and Yashaswini, B.V., 2023. Examining the emerging threat of

Phishing and DDoS attacks using Machine Learning models

N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer., 2008, Smote: Synthetic minority over-

sampling technique. Journal of Artificial Intelligence Research, 16:321–357, June 2002.

Nicholas Carlini and David Wagner, 2017. Towards evaluating the robustness of neural networks. pages

39–57, 05 2017.

Nicolas Papernot, Patrick McDaniel, Ian Goodfellow, Somesh Jha, Z. Berkay Celik, and Ananthram

Swami, 2017. Practical black-box attacks against machine learning, 2017.

Pranali Landge, S Swati, Sherekar, and Editor Ijmtst, 2023. Machine learning approaches for prediction

and prevention of cyber-attacks for cyber security. International Journal for Modern Trends in Science

and Technology, 9:89–94, 10 2023.

Ramprasath, J., Krishnaraj, N. and Seethalakshmi, V., 2024. Mitigation services on SDN for distributed

denial of service and denial of service attacks using machine learning techniques. IETE Journal of

Research, 70(1), pp.70-81.

Shirazi, H., Muramudalige, S.R., Ray, I., Jayasumana, A.P. and Wang, H., 2023. Adversarial

autoencoder data synthesis for enhancing machine learning-based phishing detection algorithms. IEEE

Transactions on Services Computing, 16(4), pp.2411-2422.

Shombot, E.S., Dusserre, G., Bestak, R. and Ahmed, N.B., 2024. An application for predicting phishing

attacks: A case of implementing a support vector machine learning model. Cyber Security and

Applications, 2, p.100036.

Tan, Choon Lin (2018), “Phishing Dataset for Machine Learning: Feature Evaluation”, Mendeley Data,

V1, doi: 10.17632/h3cgnj8hft.1

Thakur, K., Ali, M.L., Obaidat, M.A. and Kamruzzaman, A., 2023. A systematic review on deep-

learning-based phishing email detection. Electronics, 12(21), p.4545.

Tianqi Chen and Carlos Guestrin, 2016. Xgboost: A scalable tree-boosting system. In Proceedings of

the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD

’16. ACM, August 2016.

Varun Chandola, Arindam Banerjee, and Vipin Kumar, 2009. Anomaly detection: A survey. ACM

Comput. Surv., 41, 07 2009.

Weimin Zhao, Sanaa Alwidian, and Qusay Mahmoud, 2022. Adversarial training methods for deep

learning: A systematic review. Algorithms, 15:283, 08 2022.

Yann LeCun, Y. Bengio, and Geoffrey Hinton, 2015. Deep learning. Nature, 521:436–44, 05 2015.

Zhiqiang Gong, Ping Zhong, and Weidong Hu, 2019. Diversity in machine learning. IEEE Access,

PP:1–1, 05 2019.

	Abstract
	Chapter 1: Introduction
	1.1 Research Motivation
	1.2 Research Aim
	1.3 Research Questions

	Chapter 2: Literature Review
	2.1 Research done towards different data imbalance techniques and anomalous data handling
	2.2 Machine Learning models towards the anomalous data prediction
	2.3 Research towards mitigating Phishing and DDoS attacks using Machine Learning

	Chapter 3: Methodology
	3.1 Dataset
	3.2 Data Preprocessing Techniques
	3.3 Machine Learning Models
	3.3.1 Logistic Regression
	3.3.2 Random Forest Classifier
	3.2.3 Naïve Bayes Classifier
	3.3.4 Support Vector Machine
	3.3.5 K-Nearest Neighbours

	3.4 Recurrent Neural Networks
	3.4.1 GRU (Gated Recurrent Units)
	3.4.2 LSTM (Long Short-Term Memory)

	3.5 Evaluation

	Chapter 4: Implementation
	4.3 Machine Learning
	4.4 Deep Learning

	Chapter 5: Results and Analysis
	5.1 Case study
	5.2 Machine Learning
	5.2.1 Logistic Regression
	5.2.2 SVM
	5.2.3 Random Forest Classification
	5.2.4 Naïve Bayes
	5.2.5 KNN

	5.3 RNN- based Models
	5.3.1 LSTM Approach
	5.3.2 GRU-Based Approach

	5.4 Comparative analysis
	5.4.1 Accuracy
	5.4.2 Precision
	5.4.3 Recall
	5.4.4 F1-Score

	5.5 Summary

	References

