

Botnet Detection in Internet of Things Devices: A Step Up

with Intrusion Detection Systems

MSc Research Project

Cybersecurity

Mohammad Shahadat Hossain Pabel
Student ID: 22248463

School of Computing

National College of

Ireland

Supervisor: Joel Aleburu

National College of Ireland

Project Submission Sheet

School of Computing

Student Name: Mohammad Shahadat Hossain Pabel

Student ID: 22248463

Programme: Cybersecurity

Year: 2023

Module: MSc Research Project

Supervisor: Joel Aleburu

Submission Due Date: 14/08/24

Project Title: Botnet Detection in Internet of Things Devices: A Step Up

with Intrusion Detection Systems

Word Count: 6991

Page Count: 23

I hereby certify that the information contained in this (my submission) is information

pertaining to research I conducted for this project. All information other than my own

contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other

author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature: Mohammad Shahadat Hossain Pabel

Date: 14/08/24

PLEASE READ THE FOLLOWING INSTRUCTIONS AND

CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies).

Attach a Moodle submission receipt of the online project submission, to

each project (including multiple copies).

You must ensure that you retain a HARD COPY of the project, both
for your own reference and in case a project is lost or mislaid. It is not sufficient to
keep a copy on computer.

Assignments that are submitted to the Programme Coordinator office must be placed into the
assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

3

Botnet Detection in Internet of Things Devices: A

Step Up with Intrusion Detection Systems

Abstract

The exponential growth and popularity of the Internet of Things (IoT) have posed serious

security risks, particularly the hazards of botnets. This research aims at filling the existing

gap in effective feature engineering procedures for improving IoT botnet detection. In this

project, we plan to use machine learning and deep learning to analyse a large-scale, real-time

detection system that includes several data providing mechanisms. Our strategy involves

feature extraction of high-level features, reducing the dimensionality of the problem, and the

use of anomaly detection techniques. The results show enhanced performance and

effectiveness in identifying botnet threats and offers a complete understanding of the IoT

security.

Introduction

People are experiencing IoT as various industries around the world are witnessing the

internet of things which create devices that collect data from other devices and exchange the

information on their own. However, the rising popularity of IoT devices also spurred new

security dangers, among them the dangers associated with botnets. Botnets that are clusters

of compromised devices under the control of an attacker are capable of performing various

coordinated, technically complex actions, including Distributed Denial of Service (DDoS),

data theft, etc.

Today, the detection of IoT botnets is only done through statistical and behavioural features

used in network traffic analyses. These studies have been partly effective for IoT device

detection, yet the approaches have some drawbacks as they are not scalable, do not offer

real-time detection and are sensitive to the environment of the IoT. Furthermore, due to the

dynamic approaches of the botnet attacks, smart and adaptive mechanisms for their detection

are found to be mandatory.

This research will help in addressing these challenges by formulating new feature

engineering methods that will utilize the aspects of machine learning and deep learning. It is

our aim to provide a better solution for formalizing IoT botnet and achieve IoT botnet

detection and response in real-time. This study is structured as follows: first, we provide a

brief literature review to locate current research deficiencies and proceed to a discussion of

the general research methods used. We then give an outline of the method specification and

implementation, followed by the details of the evaluation results, based on which we discuss

the findings as well as the research directions for the future.

Literature Review

The technological expansion of IoT devices in different fields has brought about the creation

of enormous amounts of data, hence the need for enhanced methods of anomaly detection to

enhance security and stability. IoT applications rely on anomaly detection for diagnosing

4

various misconducts in the IoT networks, flaws in the systems, and poor performances. The

objectives of this literature review are as follows: to present an up-to-date situation in the

field of anomaly detection methodologies and tools for IoT systems; to overview datasets

and specific works used in this field. Some of these are highlighted and areas that have been

left out, which our research seeks to fill are pointed out.

Anomaly Detection Techniques

Existing techniques for anomaly detection in IoT can be classified into statistical methods,

machine learning based methods and deep learning based methods.

1. Statistical Methods: Best known statistical methods for anomaly detection are the

(Deeva, Bubnova and Kalyuzhnaya, 2023) These methods are assumed to work on

normal distribution data, any deviations in the data from the normal distribution are

considered as outliers (Chandola, Banerjee and Kumar, 2012). For instance,

(Pimentel et al., 2014) used statistical methods and applied them to the IoT data

streams and they were equally effective in the experimental environment. However,

these methods often fail because IoT data is high-dimensional and heterogeneous.

2. Machine Learning Approaches: Inspired by Support Vector Machines (SVM), k-

Nearest Neighbors (k-NN), and Decision Trees, various studies have shown more

accurate results in detecting anomaly in the IoT networks than traditional statistics.

Random forest, which is a machine learning method based on the ensemble learning

model, is highly effective in categorising anomalous data and is particularly suitable

for complex data sets, an added advantage is that the method provides an importance

of features option. Moreover, other machine learning techniques, such as deep

learning approaches like (Du et al., 2017)suggest that IoT anomaly detection in real-

time applications has a very high detection ratio and very low false positive.

3. Deep Learning Models: Popular deep learning models include CNNs and RNNs that

have been applied in anomaly detection because of their extracting feature

representation from data. Among RNNs, LSTM is rather efficient in learning

temporal dependencies inherent in time series of IoT data (Malhotra et al., 2021)Also,

unsupervised neural network like autoencoder has also been used to reconstruct

normal data and classify the anomalies based on the measure of reconstruction errors

(Chen et al., 2018). To this end, the work by (Paoletti et al., 2019) showed an example

where deep belief networks can be used for learning of features in an unsupervised

manner that enhanced anomaly detection.

Related Work

A number of works have been published with different aspects by analysing anomaly

detection in IoT networks and provide useful insights and approaches.

1. Network Intrusion Detection: Moustafa and Slay in their study published in 2016

introduced the UNSW-NB15 dataset for testing the network intrusion detection

systems(Moustafa and Slay, 2016). The authors used various ML algorithms to

establish the performance baseline on the dataset, this showed the advantages and

disadvantages of each algorithm. Their work was based on the fact that there are gaps

in comprehensive tools for collecting and updating datasets in order to design

5

anomaly detection systems effectively.

2. Industrial IoT (IIoT) Security: (Zhang et al., 2019)presented an anomaly detection

framework that consists of both statistical and machine learning techniques to

perform the detection in IIoT systems. Their approach was capable of minimising

false positives, boost the rate of detection while putting a lot of weight on using

hybrid systems in complex IoT applications.

3. Smart Home Security: (Garcia, Parmisano and Erquiaga, 2020) for instance

proposed the IoT-23 dataset which consists of multiple IoT classes of traffic, normal

and abnormal. In their work they assessed the performance of several anomaly

detection techniques on the data set though they showed that deep learning models

where capable of recognising more complex attack types. Thus, this work pointed

out that a specific domain dataset is required to improve the performance of anomaly

detection systems.

4. Energy-Efficient Anomaly Detection: In order to address the energy consumption

issue in the IoT devices, (Huang et al., 2022) introduced an energy-efficient anomaly

detection framework. Their approach employed slim artificial neural networks and

edge computing that required far less energy than the benchmark while achieving the

same level of detection. As the essential component of such devices will be battery

consumption, which dictates the usage time of the IoT device, this research is

particularly important for battery-driven IoT devices.

Challenges and Gaps in Current Research

Despite significant advancements, several challenges remain in the field of anomaly

detection for IoT networks:

1. Data Heterogeneity: There are several kinds of data produced by IoT devices

ranging from simple sensor measurements, network activities, status logs among

others. Thus, the challenge remains in the creation of anomaly detection techniques

that would be able to process such diverse data (Booij et al., 2021).

2. Scalability: The nature of the data collected by IoT devices also presents a problem

of scalability for the use of anomaly detection algorithms. Real-time processing and

analysis of massive amounts of IoT data is still one of the open research challenges

(Rejeb et al., 2022).

3. Lack of Labeled Data: Supervised machine learning model of developing predictive

models of behavior requires training data that is often difficult to come by in IoT.

Some recent attempts have been made to use semi-supervised as well as unsupervised

approaches to overcome this problem, but more effort is required in this direction

(Ahmed and Pathan, 2020).

4. Concept Drift: IoT data are features of non-stationary processes, and this implies

that the data distribution changes with time. This behaviour is called concept drift

and is a very important problem if one wants to ensure that the accuracy of the

anomaly detection models is kept continuously high (Gama et al., 2014).

6

The materials in the analysis of anomaly detection in IoT networks present a rich variety of

approaches that start with the statistical ones and go up to deep learning methods. Substantial

progress has been made in the field, however there lies some open issues arising from data

heterogeneity, scalability and concept drift. Web pages provides insights for future research

to introduce powerful, maintainable, and sturdy anomaly detection approaches that are

capable of dealing with the further feature of IoT data.

Methodology

Overview

This paper assesses and optimises anomaly detection methodologies for IoT networks using

the IoT-23 dataset. It covers the steps in data preparation, data feature processing, model

building, assessment, and comparative of different machine learning and deep learning

models. This section explains the research methodology in detail arising from our research

work.

Data Collection and Preprocessing

Dataset

It is IoT-23, a benchmark dataset for network traffic classification that covers a wide range

of IoT devices and contexts. It contains both legitimate and malicious traffic, which gives

full material for the modelling and testing of the anomaly detection algorithms (Garcia,

Parmisano and Erquiaga, 2020).

Data Extraction

The dataset, initially in compressed form, was downloaded then extracted and organized for

analysis. The extraction process involved the following steps:

1. Locate and Extract: The dataset file iot_23_datasets_full.tar.gz was extracted using

the tarfile library in Python.

2. Organize: Extracted files were organized into a directory structure facilitating easy

access and analysis.

Data Cleaning

Data cleaning is a crucial step to ensure the quality and reliability of the analysis. The

cleaning process included:

1. Handling Missing Values: One of the most important preliminary steps to data

analysis is checking for missing values, and their appropriate treatment was

performed. In case of numerical features, mean or median imputation was done while

for categorical, the missing observations were imputed by a mode or special ‘missing’

code off type.

2. Normalization: Measures that are numerical in nature were scaled for the reason that

they will enhance the performance of the model, in the same magnitude. This was

7

done employing methods that could be among the following; min-max scaling or

standardization.

3. Categorical Encoding: Some of the categorical variables were also transformed to

be in a format that is more appropriate for machine learning algorithms for instance

using one hot encoding. This is done in order to guarantee that the model is able to

read these variables appropriately, while at the same time not being assumed to

possess an ordinality.

Data Splitting

 Using the cleaned data set, the variable was divided into training and testing sets for the

accurate assessment of the models. In terms of split ratio, a 4:1 was considered to be ideal

although the most common split ratio used was 8:2. This makes sure that the model has

enough amount of data to train on and at the same time leaving enough amount of data that

will be used in the evaluation of the model.

Feature Extraction

Feature extraction transforms raw data into a format suitable for model training. For the IoT-

23 dataset, feature extraction involved:

1. Network Traffic Features: From the network traffic data, only packet size, inter-

arrival time, protocol, source and destination IP addresses, ports were derived into

key features. These features are very important when it comes to the detection of

traffic patterns of both normal and anomalous traffic.

2. Statistical Features: Analyzing the network traffic and determining the average,

variance, skewness, kurtosis, and entropy of the traffic. They give information on the

dispersion pattern and fluctuation of traffic data.

3. Time-Series Features: As for the models like LSTM, time-series features were

extracted in order to consider temporal relationships. It also involved creating lag

features, such as rolling statistics, and all other temporal aggregations to extract

trends and seasonality in the data.

Model Selection

In the current study, we considered multiple unsupervised machine learning and deep

learning approaches for anomalous IoT network activity identification. The selected models

include:

1. Random Forest (RF): Random Forest is a supervised learning algorithm with good

accuracy that sorts out intrusions within IoT networks. This is done for ‘m’ times

such that each time a new independent random subset of the data set and the features

is formed and a decision tree capable of performing accurate and non-reducing

prediction is grown and created. Random Forest is known for its ability to process

multidimensional data and interactions and thus, IoT intrusion detection with

Random Forest allows to detect complex attacks. Another advantage that peaks from

the prepared model is that it can locate the significance of certain features which is

useful in understanding the causes of network anomalies.

8

2. Autoencoders (AE): Neural networks that have been trained in an unsupervised

manner, and the goal of which is to reconstruct an input (errors during the

reconstruction reflect abnormalities, Chen et al. , 2018). An autoencoder is made of

two components namely the encoder and the decoder. The encoder learns a mapping

between input and an optimized latent space representation and on the other hand the

decoder tries to map the obtained representation back to the input. High

reconstruction error produces an anomaly.

3. Long Short-Term Memory (LSTM): Particular type of recurrent neural network

defined for anomaly detection in time series, based on incorporation of long term

dependencies (Malhotra et al . , 2015). LSTMs are meant to solve the long-term

dependency issue to be useful when learning from ordered networks of data where

context from earlier on in that network is relevant.

Workflows of the three algorithms shows down here:

 Fig 1: Random Forest Workflow Fig 2: Autoencoders Workflow

Fig 3: Long Short-Term Memory (LSTM)Workflow

9

Model Training and Evaluation

Training Process

Each model was trained on the training set using the following process:

1. Hyperparameter Tuning: Adjustments to the algorithm were made in order to

increase performance and these adjustments involved hyperparameter tuning using

methods such as the grid search as well as cross-validation. This entailed going

through a set of INITIAL hyperparameters and testing the model so as to determine

which yielded the best results.

2. Training: The training set used involved training models on it, the model parameters

are usually adjusted until the least error is obtained or the highest accuracy achieved.

This process entailed passing of the training data into the model to obtain output and

compute the loss which in turn enabled optimization of the model parameters using

optimaization methods such as gradient descent.

Evaluation Metrics

Model performance was evaluated using several metrics, including:

1. Accuracy Score: This metric calculates the ratio of the number of times an instance

is classified as belonging to a particular class to the overall number of instances.

Namely, it estimates the proportion of the instances for which the model’s predictions

coincide with the true labels. This makes a scoring of 1 indicate an accuracy in the

analysis made by the system. The coefficient of percentage accuracy ‘CPA= 0

denotes the fact that the model perfectly classified all the instances. On the other

hand, an accuracy score of 0 shuts down all attempts at seeing the invisible through

machine learning algorithms. also, values less than 0 imply that the model might be

made wrong predictions in all the instances. The fact is the higher value of the

accuracy score the better the quality of the model, as the higher number of predictions

made by the model is correct.

Accuracy= Number of Correct Predictions / Total Number of Predictions

Accuracy=TP+TN / TP+TN+FP+FN

2. Precision and Recall: Accuracy in terms of anomalies and false positive rates was

measured where Precision is the ratio of positively classified instances that are

actually anomalous to all those instances that were classified as anomalous and Recall

is the ratio of all the instances that were correctly classified as anomalous to all those

that are actually anomalous.

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛=𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠/ (𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠+ 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠)

𝑅𝑒𝑐𝑎𝑙𝑙=𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 / (𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠+𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠)

3. F1-Score: This is referred to as ‘F1 score’ because ‘F1’, an instance of the F-measure,

balances the measure of precision and recall into a single type of measure. The F1-

10

score stands in the middle between precision and recall, thus it is appropriate for

measurements on imbalanced data.

𝐹1=2×(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙) / (𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙)

Experimental Setup

The experimental setup involved the following steps:

1. Training Environment: The models themselves are trained more or less in a

cloistered manner using high-performance computing. One of these techniques is as

follow: Training of deep learning models through the use of GPUs.

2. Cross-Validation: Further, cross-validation was used to check the scalability of the

models to the unseen data. This included in the training data categorizing the data

into folds and training the model on the foldes for the purpose of making accurate

evaluation.

3. Testing: The trained models were tested on the basis of the testing set so as to predict

the efficiency on data which was not used in the training of the models. Gathering

the results of each model in the field allowed understanding its practical utility.

Comparative Analysis

To determine the most effective anomaly detection technique for IoT networks, a

comparative analysis was conducted:

1. Model Comparison: Possible conflicts between the models were also analyzed,

models were compared in order to establish where the efficiency of the different

models lie and thus the models were rated from the evaluation metrics to come up

with their respective strengths and weaknesses. In this the evaluation metrics used

were the accuracy, the precision, the recall as well as the F1 score to identify the

model that had the highest scores on each of those metrics.

2. Feature Importance: To see the effective contribution of each of the features, the

weights assigned to each of the features were also determined. This involved feature

importance scores from tree-based methods such as trees themselves, permutation

importance among others in order to establish features that played significant roles

in rendering the model successful.

3. Scalability and Efficiency: The resource utilization by each model was then

evaluated with concern to the IoT specific scarcities related to resources alongside

the scalability and computational performances of every model. This was done by

comparing the time taken by each of the models for training and inference and the

efficiency of the models in handling big data.

11

Implementation and Practical Considerations

Software and Tools

• The analysis was performed with Python

• Data manipulation under the Pandas package,

• Scikit-learn for ML and TensorFlow for deep learning packages.

• For the development of data analysis and the models Jupyter notebook and Kaggle

was adopted as the main Integrated Development Environment.

Hardware Requirements

Due to the complexity nature of deep learning models, a machine with a strong GPU was

utilized in order to enhance the training time. The hardware setup included:

1. GPU: Late generation GPU was employed in accelerating the training of deep

learning networks.

2. Memory: Adequate RAM (16 GB for this work) to work with IoT-23 during pre-

processing and training phases.

3. Storage: 1TB of SSD storage for great speeds to support fast data retrieval and

analysis of data.

Practical Considerations

The practical considerations for implementing the proposed solution in a real-world IoT

environment include:

1. Resource Constraints: Smart things that are present in IoT are resource constraints

in terms of their processing and storage capabilities. The chosen models as well as

the algorithms should have a relatively low level of complexity to be implemented

on resource-limited gadgets.

2. Scalability: It should be easily expandable in order to accommodate large amounts

of Network traffic data that originate from a large number of IoT devices. This entails

creating the system layout in such a way that it is open to distributed processing, as

well as parallel computation.

3. Real-time Processing: The function of the system should be anomaly detection to

allow the system to process an event in real-time and respond immediately to security

threats. This covers the fine-tuning of the models and the algorithms for real time

inference and real time data streaming.

This methodology outlines a logical way of assessing anomaly detection methods in IoT

networks. Therefore, through feature extraction, pre-processing data, training and testing of

several models and analysis of the results in detail, the current study hopes to determine the

12

optimal approach to improve IoT security. The practical considerations guarantee that the

natural suggestions for the solution are suitable and adaptable for real-world IoT system

networks that satisfy the existing requirements of these networks.

Experimental Results/ Evaluation

Overview

In the next sections, it will be shown what kind of answers the answers of our experiments

were. These experiments were performed and executed with the purpose of evaluating

different approaches for the identification of anomalous behavior on the IoT-23 dataset. The

results are, therefore, given by using several performance measures for evaluating the

algorithm that include accuracy, precision, recall, and F1-score. Furthermore, the sections of

this paper also depicts the evaluation of the dissimilar models and how the significant

characteristics play a part in the anomaly detection.

Data Preprocessing Results

Before diving into the model performance, we summarize the outcomes of the data

preprocessing steps:

1. Missing Values Handling: Firstly, all the missing values in the data set were either

successfully tackled or replaced, in such a way that no gaps of any sort were left in

the data set for which it can influence the training of the model.

2. Normalization: When it came to getting numerical values to a certain range, they

were scaled using the min-max scalers to be in the range [0, 1]. This normalization

process was very instrumental in stabilizing the process of model training and

convergence.

3. Categorical Encoding: Categorical variables were encoded by one hot, wherein a

variable is created for each distinct value of the categorical variable hence expanding

the dimensions of the dataset but being suitable to be consumed by models.

Feature Extraction Insights

Feature extraction involved deriving significant attributes from the raw network traffic data:

1. Network Traffic Features: As mentioned in the tests it was found that the packet

size, protocol type, and inter-arrival time of the packets were features that played a

crucial role in the classification of normal or anomalous traffic.

2. Statistical Features:The other three tiers in the assessment of the network traffic

were the average and the standard deviation of the network traffic and the entropy of

the traffic distribution.

3. Time-Series Features:For some of the models including LSTM, time-series features

were very useful as we have seen from the above descriptions. These features

included the use of lag and rolling stats, which helped capture the temporal

interaction satisfactorily.

13

On the following pages, there are a number of graphs that will help to analyse different

characteristics of the networks under investigation in this study. Such include Distribution

of Network Events by Label, Protocol Usage Frequency and Connection Duration by Label.

Furthermore, we compute the Distribution of Packets and top pairs that are active in the

communication process. These maps will assist in making important findings and patterns

seen in the data for the purpose of comprehending the networks’ behaviour and relations.

Fig 4: Distribution of Network Events by Label Fig 5: Frequency of Network Events by

connection state

Fig 6: Protocol Usage Frequency Fig 7: Pie chart for distribution of normal and abnormal

labels

14

Fig 8 :Box Plot of Packets Sent by Source and Destination Fig 9: Summary statistics of connection duration

Fig 10: Distribution of Packets Sent by Source and Destination

Fig 11: Top Communicating IP Pairs

15

Model Training and Evaluation

We trained three primary models: which include Random Forest (RF), Autoencoder (AE)

and Long short-term memory (LSTM) networks. A comparison of the above-said measures

was carried out against all the models in order to make comparison of the models. The results

of all the models are presented in the next subsections.

Random Forest (RF)

Random Forest is a supervised classification method that constructs several decision trees

on random samples of the data and features. It combines the trees to get more accuracy and

to lessen the chance of overfitting.

• Evaluation Metrics:

o Accuracy: 0.81

o Precision: 0.76

o Recall: 0.75

o F1-Score: 0.75

The experiment shows that Random Forest has a very good precision and recall for intrusion

detection in IoT networks. Its resistance to overfitting and its capability to work with high-

dimensional data have been proven to be a good anomaly detector in terms of accuracy and

consistency.

Autoencoders (AE)

Autoencoders are artificial neural nets that learn good representations of data, for

unsupervised anomaly detection from the high reconstruction errors as anomalies.

• Evaluation Metrics:

o Accuracy: 1.00

o Precision: 0.98

o Recall: 0.98

o F1-Score: 0.98

Autoencoders were also performed very well with a high accuracy and precision and recall.

This means fewer false positives, and a good ability to separate out the normal from the

anomalous data.

Long Short-Term Memory (LSTM)

Long short-term memory networks are a variant of RNNs that can learn long-term

dependencies, and are thus a good choice for time-series anomaly detection.

16

• Evaluation Metrics:

o Accuracy: 0.9875

o Precision: 0.9866

o Recall: 0.9875

o F1-Score: 0.9859

LSTM performed better than both Random Forest in recall and F1-score, suggesting that it

was more capable of identifying a larger set of actual anomal then Random Forest and

Autoencoders in terms of fewer false negatives. It’s accuracy rate reflects its underlying

robustness against false-positives of anomalies.

Comparative Analysis

The comparative analysis of the three models highlights their strengths and weaknesses:

• Accuracy: Autoencoders got the best accuracy score of 1.00, that is, perfect

classification on the test data. LSTM also did quite a good job with an accuracy of 0.

9875 was achieved by using Decision Tree, Random Forest has less accuracy score

of 0. 81. This means Autoencoders gave the best predictions on average, LSTM gave

high accuracy as well but with a small difference.

• Precision and Recall: Autoencoders offered the highest precision, which is highly

suitable for IoT-based botnet identification due to a lower false-positive rate. LSTM

was the best model in terms of Recall since it identified more actual anomalies

proficiently. Precision was higher than the recall in the case of Random Forest and

did not perform as well as the other models in terms of both.

• F1-Score: LSTM presented the highest F1-score, which proves the model’s high

ability to balance precision and recall. Autoencoders performed comparably with

other approaches while having notable benefits when false positives should be

minimized. Random Forest F1-score was slightly lesser as Precision was less than

Recall.

Overall Autoencoders had better accuracy and precision, but LSTM had better recall and a

more even distribution of performance. Random Forest seemed like a very solid, general

purpose method but did not achieve the best performance of the other models, with respect

to accuracy and F1-score.

17

The following table summarizes the evaluation metrics for each model:

Model Accuracy Precision Recall F1-Score

Random Forest 0.81 0.76 0.75 0.75

Autoencoders 1.00 0.98 0.98 0.98

LSTM 0.9866 0.9866 0.9875 0.9859

Feature Importance Analysis

This is an advantage because by getting to know about the features, one also gets to know

which of the features is relevant for the detection of an anomaly. For Autoencoders it is in

reconstructing input features in the process of trying to determine anomalies. As for Random

Forest measures of feature importance, it is determined directly, whereas LSTM feature

significance takes into account temporal dependencies of features.

• Autoencoders: Especially to the packet level it was disclosed that temporal elements

that could have time series were fragile and in fact features such as, the time of arrival

of a packet in regards to other packets, or statistical characterization of the signal

where in the rolling time frame were deemed sensitive. Consequently, when used to

enhance the Autoencoder’s performance, both are able to differentiate between

normal and anomalous patterns and activities.

• Random Forest and LSTM: Parametric aspects such as packet size, protocol type,

and temporal patterns were important for these models to perform well, however,

based solely on these features, they used less flexibility than Autoencoders.

Scalability and Efficiency

The practical implementation of these models in IoT environments requires consideration of

scalability and efficiency:

1. Autoencoders: While more computationally expensive, they provide better

accuracy, which is especially desirable when the number of false positives must be

minimized, for example, when detecting IoT-based botnets. Due to their ability to

generalize between various forms of data, they are perfect for more fluid IoT

applications.

2. Random Forest: It also takes moderate time for training and inference and is suitable

for large datasets while achieving decent accuracy with reasonable computational

complexity.

3. LSTM: The one that requires the most resources and is the most accurate in

analyzing temporal patterns, which is useful when data from several IoT devices is

received at a centralized server.

18

Real-time Processing Capabilities

Real-time anomaly detection is essential for effective IoT security:

1. Latency: As for the optimization of autoencoders, it is also possible to optimize them

for real-time processing, though this may require significantly more computational

power than Random Forests.

2. Throughput: Autoencoders perform very well when accuracy is a primary concern

more than efficiency, which makes them suitable in scenarios where false positives

are pricey.

3. Deployment: Autoencoders might call for integration in central servers as a result of

their computational demands, though they can easily be taken to the edges as well.

The outcome of the experiments reveals that Autoencoders are the most accurate but at the

same time the most computationally expensive, thus the best suited for the detection of botnet

originated from IoT devices. This is especially important in IoT environments because such

errors can become critical when false positives are involved. Further work will include fine-

tuning Autoencoders for IoT devices and investigating how ensemble techniques can be

applied to augment the detection of anomalies.

Discussion

Key Findings

The following are the main findings from our experiments on the efficacy of various anomaly

detection models when IoT was actually applied to the IoT-23 dataset. The main aspects are

as follows:

1. Model Performance: The Autoencoder model, having a low rate of false positives,

through its very precise detections, was essentially successful at botnet detection for

the IoT system. This is a perfect example of the possibilities because LSTM had a

better recall rate, but the Autoencoder model's precision also created an intersection

point of two blocks of data which was the most efficient model for eliminating the

false alerts.

2. Feature Importance: Time-series elements like the time interval between packets

(packet inter-arrival times) and rolling statistics were contributing factors to the

Autoencoder technique that allowed Autoencoders to function at their best. These

characteristics allowed for the Autoencoder to properly shield and also point out the

anomalies.

3. Real-time Detection: Even though Autoencoders have high precision and are

flexible, they must use far more computational resources than, say, Back Propagation

Network, the main qualities of which make them the most likely candidate for IoT

environments, especially in such cases where finding the precise anomaly is the

primary objective.

19

Comparison with Related Work

Our findings align with and extend the results of previous studies:

• Autoencoders: Malhotra et al. (2015) used Autoencoders for time-series anomaly

detection, pointing out that they can recreate normal behavior and flag deviations.

Our research project, using Autoencoders to achieve high accuracy and as an IoT-

based botnet detector where the number of false positives is one of the major issues

was proved to be difficult.

• Random Forest: Breiman (2001) introduced Random Forest in his works that

showed the method’s effectiveness in classification tasks. Much as it was effective,

our work reveals the point that Random Forest models may be less precise than

Autoencoders in IoT environments, especially in the case of subtle anomalies

detection.

• LSTM Networks: The research of Chen, Garcia, and some other scholars in the

recent past dealt with the use of LSTM networks in the process of Anomaly detection,

more specifically on their skill to adept to temporal patterns. Although LSTM

excelled in recall, Autoencoders offered a better balance of precision and recall in

our study, making them more suitable for IoT-based botnet detection.

Practical Implications

The practical implications of our findings are significant for enhancing IoT security:

1. Edge vs. Centralized: Random Forest model is highly customizable for the

deployment on available edge devices having moderate computing power. This

makes it ideal for use in remote IoT objects, but can still take advantage of centralised

systems when more processing is possible. The described model makes it easier to

determine the importance of features, as well as anomalies, with increased efficiency

on low-performance devices.

2. Centralized Anomaly Detection: The LSTM and Autoencoders are allocated to

centralized processing units as they need more computing power. These models can

be utilized in a layered security approach, where initial detection by lightweight

models is followed by thorough analysis by more complex models.

3. Hybrid Approaches: The Random Forest and the LSTM model have some

distinctive features and so combining both approaches can have its benefits. Random

Forest takes only a short time to sample for differences since it supports large sets,

LSTM models can then further examine these instances to reduce false positives from

Random Forest. This confederation makes it possible to have a powerful and highly

sensitive detection of anomalous patterns in the IoT edge and centralized platforms.

20

Limitations

While our study provides valuable insights, there are several limitations:

1. Dataset Constraints: It is noteworthy, however, that the IoT-23 dataset may not

have included all possible network configurations of the IoT. Future work should

encompass the usage of other datasets to support the broad applicability of the

proposed approach.

2. Computational Resources: The training and evaluating of complex models as the

LSTM may present certain difficulties due to their computational intensity which

may be difficult to implement in many IoT settings.

3. Real-time Constraints: It is still hard to guarantee that this method can provide real-

time detection with complex models. More development is still needed to enhance

these models so that they can be responded to effortlessly without skewing it to low

accuracy.

Future Work

Future research should address the following areas:

1. Model Optimization: There are possible improvements as model pruning,

quantization, and hardware acceleration (e. g, by GPU or TPU) that might be applied

to decrease the computational load of LSTM and Autoencoder models.

2. Ensemble Methods: Possible contributions to the overall dependency of creating

more efficient and robust systems, he pointed out the potential of the ensemble

methods to refresh the results of the singular models.

3. Extended Feature Engineering: There are many directions to wisdom that could be

examined additional features and overall feature engineering techniques are or could

be improved to ramp up the detection model.

4. Deployment Strategies: Further studying of the effective deployment strategies such

as partially centralized cloud edge approach will be important for practical real-world

application of IoT system.

The work shows how the application of improved machine learning approaches can be useful

for the IoT networks protecting from the threats by providing effective anomaly detection.

The LSTM model, in turn, looks quite powerful because it is a relatively complex model that

can incorporate temporal dependencies of network traffic. However, practical

implementation of the approach entails issues concerning the computational complexity and

real-time implementation. Therefore, there is a need for future work to perfect such models

and come up with a sound deployment plan for IoT security services.

21

Conclusion

In this thesis, there are also more refined strategies on how the botnets can be discovered

especially on the IoT, provided by the machine learning and deep learning models. This way,

the main problems of the study were to a significant extent associated with the scalability

issues for the IoT network, as well as data heterogeneity, and identification of abnormalities

in real time. We utilized the similar dataset of IoT-23 utilized in the above models In this

paper, our models are detection and modeling the behaviors of IoT networks traffic through

Random Forest, Autoencoders, and LSTM.

It was, for sure, one of the highlights of our work, which was to observe the autoencoder’s

ability to address the anomaly detection problem in the IoT network traffic. Concerning the

problem of Anomalies detection Autoencoders of this type of neural network are capable of

learning a compressed low-dimensional feature space of the data accurate enough to directly

discern Anomalies from regular traffic load. That was very useful where the data was

changing and was multi-dimensional which was always true in context of IoT network.

Autoencoders were said to be much better and accurate in terms of the outcomes it gave,

compared to the usual machine learning algorithms, for the purpose of real-time AD.

On the same note, efforts were shifted to feature selection methods, optimization of model

parameters to shape the desired detection systems as well as K-fold’s cross validation to

enhance the reliability of the models. The addition of the traffic of the network with statistical

and times series frames widened the reliability of the model.

Therefore, this work is useful to extend the literature of IoT security and proposes a scalable

and efficient autoencoder based approach for the intrusion detection of botnets. Studying the

application of target values in the present work, it is possible to concluded that applying

feature engineering, autoencoders may act as the bricks used to build a new generation

solutions for IoT networks protection concerning the identification of intrusive traffic.

22

References

Ahmed, M. and Pathan, A.-S.K. (2020) ‘Deep learning for collective anomaly detection’,

International Journal of Computational Science and Engineering, 21(1), pp. 137–145.

Available at: https://doi.org/10.1504/IJCSE.2020.105220.

Booij, T. et al. (2021) ‘ToN_IoT: The Role of Heterogeneity and the Need for Standardization

of Features and Attack Types in IoT Network Intrusion Data Sets’, IEEE Internet of Things

Journal, PP, pp. 1–1. Available at: https://doi.org/10.1109/JIOT.2021.3085194.

Chandola, V., Banerjee, A. and Kumar, V. (2012) ‘Anomaly Detection for Discrete Sequences:

A Survey’, IEEE Transactions on Knowledge and Data Engineering, 24(5), pp. 823–839.

Available at: https://doi.org/10.1109/TKDE.2010.235.

Chen, H. et al. (2018) ‘LEARN: Learned Experts’ Assessment-Based Reconstruction Network

for Sparse-Data CT’, IEEE Transactions on Medical Imaging, 37(6), pp. 1333–1347. Available

at: https://doi.org/10.1109/TMI.2018.2805692.

Deeva, I., Bubnova, A. and Kalyuzhnaya, A.V. (2023) ‘Advanced Approach for Distributions

Parameters Learning in Bayesian Networks with Gaussian Mixture Models and Discriminative

Models’, Mathematics, 11(2), p. 343. Available at: https://doi.org/10.3390/math11020343.

Du, M. et al. (2017) ‘DeepLog: Anomaly Detection and Diagnosis from System Logs through

Deep Learning’, in Proceedings of the 2017 ACM SIGSAC Conference on Computer and

Communications Security. New York, NY, USA: Association for Computing Machinery (CCS

’17), pp. 1285–1298. Available at: https://doi.org/10.1145/3133956.3134015.

Gama, J. et al. (2014) ‘A survey on concept drift adaptation’, ACM Comput. Surv., 46(4), p.

44:1-44:37. Available at: https://doi.org/10.1145/2523813.

Garcia, S., Parmisano, A. and Erquiaga, M.J. (2020) ‘IoT-23: A labeled dataset with malicious

and benign IoT network traffic’. Zenodo. Available at:

https://doi.org/10.5281/zenodo.4743746.

Huang, Z. et al. (2022) ‘An Energy-efficient And Trustworthy Unsupervised Anomaly

Detection Framework (EATU) for IIoT’, ACM Trans. Sen. Netw., 18(4), p. 56:1-56:18.

Available at: https://doi.org/10.1145/3543855.

Malhotra, P. et al. (2021) ‘Internet of Things: Evolution, Concerns and Security Challenges’,

Sensors, 21(5), p. 1809. Available at: https://doi.org/10.3390/s21051809.

Moustafa, N. and Slay, J. (2016) ‘The evaluation of Network Anomaly Detection Systems:

Statistical analysis of the UNSW-NB15 data set and the comparison with the KDD99 data set’,

Information Security Journal: A Global Perspective [Preprint]. Available at:

https://www.tandfonline.com/doi/abs/10.1080/19393555.2015.1125974 (Accessed: 14 August

2024).

Paoletti, M.E. et al. (2019) ‘Deep learning classifiers for hyperspectral imaging: A review’,

ISPRS Journal of Photogrammetry and Remote Sensing, 158, pp. 279–317. Available at:

https://doi.org/10.1016/j.isprsjprs.2019.09.006.

Pimentel, M.A.F. et al. (2014) ‘A review of novelty detection’, Signal Processing, 99, pp. 215–

249. Available at: https://doi.org/10.1016/j.sigpro.2013.12.026.

23

Rejeb, A. et al. (2022) ‘The Internet of Things and the circular economy: A systematic literature

review and research agenda’, Journal of Cleaner Production, 350, p. 131439. Available at:

https://doi.org/10.1016/j.jclepro.2022.131439.

Zhang, X. et al. (2019) ‘Robust log-based anomaly detection on unstable log data’, in

Proceedings of the 2019 27th ACM Joint Meeting on European Software Engineering

Conference and Symposium on the Foundations of Software Engineering. New York, NY,

USA: Association for Computing Machinery (ESEC/FSE 2019), pp. 807–817. Available at:

https://doi.org/10.1145/3338906.3338931.

