

Configuration Manual for Honeypots and

the Use of AI in keeping the IoT Systems

Secure

MSc Research Project

Cyber Security

Venkat Goud Goundla
Student ID: x23152397

National College of Ireland

Supervisor: Raza UI Mustafa

National College of Ireland

MSc Project Submission Sheet

Student

Name:

………………………Venkat Goud Goundla………………………………………………………

Student ID: ……………………………………x23152397……………………………………………………..……

Programme: …………………Cyber Security………………………… Year: ………2023-24..

Module: ………………………………MSc Research Project……………………………………….………

Lecturer: ……………………………… Raza ul Mustafa ……………………………………………….………

Submission

Due Date:

………………………………16-09-2024……………………………………………………….………

Project Title: ……Honeypots and the Use of AI in keeping the IoT Systems Secure

…

Word Count: …………2583………………… Page Count: …………………17……………….…….………

I hereby certify that the information contained in this (my submission) is information

pertaining to research I conducted for this project. All information other than my own

contribution will be fully referenced and listed in the relevant bibliography section at the

rear of the project.

ALL internet material must be referenced in the bibliography section. Students are

required to use the Referencing Standard specified in the report template. To use other

author's written or electronic work is illegal (plagiarism) and may result in disciplinary

action.

Signature: …………………Venkat Goud Goundla……………………………………………

Date: …………………………………16-09-2024………………………………………………

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple

copies)

□

Attach a Moodle submission receipt of the online project
submission, to each project (including multiple copies).

□

You must ensure that you retain a HARD COPY of the project,
both for your own reference and in case a project is lost or mislaid. It is
not sufficient to keep a copy on computer.

□

Assignments that are submitted to the Programme Coordinator Office must be placed

into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

Configuration Manual for HoneyPots

1 System Requirements
This whole project takes into the account three important steps,

RAM: 16GB DDR2

OS: Windows 11 pro

Processor: i7 9th generation

Technology required: Python, Anaconda, Spyder, Streamlit

2 Code execution

Figure1. This script first brings in pandas and matplotlib and then any dataset of CSV format

with the name ‘Dataset. csv’. To do this, it employs `value_counts()` to calculate the

frequencies of each distinct label in the ’label’ column and saves the result to `label_counts`.

A script is then used which prints these counts on the console.

Figure2. This command creates PyCaret and makes PyCaret usable in your python

environment for features jobs.

Figure3. This script calculates the amount of columns, or instances in the frame referred to

as `df variable`, then stores the decision within the variable `total_instances`. It then

outputs a message with the number of instances in `df`, which gives the count of all

entries/records of the DataFrame.

Figure4. This code counts the missing values of all the columns in `df` and prints them to the

console.

Figure5. This script first drops the rows for which there are missing values in any of the

‘label’, ‘rx_kbps’, or ‘tot_kbps’ columns and then it provides statistics on each of the labels

in the clean DataFrame; the statistic includes the total number of rows in the DataFrame

after cleaning.

Figure6. This script incorporates pandas and matplotlib into the data analysis program, and

DataFrame is named `df` to store the data read from the ‘Dataset. csv’ file.

Figure7. The narrative of this script computes the basic statistical measures of the

DataFrame named df which are mean, standard deviation, and quantile measurements of

the data, and prints these specifications. It also uses `df. The following commands utilize the

`info()` function on the data types and missing values in the DataFrame, which after running

the commands, is printed out.

Figure8. This script splits the numeric columns of the DataFrame `df` in the original data to

provide equals sub-dataframes to then perform univariate analysis on. It goes through each

of the columns and if the data type of the column is numeric, whether it is float64 or int64,

it will spit out a histogram as well as a density plot referred to as the Kernel Density

Estimate. These plots show the values that are fall under the column top to bottom on the

x-axis, the y-axis represent the frequency of these values in the column. The plots are shown

one after the other in regard to each of the numeric columns present in the dashboard..

Figure9. This script does the bivariate analysis on the pairs of Numeric columns in

DataFrame which is named as `df`. Starting from selecting all numeric columns, it goes

through each pair of the columns in turn. For each pair, it draws a scatter plot which helps in

understanding how one column is proportional to the other, where the column values are

displayed on one axis –X and the other column values on the other axis-Y. For each of the

scatter plots, they are presented with individuality to depict the relationship or trend of the

numbers in the two numeric columns.

Figure10. This script performs a correlation analysis on the numeric columns in the

DataFrame `df`:This script performs a correlation analysis on the numeric columns in the

DataFrame `df`:

1. Select Numeric Columns: It then subsets ONLY the numeric columns of `df` to a new

DataFrame refersed to as `df_numeric`.

2. Calculate Correlation Matrix: It calculates the correlation matrix for `df_numeric’ that

measure the degree of the linear relationship between two numeric columns.

3. Plot Correlation Heatmap: To elaborate, it calls upon `seaborn` to create a heatmap with

respect to the correlation coefficients along with annotations of the absolute correlation

coefficient values. In the heatmap, it uses the ‘coolwarm’ option that uses a color gradient

with -1 as the smallest value, indicating a strong negative correlation and 1 as the largest

value, indicating strong positive correlation. The plot is then depicted along the title

‘Correlation Matrix’.

Figure11. This script identifies and lists pairs of numeric features in the DataFrame `df` that

exhibit high correlation:

1. Calculate Correlation Matrix: It computes the correlation matrix for the numeric columns

in `df_numeric`, showing the pairwise correlation coefficients between features.

2. Set Correlation Threshold: A threshold value of 0.5 is established to filter out significant

correlations.

3. Find High Correlation Pairs: The script examines the upper triangle of the correlation

matrix (excluding the diagonal), identifying pairs where the absolute value of the correlation

coefficient exceeds the threshold. It collects and lists these pairs along with their correlation

coefficients.

4. Print Results: It prints out the feature pairs with correlation coefficients above the

threshold, highlighting strong relationships between those features.

Figure12. This command installs the imbalanced-learn which is a Python library that

provides modules for handling the problems of imbalanced datasets in the machine learning

context.

Figure13. This script sets up a PyCaret classification session by defining `$df` as the data

variable and ‘label’ as the output variable. It uses normalization and sets a random seed

making results reusable with the same data.

Figure14. This script assesses and puts into perspective multiple baseline classifiers through

PyCaret. This function namely `compare_models()` loads and applies several machine

learning models on the dataset, sorts the performance of the models based on certain

measures, and returns the best performing model as per the set standard measure of

performance.

Figure15. This particular script establishes a Random Forest model using PyCaret.

- ̀ create_model('rf')`: To create the model the `create_model` function is called with the ‘rf’

string which means Random Forest. The following function averages the accuracies

estimated by the Random Forest Model by calibrating the parameters to default prior to

training and evaluation.

Figure16. This script tunes individual hyperparameters of the Random Forest model trained

using PyCaret in this script.

- ̀ tune_model(rf)`: The `tune_model` function fine tunes the parameters of the targeted

model which in this case is `rf`. Instead of requiring the user to provide the values, it finds

the best range values of the parameter and then provides the enhanced version of the

Random Forest model.

Figure17This script opens up a new PyCaret object and builds a Decision Tree model.

- ̀ create_model('dt')`: By invoking the `create_model` function with the 'dt' string as an

argument it prepares Decision Tree model. This function standardizes and initializes the

model as to set it up for training and the subsequent assessment on the data.

Figure18. This script optimizes the hyperparameters of the Decision Tree model that is

stored in the PyCaret environment under the name `dt`.

- ̀ tune_model(dt)`: The `tune_model` function refines the set of hyperparameters of the

Decision Tree model designated by `dt` to increase its efficiency. It finds out the optimal

values of the parameters within the specified range and returns the refined Decision Tree

model.

Figure19. This script establishes a Support Vector Machine (SVM) model with the help of

PyCaret.

- ̀ create_model('svm')`: Specifically, the `create_model` function is invoked with the ‘svm’

string and this is an acronym for Support Vector Machine. This function sets up the SVM

model with default parameters, to be used for training and testing of the model on the data

set.

Figure20. This script optimizes the hyperparameters of the Support Vector Machine (SVM)

model to be used in PyCaret under `svm `.

- ̀ tune_model(svm)`: The `tune_model` function adjusts eligible hyperparameters of the

stated model here as `svm` to enhance its efficiency. It looks for the best hyperparameter

values from a list of potential values and tries to find the best set for the model’s

configuration in terms of the chosen criteria. The function returns the SVM model after

optimization of hyperparameters to one of the highest degrees.

Figure21. This script optimizes an XGBoost model with the help of the PyCaret library.

- ̀ create_model('xgboost')`: The `create_model` function is called with the ‘xgboost’ string,

in this case related to the XGBoost algorithm. This function sets all the parameters of the

model to their initial state ready for training and evaluation on the data. XGBoost is another

boosting algorithm which is commonly used and regarded as highly effective and efficient.

Figure22. This script optimises the hyperparameters of the XGBoost model recognised as

`xgboost` with PyCaret.

- ̀ tune_model(xgboost)`: The `tune_model` function takes in the XGBoost model and

applies the grid search on it to optimize for hyperparameters. It goes through a range of

other hyperparameters looking for the value that will boost up the performance of a model.

The function returns the best XGBoost model based upon the tuned hyperparameters.

Figure23. This script builds a LightGBM model with the PyCaret library in python.

- ̀ create_model('lightgbm')`: The `create_model` function is called with that ‘lightgbm’

string which is actually represents the LightGBM algorithm. This function sets the defaults of

the hyperparameters to the model that is ready for learning and testing on the dataset.

LightGBM is a gradient boosting framework used for solving problems efficiently, and it

shows the best performance on big data.

Figure24. This script tunes the LightGBM Model parameters using PyCaret specifically the

$lightgbm model’s hyperparameters.

- ̀ tune_model(lightgbm)`: The `tune_model` function fine tunes various attributes of the

said LightGBM model with different possible values assigned to them. It optimizes the

model’s parameters with regards to the evaluation criteria so as to improve the model’s

efficiency. On the third line of the final function, the LightGBM model with the best tuned

hyperparameters is returned.

Figure25. This script prepares the feature matrix and target vector for a machine learning

model:This script prepares the feature matrix and target vector for a machine learning

model:

- ̀ X = df. drop('label', axis=1)`: This line generates `X`, a DataFrame with column names

same as that of the input DataFrame `df` excluding the ‘label’ column. The `drop` method is

applied for removal of the ‘label’ variable, which is the outcome or the dependent variable.

- ̀ y = df['label']`: This line produces `y`, a Series, possessing only the ‘label’ column from the

DataFrame `df`. This column contains the data that the model will forecast; it serves as the

dependent variable.

Figure26.This code splits the dataset into training and testing sets:

Figure27. This script removes the specified columns ('src', 'dst', 'Protocol') from both the

training and validation feature matrices, `X_train` and `X_val`, to prepare the data for

modeling.

Figure28.This code trains and evaluates various machine learning models (Decision Tree,

Neural Networks, Random Forest, XGBoost, LightGBM, and SVM) on the validation set. It

calculates and prints performance metrics (accuracy, precision, recall, and F1 score) for each

model, including metrics for the minority class. Some models (Logistic Regression and Extra

Trees) are prepared but not executed.

Figure29. This script defines a DataFrame that is used to condense and print performance

measurements (Accuracy, Precision, Recall, F1 Score) of the machine learning models. The

table provides the metrics of each model, where the model names are used as the index.

Figure30. The following script builds and tunes a Decision Tree model, predicts the outcome

in the validation set and measures its efficiency in percentage terms.

Figure31. The following script displays a classification report on the Decision Tree model and

generates the confusion matrix of this model. Confusion matrix is plotted as the heatmap

with the annotation of the classes for the ‘NotDefault’ and ‘Default’ classes – this shows the

Predicted value against the actual value.

Figure32. This script trains a tuned Random Forest model, makes predictions on the

validation set, and calculates its accuracy as a percentage.

Figure33. This script evaluates and visualizes the performance of the tuned Random Forest

model:This script evaluates and visualizes the performance of the tuned Random Forest

model:

1. Print Classification Report: Includes precision, recall, and F1 score of Random Forest

model set as the number of relevant documents.

2. Compute Confusion Matrix: Estimates the confusion matrix which indicates true positive,

true negative, false positive, and false negative.

3. Visualize Confusion Matrix:

- ̀ sns. heatmap()`: Plots the confusion matrix as a heatmap where you also see the

numerical values.

- Labels and Title: Also, axis labels and title of the heatmap are added and tick labels are set

as ‘NotDefault’ and ‘Default’ for class labels.

Figure34. This script trains the tuned SVM model, makes predictions on the validation set,

and calculates its accuracy as a percentage..

Figure35. This script evaluates and visualizes the performance of the tuned SVM model:

1. Print Classification Report: Outputs precision, recall, F1 score, and other metrics for the

SVM model.

2. Compute Confusion Matrix: Calculates the confusion matrix, showing counts of true and

false predictions.

3. Visualize Confusion Matrix:

- `sns.heatmap()`: Creates a heatmap of the confusion matrix with annotations.

- Labels and Title: Adds axis labels and a title to the heatmap, with tick labels set to

'NotDefault' and 'Default' to indicate the classes.

Figure36. This script trains the tuned XGBoost model, makes predictions on the validation

set, and calculates its accuracy as a percentage.

Figure37. This script evaluates and visualizes the performance of the tuned XGBoost

model:This script evaluates and visualizes the performance of the tuned XGBoost model:

1. Print Classification Report: Accuracy, Recall, F-Value for the XGBoost model and other

metrics.

2. Compute Confusion Matrix: Computes the confusion matrix that represents the absolute

number of true and false on/off predictions.

3. Visualize Confusion Matrix:

- ̀ sns. heatmap()`: Builds a heatmap of the confusion matrix with the count included in the

annotation.

- Labels and Title: Provides axis annotation and a caption to the created heatmap; makes

the tick labels equal to ‘NotDefault’ and ‘Default’.

Figure38. This script uses the tuned LightGBM model to train on the whole data, to make

prediction for the unseen validation dataset and calculate its accuracy in percentage.

Figure39. This script evaluates and visualizes the performance of the tuned LightGBM

model:This script evaluates and visualizes the performance of the tuned LightGBM model:

1. Print Classification Report: I/Os metrics such as precision, recall, the F1 score and other

characteristics of the model LightGBM.

2. Compute Confusion Matrix: It computes the confusion matrix needed to illustrate the

true and false results.

3. Visualize Confusion Matrix:

- `sns. heatmap()`: Creates the heat map of the confusion matrix and labels it.

- Labels and Title: Plots axis labels and title to the heatmap, tick labels to be used are

‘NotDefault’ and ‘Default’ for the classes.

Figure40.This script fine-tunes the neural network model of MLPClassifier, evaluates them

on the validation set and prints out the accuracy in percentage.

Figure41. This script evaluates and visualizes the performance of the neural network model

(`mlp_classifier`):This script evaluates and visualizes the performance of the neural network

model (`mlp_classifier`):

1. Print Classification Report: accuracy, precision, recall, f1-score and other details of the

particular neural network model used in the solution.

2. Compute Confusion Matrix: Returns the confusion matrix with the number of correct and

incorrect predictions.

3. Visualize Confusion Matrix:

- ̀ sns. heatmap()`: Creates figures and subplots of the confusion matrix and borders them

with the heatmap and annotations.

- Labels and Title: Appends axis labels and a title to the heatmap to include the tick labels as

‘NotDefault’ and ‘Default’ which are the classes.

3 Steps to Run and execute the codes

Step 1: Initially the user has to go to the google drive which contain the codes and data.

Step 2: Run the colab file.

Step 3: Access authentication for the drive must be made.

Step 4: Now record the application by start running it in the Anaconda Prompt.

Step 5: Run the code python -m streamlit run app. py

