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Using Machine Learning Algorithms to Detect Phishing 

attack 

Abstract 

Cyberfraud, particularly through phishing attempts, is a significant issue in corporate operations. This 

might impede business operations but also deprive valuable and critical information. This study's main 

objective is to address the issue of identifying phishing and not disturbing employees with these harmful 

email attacks. The proposal is to make an intelligent pipeline using machine learning to mitigate the 

case of phishing attacks. Various Machine Learning techniques including deep learning models, will be 

evaluated to determine their effectiveness in detecting inappropriate behavior in greedy search-based 

pipeline networks. Since machine learning has been identified as a crucial instrument in combating 

cybercrime, this response system can work agnostic to any organization and data to give a proper 

security service and maintain the server networks. These results further emphasize the significance of 

employing adaptable techniques to address emerging security challenges. 

Keywords: DDoS attack, Phishing Email attacks, Machine Learning, Deep Learning, Response System 

Chapter 1: Introduction 

Phishing is one of the social engineering attacks commonly used by hackers to obtain user information, 

such as login passwords and credit card data. Phishing refers to the deliberate act of tricking a target 

into accessing an email, instant message, or text message by assuming the identity of a reliable source. 

Afterwards, the receiver is deceived into clicking on a harmful hyperlink, which can install harmful 

software.  

 

Figure 1: An example depicting the suspicious email link (Source: www.impreva.com)  

Phishing is a fraudulent technique in which false communications are transmitted across the internet, 

usually in the form of emails or messages, to give the false impression that they come from reliable 

sources. The primary objective is to deceive the receivers into sending sensitive information, such as 

credit card details, usernames, and passwords, along with other personal details. Phishing attacks can 

lead to  theft, significant financial loss, and the unapproved disclosure of private data. The objective of 

the phishing scam depicted in Figure 1 is to contact as many users (in this case academic people) as 

possible using the dissemination of a phishing email that appears to have originated from 

myuniversity.edu (can be any link related to the organization or individual). By clicking on the link and 

give access to the entire system to the hackers. 



1.1 Research Motivation 

Despite two-factor authentication (2FA) being one of the most effective methods one can use to protect 

against phishing attempts, companies may take a variety of other measures to reduce the chance of 

phishing and spear phishing attacks. There is an extra layer of verification added when access is granted 

to essential applications. The availability of a physical device, such as a smartphone, and the user's 

awareness of and ability to use a password and username are the two primary aspects of two-factor 

authentication. Because compromised credentials are not sufficient to grant access, two-factor 

authentication (also known as 2FA) ensures that even compromised users are unable to utilize them. 

Both tight rules for password management and two-factor authentication (2FA) are equally critical 

practices. An example of such a policy would prohibit employees from using the same password for 

several apps and mandate that they change their passwords regularly. As a result of the fact that phishing 

attacks can take on specific forms and behaviors, it would be advantageous to make use of machine 

learning and artificial intelligence to recognize these attacks as well as other types of distributed denial 

of service (DDoS) attacks. This would allow the user or organization to take the appropriate precautions 

to protect themselves. 

1.2 Research Aim 

The integration of machine learning-based techniques with cybercrime detection is crucial for 

safeguarding online transactions and enhancing customer trust. Organizations can effectively combat 

fraudulent practices by employing machine learning algorithms (Pranali Landge, 2023). The utilization 

of a combination of machine learning and cyber security in this technique aids in overcoming challenges 

posed by harmful attacks and guarantees the ability to identify threats in real-time. 

1.3 Research Questions 

Based on the above discussions, we will be focusing on the following research questions, 

RQ1: How can we develop machine learning algorithms so that they can recognize changing phishing 

strategies that take into consideration elements like content, sender behavior, and contextual cues?  

RQ2: How can we differentiate between a valid legitimate link and a phishing link? 

RQ3: How can we construct phishing detection systems that can adapt to new attack methods, keep 

detection rates high while minimizing the number of false positives, and make use of ensemble learning 

approaches such as integrating several classifiers or utilizing data from numerous sources? 

 

Chapter 2: Literature Review 

The field of research and development of methods for identifying fraudulent activity in online 

transactions has become an increasingly significant area of study. To safeguard both businesses and 

their customers, researchers from all over the world have been focusing their attention on developing 

algorithms and other approaches that can halt fraudulent activity in its tracks. 

2.1 Research done towards different data imbalance techniques and anomalous data 

handling 

The problem of class imbalance in transaction datasets has been the subject of a significant amount of 

study in the field of financial fraud detection. Rebalancing datasets by data stratification, minority over-

sampling, and majority under-sampling has been done to enhance the ability of machine learning models 

to detect fraudulent patterns (Jose' A. Saez,' Bartosz Krawczyk, and Michal Wozniak, 2016). Some 

examples of methods include synthetic minority oversampling (SMOTE), Adaptive Synthetic Sampling 



(ADASYN) and Rebalancing datasets by data stratification. The SMOTE algorithm was developed by 

(Chawla et al., 2002)(Mengran Zhu, 2024) to improve the performance of models in fraud detection 

scenarios. Synthetically generating data from minority groups is one method that may be utilized to 

address the issue of class imbalance. These approaches have as their primary objective the improvement 

of model performance through the correction of class imbalance. 

 

Figure 2: The structure of a phishing email (Source: Nengran Zhu, 2024) 

As the above link shows, a phishing email contains a certain structure, this structure contains the 

information that can be used to mitigate the phishing. Research on the robustness of ML models against 

harmful attacks is becoming crucial to fraud detection. Advanced methods to modify machine learning 

models for evasion are at the heart of harmful attacks. It is vital to use strong machine learning models 

to protect fraud detection systems and successfully fight against such attacks. Some of the methods 

being studied to strengthen models against adversarial acts include adversarial training (Weimin Zhao, 

2022), anonymity detection (Ali Bou Nassif, 2021), and model diversification. The goal is to guarantee 

accurate fraud detection by making the models more resistant to harmful attacks. An important area of 

focus in fraud detection research is making ML models resilient against adversarial attacks. To avoid 

detection, harmful attacks use sophisticated methods to manipulate ML models. To successfully defend 

against these threats and keep fraud detection systems secure, robust ML models are needed. To make 

models more resistant to adversarial behaviors, researchers are looking into methods such as adversarial 

training (Weimin Zhao, 2022), model diversification (Zhiqiang Gong, Ping Zhong, and Weidong Hu, 

2019), and anomaly detection (Ali Bou Nassif, 2021). Emerging adversarial methods in fraud detection 

necessitate real-time detection strategies. 

2.2 Machine Learning models towards the anomalous data prediction 

The training method (Alnemari, S. and Alshammari, M., 2023) of the Random Forest ensemble 

learning approach makes use of several decision trees that were generated independently of one another. 

After totaling all the predictions given by each tree, we can derive the final forecast. Due to its 

exceptional performance on high-dimensional data, Random Forest is effective in facilitating the 

collection of intricate feature correlations. When applied to the phishing problem, Random Forest can 

identify trends in URLs or language that give the impression of malicious intent. Random Forest is 

responsible for searching for small irregularities that are related to phishing attempts. This is done to 

improve the accuracy of phishing detection systems. To accomplish this, it is quite beneficial to study 

the text and URLs from a semantic and structural point of view.  

Modelling the likelihood (Shirazi, H., et. al., 2023) of a binary result given one or more predictor 

elements may be accomplished through logistic regression, which is a linear classification 

technique. Although it is known by a different name, logistic regression is utilized for classification 

applications most of the time. Logistic regression is a powerful method for detecting phishing because 

it calculates the chance that a certain phrase or URL is related to malicious intent. This makes it an 

effective strategy for phishing detection. This approach is easier to employ for locating crucial textual 

or structural indications of phishing attempts since it provides insights into the significance of features 

and results that may be interpreted after they have been obtained. By examining the correlations 

between the input data and their labels, logistic regression can help identify potentially malicious 

websites or material.  



The XGBoost algorithm (Apruzzese, G., 2023), which is well-known for its accuracy and efficiency, 

is an example of a gradient-boosting strategy that performs exceptionally well when presented with 

large datasets. It does this by including weak learners into the model in a sequential manner, with each 

learner correcting the faults of its predecessor. Some examples of weak learners are decision trees. 

Phishing attempts may be easily spotted by XGBoost, which has a flair for recognizing subtle but 

revealing patterns and irregularities in URLs or linguistic characteristics. This makes it possible for 

XGBoost to identify phishing attempts. XGBoost searches for structural, semantic, and contextual 

characteristics in URLs or text that distinguish real things from fraudulent ones. This is done to make 

phishing detection systems more effective in general across the board. To do this, the text or URLs are 

analyzed.  

One of the many ensembles learning (Ajala, O.A., 2024) approaches that is becoming increasingly 

popular is called AdaBoost. This method is an example of an approach that combines numerous weak 

classifiers into a single powerful one. It's possible that we can enhance the effectiveness of the classifier 

by redistributing the weights of data points that were mistakenly classified. When AdaBoost is used for 

phishing detection, the accuracy and robustness of the model also experience improvements. To do this, 

the categorization of text or URLs is modified on several occasions. The number of false positives may 

be reduced using AdaBoost, and the identification of subtle phishing attempts can be increased. This is 

accomplished by adjusting the weighting of the model appropriately and focusing on challenging 

situations.  

Support vector machines (Kuraku, D.S. and Kalla, D., 2023), are supervised learning models that 

come in useful for tasks like classification and regression. By identifying the optimal hyperplane for 

the separation of data points into many categories, support vector machines (SVMs) attempt to optimize 

the margin between classes. In circumstances in which the class boundary is readily obvious, support 

vector machines (SVMs) perform remarkably well when working with high-dimensional data. When 

identifying phishing, support vector machines (SVMs) use the geographical distribution of textual 

qualities or URLs to determine if they are genuine or counterfeit. By evaluating the geometric 

relationships between data points, support vector machines (SVMs) can discern between real and fake 

items. This is accomplished by studying the data points. This dissimilarity may cause them to classify 

site URLs or text contents differently and cause confusion.  

It is possible to utilize decision trees for both regression and classification tasks; decision trees are a 

sort of non-parametric supervised learning (Shombot, E.S., Dusserre, G., Bestak, R. and Ahmed, 

N.B., 2024). Through the process of recursively splitting the feature space into subsets depending on 

the feature values, they strive to either reduce the amount of impurity or improve the amount of 

information gained with each split. Decision trees can be useful for phishing detection since they enable 

pattern identification and feature importance comprehension. Because of this, they can be beneficial. 

Their legibility and simplicity make them ideal for analyzing textual or structural indicators of phishing 

attempts. Because decision trees can differentiate between actual and fraudulent entities, they can 

increase the accuracy of phishing detection systems. To accomplish this, decision trees recursively 

divide the feature space. 

2.3 Research towards mitigating Phishing and DDoS attacks using Machine Learning 

The accuracy of the model (Ahmed, S., et. al, 2023 is evaluated based on the proportion of positive 

occurrences, such as URLs used for phishing, correctly identified compared to the total number 

of positive cases predicted. To determine how accurate the model's positive predictions are, this 

statistic is applied. It is computed by dividing the total count of true positives by the sum of both true 

positives and false positives. When it comes to phishing detection, accuracy is an essential parameter 

since it demonstrates how well the model can identify dangerous URLs without simultaneously creating 

false positives. With a high accuracy score and a low false positive rate, the likelihood of the algorithm 



wrongly labelling valid URLs as phishing attempts is reduced. This is because the algorithm is less 

likely to make a mistake.  

When compared to the total number of positive examples in the dataset (Alashhab, A.A., et. al, 2024), 

"recall," which is often referred to as "sensitivity," is the ratio of the number of occurrences that have 

been positively recognized (such as phishing URLs). We can assess whether the model can recognize 

all real positives by dividing the total number of positive findings by the sum of all positive and negative 

results. The capacity of the model to identify phishing attempts is evaluated by recall, and it ensures 

that no dangerous URLs are overlooked despite this evaluation. In the process of phishing detection, it 

is an essential component. As shown by its high recall value and low false negative rate, the model can 

effectively identify most phishing attempts.  

Given that it provides an accurate evaluation of the overall classification accuracy, the F1 Score is useful 

in situations where reducing the number of false positives and false negatives is a top concern. As the 

value goes closer and closer to 1, the performance of the model gets better. By keeping a healthy 

equilibrium between recall and accuracy, the phishing detection model can reduce the number of false 

positives and negatives, resulting in a better F1 Score. This contributes to the phishing detection system 

being more robust (Ramprasath, J., 2024). 

 

 

Table 1: Summary of the research papers read 
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Chapter 3: Methodology 

3.1 Dataset 

In all, the dataset has a total of 18,634 samples of emails and out of these 11,322 are safe emails and 
the rest 7,312 the emails that are regarded as suspicious. ’item’ contains records that encompass the 

textual content of the email body as well as the associated email type. Below is a brief guide for research 

on the specific characteristics of phishing emails inclusive of the characteristics of other types of emails. 
This dataset is very helpful in training machine learning models in which the primary goal is to identify 

secure and phishing emails. Due to the availability of enriched text bodies, analysis can be quite 

extensive, which helps to identify desirable aspects and trends to improve the performance of detection 
of Phishing emails. 

 

3.2 Data Preprocessing Techniques 

The next step the preparatory process of the dataset that is needed for machine learning tasks is the 

splitting of the data into training and test sets. The goal of this is to enable a section of data to be used 

for training the model while the other part is used for testing the model which will help in making a 
perfect judgement of the model. Specifically, the data set is split into the training set and testing set in 

terms of an 80:20 ratio and ensuring data randomization to make the experiment reproducible. The next 

step the preparatory process of the dataset that is needed for machine learning tasks is the splitting of 
the data into training and test sets. The goal of this is to enable a section of data to be used for training 

the model while the other part is used for testing the model which will help in making a perfect 

judgement of the model. Specifically, the data set is split into the training set and testing set in terms of 
an 80:20 ratio and ensuring data randomization to make the experiment reproducible. 

𝑊𝑥,𝑦 = 𝑡𝑓𝑥,𝑦 𝑥 log (
𝑁

𝑑𝑓𝑥
)   

 

In other words, the above equation is the statistical feature extraction method’s formula. This attempts 

to create statistical features with the corpus and the words contained in the entire document. After this 

preprocessing of data has been made, the training subset of data is proceeded with vectorization by 
using the TF-IDF vectorizer, which has been explained above. This vectorizer transforms the textual 

data into numerical data for analysis. This operation is entirely indispensable for translation purposes 

to transform the text into a format that could be used in machine learning algorithms.  



 
Figure 3: An example depicting the generation of TF-IDF value 

  

As for the vectorizer just fitted to the training data, we can subsequently calculate the term frequencies 

relevant to the training data as well as the inverse document frequencies corresponding to the obtained 
term frequencies. Following that, the testing subset is to go through the same operation of the TF-IDF 

vectorizer mentioned above.  

3.3 Machine Learning Models 

3.3.1 Logistic Regression 

Logistic regression is designed for binary outcomes, unlike linear regression, which handles continuous 

outcomes and assumes a linear relationship between variables. In logistic regression, the logistic 

function models the relationship between the dependent variable and one or more independent variables. 
This function transforms the linear combination of predictors into a probability value between 0 and 1, 

making it perfect for binary classification tasks, as it ensures that predicted values can be interpreted as 

probabilities. 
 

 
Figure 4: Sigmoid or Logistic Function 

 

3.3.2 Random Forest Classifier  

Logistic regression is primarily used for classification tasks. In ensemble learning, multiple decision 

trees are created during training, and their outcomes are combined to improve accuracy and robustness. 

These trees are trained on random subsets of the data, with each tree's splits based on a random selection 

of features. This approach enhances the model's generalizability and reduces the risk of overfitting, a 

common issue with individual decision trees. 

 

 



 
Figure 5: An example of how the results is generated as can be seen multiple trees are generated 

 

3.2.3 Naïve Bayes Classifier  

Naive Bayes classifiers calculate the posterior probability for each class by utilizing the given predictors 

to make predictions. To begin this process, the initial step is to merge the prior probability of each class 

with the likelihood of the predictors given that class. Subsequently, the probabilities are standardized 

across all possible classes. Due to its simplicity and efficiency, this approach is highly useful in handling 

complex and large datasets. 

 

Figure 5: Naïve Bayes Algorithm using the Bayes Theorem 

3.3.4 Support Vector Machine 

Support Vector Machines (SVMs) are a group of supervised learning algorithms effective in both 

classification and regression tasks. They excel at handling large datasets and complex decision 

boundaries, making them highly efficient for distinguishing between data classes. SVMs work by 

placing hyperplanes (or multiple hyperplanes for multi-class problems) in higher-dimensional space to 

separate different classes. The main goal is to find the hyperplane that maximizes the margin, which is 

the distance between the hyperplane and the nearest data points from each class. A larger margin 

enhances the model's robustness, reducing classification errors on unseen data. 

 



 

Figure 6: The example of how the gain margin is fixed based on the hyperplane and how the classes 

are differentiated 

3.3.5 K-Nearest Neighbours  

The k-nearest Neighbours (k-NN) algorithm is a widely recognized supervised learning method used 

for both classification and regression tasks. When it comes to organizing various types of data, it is 

widely recognized for its simplicity and effectiveness.  

 

Figure 7: Example showcasing the clusters, or the classes formed based on the distance from one point 

i.e neighbours  

Due to the need to calculate distances between the query point and all points in the training set, the k-

nearest neighbours (k-NN) algorithm has several challenges, with computing complexity being one of 

the most critical, especially when working with large datasets. To address this problem, several 

optimizations and data structures, such as k-d trees and ball trees, can be employed to expedite the 

search for the closest neighbouring item.  

3.4 Recurrent Neural Networks 

3.4.1 GRU (Gated Recurrent Units) 

Gated Recurrent Units, commonly referred to as GRUs, are a type of recurrent neural network (RNN) 

structure that is highly effective for tasks involving sequence modelling. These applications encompass 

the fields of time-series analysis and natural language processing.  



 

Figure 8: GRU cell 

3.4.2 LSTM (Long Short-Term Memory) 

Long Short-Term Memory (LSTM) networks are a specific type of recurrent neural network (RNN) 

designed to address the challenges of learning long-range dependencies in sequential input. LSTMs are 

highly advantageous for tasks that require the handling of natural language and time-series data due to 

their ability to retain and utilize information from long sequences. 

 

Figure 9: LSTM cell 

3.5 Evaluation 

Precision – It illustrates how successful the approach can be in preventing falsely identifying legitimate 

transactions as fraudulent ones. The accuracy of a test may be calculated by dividing the total number 

of positive and negative findings by the number of real positives. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

Recall –To determine it, take the total number of positive results and divide it by the sum of all positive 

results and false negatives. This value is the outcome of the calculation. By analyzing all the valid cases, 

it is possible to determine what percentage of the forecasts were accurate. 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 



F1 Score –This allows just one score to be obtained. It is helpful to have the F1 Score available in 

situations when the dataset is skewed toward fraudulent behaviours in comparison to non-fraudulent 

behaviours. 

𝐹1 𝑆𝑐𝑜𝑟𝑒 =  
2 𝑥 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑥 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

Threshold calibration, which involves altering the model's classification threshold, is one method that 

may be used to achieve the optimal balance between accuracy and recall characteristics.  

 

Chapter 4: Implementation 

 

Figure 10: Architecture diagram used for this machine learning-based cybersecurity detection of 

phishing 

Algorithm Flow 

Step 1 – Data collection and preprocessing: We need to collect many emails, both legitimate and fake. 

Preprocess the emails to extract important information such as the sender's email address, the email 

message, any attached files, and any URLs. To get the data ready for training, the group of features need 

to be transformed into numerical values and the numerical features normalized. The technique of 

creating new features from existing ones or changing already features in a dataset to improve the 

performance of a machine-learning model is known as feature engineering.  

The most crucial step is to determine the most relevant features for the categorization of actual and false 

messages by extracting the important features and evaluating the features. To detect any slight changes 

that would point to the sender's involvement in phishing, include other data such as the words used in 

the email content, URLs, senders' reputations, and many more.  

 

Step 2 – Process of selecting and training a model: We need to select some of the mainstream ML 

techniques for classification such as, random forests and logistic regression. We will be utilizing 

statistical characteristics like TF-IDF because text data is available. 

 

𝑊𝑥,𝑦 = 𝑡𝑓𝑥,𝑦 𝑥 log (
𝑁

𝑑𝑓𝑥
)   



We then split the data into a training set and a validation set such that no data from the training set 

leaks into the validation set and both the classes are equally represented.  

We will perform training of several models employing different hyperparameters to compare between 

different models and increase the learning capability. 

Step 3 – Evaluation of the model: Evaluate the training models against the validation set and compare 

the outcomes using metrics like accuracy, precision, recall, and F1-score to assess the models. 

Through cross-validation, or on the other hand, a separate test set, to evaluate the models' capacity to 

apply the knowledge to data that was not examined before. 

 Step 4 – Deployment and monitoring of models: This project has used some of the best models for 

deploying and results are displayed for evaultion. 

To establish mechanisms to regularly check the working of the model and make the corresponding 

changes to adapt to changes in the types of phishing strategies and guarantee effectiveness in the 

future. 

Integrating the model into the existing cybersecurity framework to provide an instantaneous 

countermeasure against phishing attacks. 

Step 5 – Assessment and Enhancement: To determine the efficiency of the deployed model, we will 

employ an initial evaluation that compares specific variables, such as the proportion of false positive 

and false negative outcomes.  

We intend to gather input from both security experts and users to pinpoint areas that require 

enhancement and make successive modifications to the model.  

To improve the model's effectiveness in stopping phishing attacks, it should be updated often and 

expanded with new elements.  

4.1 Data Source 

For the periods January to May 2015 and May to June 2017 (Tan, Choon Lin (2018),), there were 

downloads of 5,000 phishing and 5,000 legal websites and 48 characteristics were extracted from the 

datasets. Implementing feature extraction via the browser automation framework, namely the Selenium 

WebDriver makes for a more accurate method of extracting features as compared to the regular 

expression-based parsing method. Thus, the described dataset can be effective for phishing feature 

analysis if the researcher needs fast proof of concept trials or comparing phishing classification models 

among anti-phishing professionals. 

4.2 Data Pre-Processing: We then split the data into a training set and a validation set such that no 

data from the training set leaks into the validation set and both the classes are equally represented. We 

will perform training of several models employing different hyperparameters to compare between 

different models and increase the learning capability.  

Step 3 – Evaluation of the model: To evaluate the training models by testing them against the validation 

set and comparing the results with the parameters such as accuracy, precision, recall, and F1-score.To 

check the ability of the models to apply the knowledge to unseen data by cross-validation, or on the 

other a different test set.  

Step 4 – Deployment and monitoring of models: This paper has implemented the most effective model 

in an operational phishing detection system. To establish mechanisms to regularly check the working 



of the model and make the corresponding changes to adapt to changes in the types of phishing strategies 

and guarantee effectiveness in the future. Integrating the model into the existing cybersecurity 

framework to provide an instantaneous countermeasure against phishing attacks 

 Step 5 – Assessment and Enhancement: We will use a formative evaluation to determine the 

effectiveness of the implemented model by comparing certain variables like the percentage of false 

positive and false negative results. We will collect feedback from the users and security specialists to 

identify the areas of improvement and adjust the model consecutively. The model should be updated 

frequently, and new components should be included in it to increase its efficiency in preventing phishing 

attacks.4.1 Data SourceFor the periods January to May 2015 and May to June 2017 (Tan, Choon 

Lin (2018),), there were downloads of 5,000 phishing and 5,000 legal websites and 48 characteristics 

were extracted from the datasets. Implementing feature extraction via the browser automation 

framework, namely the Selenium WebDriver makes for a more accurate method of extracting features 

as compared to the regular expression-based parsing method. Thus, the described dataset can be 

effective for phishing feature analysis if the researcher needs fast proof of concept trials or comparing 

phishing classification models among anti-phishing professionals.4.2 Data Pre-ProcessingAfter 

that, the testing subset is subjected to the identical TF-IDF vectorizer that was described earlier. 

Therefore, this guarantees that the test data is converted using the same feature space as the training 

data, which helps to preserve consistency and enables an accurate evaluation of the trained model's 

performance. Through the application of the vectorizer to both the training dataset and the testing 

dataset, the method guarantees that the text data is appropriately prepared for the training and evaluation 

of robust models. 

After that, the testing subset is subjected to the identical TF-IDF vectorizer that was described earlier. 

Therefore, this guarantees that the test data is converted using the same feature space as the training 

data, which helps to preserve consistency and enables an accurate evaluation of the trained model's 

performance. Through the application of the vectorizer to both the training dataset and the testing 

dataset, the method guarantees that the text data is appropriately prepared for the training and evaluation 

of robust models. 

 

Figure 11: Code Snippet of Tokenisation 

4.3 Machine Learning  

We evaluated the effectiveness of several machine learning classifiers on pre-processed text data. The 

classifiers used include K-Nearest Neighbours, Logistic Regression, Naive Bayes, Random Forest, and 

Support Vector Machine (SVM) with a linear kernel. Each algorithm was trained using TF-IDF-

transformed data, allowing the models to identify patterns in the text. After training, these classifiers 

were tested on a separate dataset, also processed with TF-IDF, to ensure consistency in predicting labels. 

                



      

Figure 12: Code Snippet for Machine Learning Modelling 

4.4 Deep Learning 

The first deep learning model uses a bidirectional GRU architecture, while the second uses a 

bidirectional LSTM architecture, both built with Keras in TensorFlow. In the first model, an embedding 

layer converts input text into dense vectors, followed by a 64-unit bidirectional GRU layer that 

processes the data in both directions to capture context. A second 32-unit GRU layer enhances feature 

extraction, and a 64-unit dense layer with ReLU activation adds non-linearity. A dropout layer is 

included to prevent overfitting, and the final output layer has two units for classification. The model is 

compiled with the Adam optimizer, binary cross-entropy loss, and accuracy as the evaluation metric, 

with training continuing until validation loss stabilizes to avoid overfitting.  

The second model is similar but uses bidirectional LSTM layers instead of GRU layers, with 64 and 32 

units, respectively, to capture long-term dependencies in the text. 

 

 

Figure 13: Deep Learning code snippets 

Chapter 5: Results and Analysis                                                                           

5.1 Case study  

This case study illustrates the ability to differentiate between genuine and fraudulent URLs, providing 

users with critical protection against phishing attacks. 

 



 

 

 

Figure 14: Logistic Regression performance 

 

The first image shows the evaluation of the link www.google.com, which is recognized as legitimate. 

The system verifies the URL against a database of known trusted sites and confirms its authenticity. 

 

Figure 15: Logistic Regression performance 

The second image illustrates the detection of a phishing attempt with the link 

www.g0ggle.com. Here, the system identifies the subtle substitution of the letter "o" with the 

digit "0" as a red flag for potential phishing. This discrepancy, while minor, is enough for the 

tool to categorize the link as suspicious and alert the user to possible fraudulent intent. 



5.2 Machine Learning 

5.2.1 Logistic Regression  

 

Figure 16: Logistic Regression performance 

The logistic regression model exhibited strong overall performance with an accuracy of 96.08%, 

effectively balancing precision and recall for both positive and negative classes. For positives, the 

precision was 0.97, meaning the model made very few false-positive errors, while the recall of 0.96 

indicates it successfully captured the truest positives. Similarly, for negatives, the precision was 0.94 

and the recall was 0.96, showing that the model also handled negative cases well. 

The high F1 scores of 0.97 for positives and 0.95 for negatives reflect the model's ability to maintain a 

good balance between precision and recall, minimizing both false positives and false negatives. This 

indicates that the model is not only accurate but also reliable in distinguishing between positive and 

negative cases. Overall, the logistic regression model's performance is robust, making it a strong 

candidate for use in scenarios where accurate classification is critical 

5.2.2 SVM  

 

Figure 17: SVM performance 

The proposed Support Vector Machine (SVM) model was very accurate and estimated an overall 

accuracy of 96%. The model also performed very well in the positive classifications with a precision of 

0. 98, revealing that most of the positive predictions are accurate. The recall for positive cases was 

therefore 0. In the second group of the same patients, the model achieved a 97% accuracy, which 

indicates that the model identified nearly all true positive cases. The F1-Score for positive classifications 

was 0. 97, this shows that the precision was very good and combined with the recall provided a good 

balance between the two and hence the model can correctly classify the positive cases without many 



wrongs. On the negative side, the SVM model kept the precision at 0. It translated to 95/100, meaning 

that the negative predictions were 95% correct all through. The recall for negatives was slightly higher 

at 0. 97, this shows that the model was able to correctly classify most true negative cases. The F1-Score 

for negative classifications was at 0. The authors also compared the precision and recall of the model, 

noting that it is 96% for negative instances, which proves the model’s ability to achieve a good balance 

between precision and recall. In conclusion, the presented SVM model has high accuracy, and has 

almost equal performance for both classifications as positive and negative, which proves that it is a 

reliable and accurate tool for accurate predictions. 

5.2.3 Random Forest Classification 

 

Figure 18: Random Forest performance 

The accuracy of the Random Forest Classifier model was found to be 96% this means that the model 

was right in 96 out of 100 of the observations. 5 percent of all the occurrences contained in the given 

dataset. In the positive classification, which entails identifying the parts of the text that are most relevant 

to a story, the model had a precision of 0. 97 which implies that, out of the 100 instances which was 

predicted to be positive, 97 were positive. The recall for positive cases was also zero. 97, which 

demonstrates the ability of the model to capture most of the truly positive cases. The F1-Score regarding 

positive classifications was 0.97, which is good and indicates the equal ratio of precision and recall of 

the model. On a negative note, the model was able to attain a precision of 0. 95, which means the 

percentage of negative classification that was correctly identified as such of the total number of negative 

predictions made was 95%. The recall for negatives was 0. 95, which means that the call negative cases 

that were not included in the study were also correctly left out by the model. Thus, the F1-Score of the 

proposed model is 0.95 for negative classifications, the Random Forest Classifier keeps on performing 

well in the process of differentiating between positive and negative instances. In conclusion, the model’s 

metrics for both classes present a good balance, proving its stability and effectiveness in classification 

problems. 



5.2.4 Naïve Bayes  

 

Figure 19: Naïve Bayes performance 

The Naive Bayes model obtained a performance of 95% when it was evaluated. 38%, which means that 

the proposed model has a high level of accuracy when solving such classification problems. Regarding 

positive classifications, the model obtained a precision of 0. 97, which means that 97 percent of the 

incident accurately predicted as positive. The recall for positive cases was 0. 96’ suggesting that the 

model was able to correctly identify all the true positive rates at a whopping 96 percent. Specifically, 

the F1-Score for positive classifications was 0. 96, which is a good compromise between precision and 

recall, thus guaranteeing the correct identification of positive cases. In the case of the negative 

classifications, the model achieved a precision of 0. 94, this means that in the 100 instances that were 

predicted to be negative, it had a 94% chance of being negative. The specificity for recall of the negative 

cases was 0. The true negative rate was estimated at 95 proving that the model is good at identifying 

the false negative instances. The F1-Score of this study was 0. 94 for negative classifications, as the 

above result shows that the Naive Bayes model can retain steady performance on both positive and 

negative classes. This equal balance across these measures highlights the accuracy of the model for 

classification tasks even if it uses a more basic probabilistic theory. 

5.2.5 KNN 

 

Figure 20: k-NN performance 

The K-Nearest Neighbours (KNN) model was also not very impressive and demonstrated a skewed 

performance split. Although it obtained a precision of 0. 98 for positive classifications for negative 

classifications the precision was low. This clearly shows that the model labelled many true positives as 

negatives, that is, it failed to predict them. This situation resulted in a rather low F1-Score of 0. 46 for 

positives, which shows the difference between precision and recall. As for the negative classification, 



the desired recall was achieved at 0. 99, thus correctly classifying almost all the true negatives. The 

accuracy for negatives was relatively low at 0. 48, which means that more cases were diagnosed as 

cancerous when in actual sense they were not. The F1-Score for negatives was 0. 64 Regarding the 

above results, the model has outperformed positives but at the same time, it has shown that it has areas 

of improvement. In general, the KNN model had issues with the balanced accuracy, more specifically 

– it failed to provide good results with the positive cases hence it may not be the most suitable for use 

in datasets with imbalanced classes. 

5.3 RNN- based Models  

5.3.1 LSTM Approach  

 

Figure 21: LSTM performance 

The LSTM model demonstrates robust performance across several metrics. It achieves an accuracy of 

0.96, reflecting its overall effectiveness in classifying instances correctly. For positive cases, the model 

exhibits a high precision of 0.99 and a recall of 0.96, resulting in a strong F1-score of 0.97. This indicates 

that the LSTM is highly effective at identifying positive instances while maintaining a low rate of false 

positives. For negative cases, the precision stands at 0.94, with a recall of 0.98, and an F1-score of 0.96. 

These metrics suggest that the model is also proficient at detecting negative instances, ensuring a good 

balance between precision and recall for both classes. 

5.3.2 GRU-Based Approach  

 

Figure 22: GRU performance 

The GRU model exhibits strong performance metrics across the board. It achieves an accuracy of 0.96, 

indicating a high overall classification rate. For positive cases, the model has a precision of 0.98 and a 

recall of 0.96, resulting in an F1-score of 0.97. This demonstrates the GRU's effectiveness in accurately 



identifying positive instances while maintaining a low rate of false positives. For negative cases, the 

model reports a precision of 0.94 and a recall of 0.97, with an F1-score of 0.96. These results highlight 

the GRU's ability to reliably detect negative instances, maintaining a balanced performance between 

precision and recall for both classes.  

5.4 Comparative analysis  

5.4.1 Accuracy  

 

Figure 23: Accuracy comparison of all the models 

The graph of the comparison of the accuracy of the models demonstrates the differences between the 

models. Out of all the models, SVM and LSTM have the greatest accuracy, meaning they work with 

complex structures in the data stream. Finally, KNN has the lowest accuracy of 0.57 indicating that 

perhaps the assumption that features are independent is not accurate in this case. Other model’s 

performance lies between these two, perhaps because of the model used 

 

5.4.2 Precision  

 

Figure 24: Precision comparison of all the models 



The paragraph explains that LSTM has the highest precision for the positive class (1) at 0.99, meaning 

it makes very few mistakes in identifying positive cases. SVM and GRU also show high precision for 

the positive class, around 0.98, indicating they are very accurate in identifying true positives. Random 

Forest and Logistic Regression have slightly lower but still very high precision for the positive class, at 

0.97, with Naive Bayes close behind. 

In contrast, KNN has high precision for the positive class (0.98) but struggles with the negative class, 

where its precision drops to 0.48. This means KNN is less effective at correctly identifying negative 

cases. SVM, GRU, and LSTM perform well in both classes, with precision for the negative class ranging 

from 0.94 to 0.95. Overall, LSTM, SVM, and GRU show better accuracy across both classes compared 

to other models, while KNN has notable issues with classifying negative cases. 

 

5.4.3 Recall  

 

Figure 25: Recall the comparison of all the models 

The graph shows that the LSTM model excels in recalling negative cases (-1) with a score of 0.98, 

indicating it is very effective at correctly identifying negative instances. Similarly, SVM and GRU also 

perform well in recalling negative cases, with scores of 0.97, which means they are good at minimizing 

false negatives. 

Logistic Regression and Random Forest have equal recall rates of 0.96 for the negative class, showing 

solid performance. On the other hand, KNN has a high recall of 0.99 for the negative class but a much 

lower recall of 0.30 for the positive class (1). This contrast highlights that while KNN is very good at 

identifying negative cases, it struggles significantly with positive cases. 

 



5.4.4 F1-Score  

 

Figure 26: F1 Score comparison of all the models 

The graph indicates that the LSTM model excels in terms of the F1 score for both classes, with a 

particularly high score of 0.97 for the positive class (1). This score reflects a strong balance between 

precision and recall. SVM and GRU also perform well, each achieving an F1-score of 0.97 for the 

positive class and slightly lower, but still consistent, scores for the negative class (-1). 

Logistic Regression and Random Forest maintain solid F1-scores, with 0.97 for the positive class and 

0.95 for the negative class, showing that they are reliable in balancing precision and recall. Naive Bayes 

has slightly lower F1 scores, with 0.96 for the positive class and 0.94 for the negative class. 

KNN, however, displays a significant imbalance, with an F1-score of 0.64 for the negative class and 

only 0.46 for the positive class. This large disparity indicates that KNN has trouble balancing precision 

and recall, particularly for positive cases. 

 

5.5 Summary  

In all the evaluated measures, accuracy, precision, recall, and F1-score, LSTM and SVM models show 

the highest results. LSTM performs especially well, and while it has an equal F1 score, this means that 

it is good at avoiding both false positives and false negatives. SVM also performs well, especially in 

terms of precision; thus, it can be used effectively for those tasks where a false positive rate is a critical 

factor. Compared to it, K-Nearest Neighbors (KNN) is the least accurate model, with lower accuracy 

and a great gap between precision and recall. This suggests that the KNN algorithm is not very 

consistent and is more likely to make the wrong classification. Logistic Regression, Random Forest and 

Naive Bayes are all relatively stable, average performers in all metrics, and make for good default 

classifiers, but are not as excellent as LSTM and SVM. Overall, LSTM and SVM are the most accurate 

models, while KNN is the least accurate; Logistic Regression, Random Forest, and Naive Bayes are 

medium-accurate and stable models. 

 

6. Conclusion  



The objective of this research is to assess different machine learning models that are used to classify 

emails concerning phishing attacks. Among the models, K-Nearest Neighbours (KNN), Gated 

Recurrent Unit (GRU), Logistic Regression, Random Forest, LSTM, Naive Bayes, and Logistic 

Regression are tested. From the study, the SVM and LSTM models are quite effective with the model 

achieving accuracies of more than 96%. The algorithms have shown high performance in learning 

complex patterns inside the phishing data, indicating that they can be used for accurate event discovery. 

While the LSTM has a strong performance in identifying the long-term dependency in the sequential 

data, the SVM model is another set of classifiers that provide high accuracy in classifying the data. The 

two models help each other to refine the classifications that they come up with. However, there are 

limitations with the KNN model because of the feature independence assumption resulting in the model 

having a lowest accuracy of 57%. These limitations may not be suitable for the structure of data in 

phishing since the data is complex and diverse. The precision and recall of the model indicate that it 

might not be as efficient in detecting phishing attempts as the more complex models. Naïve Bayes and 

Logistic Regression are considered to have intermediate accuracy. Compared to models of a higher 

level, these have a rather low capability to analyse the patterns of phishing emails. As much as they 

seem to be, they are not quite so and may not be easily comprehendible. When it comes to the KNN 

model, class imbalance is a critical challenge since it significantly affects the model’s performance. 

The LSTM and SVM models stand out for their strengths in reducing false positives and accurately 

predicting successful phishing attempts. While KNN lags in recall and precision for positive phishing 

detections, the GRU model performs well when recall is consistent across classes. LSTM and Random 

Forest are the top models for phishing detection, balancing speed and accuracy. Their ability to handle 

complex data patterns makes them ideal for enhancing phishing detectors. However, as phishing 

strategies evolve, it's essential to continually refine these models and explore their relationship with 

other techniques. 
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