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Honeypots and the Use of AI in keeping the IoT Systems 

Secure 

Abstract 
Honeypots play a crucial role in a comprehensive cybersecurity strategy by offering early detection, 

useful intelligence, and improved reaction capabilities. They also increase the overall security posture 

of a business. This study centers on implementing a sophisticated security solution for IoT using 

honeypots. The honeypots are monitored using the most efficient machine learning model to identify 

illegal access and deploy honeypots in a dynamic manner. The system utilizes models such as 

LightGBM, which have shown to be highly accurate and efficient, to accurately detect threats while 

decreasing the occurrence of false positives. This strategy enhances memory efficiency by selectively 

activating honeypots just in high-confidence threat scenarios, hence minimizing superfluous resource 

utilization. Machine learning integration improves the ability to identify and respond to threats in real-

time, offering a security solution that is adaptable, effective, and strong, specifically designed for critical 

IoT settings. This solution is then deployed in the real time monitoring of the iOT devices. 

Keywords: Cybersecurity, Machine Learning, LGBM, Access Monitoring 

Chapter 1: Introduction 
Fuelled by the exponential growth, IoT devices have stepped up the connectedness and have led to the 

industrialization of smart cities, manufacturing, agriculture, healthcare, and many more. Elaborating to 

define its products as starting from smart thermostats, wearable fitness trackers, industrial sensors, self-

driving cars, it allows interaction and networking for a perfect automation which makes it easy and 

efficient.  

 

Figure 1: An example of how the honeypots is present in the firewall of the iOT systems (Source: 

Wikipedia and Researchgate) 

But this explosion of IoT implementation also presents major cybersecurity problems. IoT devices are 

prime candidates for cyberattacks because of their natural traits including limited processing capability, 

varied operating settings, and often insufficient security measures. IoT ecosystems expand along with 

the channels for possible assaults—data breaches, distributed denial of service (DDoS) attacks, and 

illegal access to private systems (Ghorbani, H. and Ahmadzadegan, M., 2017). Designed for more 

homogeneous and resource-rich environments, traditional cybersecurity solutions can fall short in 

properly protecting IoT networks. This calls for the creation of customised security plans fit for the 

requirements of IoT systems (Makhdoom, I., Abolhasan, M., Abbas, H. and Ni, W., 2019). Since the 



cost of the data privacy and the emergence of the data driven system whether iOT or any other kinds of 

systems arises, the security to enable a restrictive method from the attackers has increased a lot. 

1.1 Motivation 

Honey pots offer a calculated means of improving cybersecurity. These fake devices are meant to look 

to attackers vulnerable and appealing. Honeypots draw hostile actors by replicating real-world devices 

and networks, therefore enabling security experts to track and examine their activities in a contained 

context. This clarifies not just the strategies, tools, and techniques (TTPs) utilised by attackers but also 

helps create appropriate countermeasures (Gharbi, C., Hsairi, L. and Zagrouba, E., 2021). Honeypots 

can be used in the framework of IoT to replicate different IoT devices and networks, so offering 

important information on the particular hazards aiming at these systems (Yang, Y., Wu, L., Yin, G., Li, 

L. and Zhao, H., 2017). Collecting data on attack patterns and techniques, a honeypot can be set to 

replicate a smart thermostat or an industrial control system. Designing strong defence systems and 

enhancing the security of real IoT devices depend on this knowledge, which is also quite valuable 

(Sicari, S., Rizzardi, A., Grieco, L.A. and Coen-Porisini, A., 2015). 

1.2 Aim of the Research 

Thus, artificial intelligence (AI) in cybersecurity appears as a rising transforming tool with enhanced 

opportunities for threat identification, assessment, and confrontation. especially the machine learning 

(ML) and Deep learning (DL) artificial intelligence techniques are best suitable for analyzing large 

amount of data and identifying peculiarities that would lead to the indication of hostile activity (Arora, 

S., Kumar, M., Johri, P. and Das, S., 2016). It has been ascertained that AI solutions enhance the 

provision of security in contexts of IoT since such environments are characterized by large and complex 

data (Yu, W., Liang, F., He, X., Hatcher, W., Lu, C., Lin, J. and Yang, X., 2017). AI in IoT security 

is involved in anomaly detection, algorithms that scans and identify whether the traffic or the behavior 

of the devices is unusual, threat prediction, which deals with algorithms that analyze the previous 

records and predicts any potential oncoming attacks, automated response through taking immediate 

action eliminating the threats, and Behavioral analysis which is able to distinguish and classify the 

traffic into normal or malicious through constant learning (Xu, L., He, W. and Li, S., 2014). 

 

Figure 2: Process flow of the Machine Learning based Honey Pots for detecting the severity of the 

hacking (Source: Semantic Scholar) 

Combing honey pots with AI-based technologies makes IoT systems’ security based on honey pots a 

strong synergy. AI applied to honey pots can enhance their effectiveness by on the fly generating 

relevant honey pots that match the dynamic threat landscape, thus deceiving the adversary, and 

gathering the relevant data, that consequently, can be used to identify the subtle patterns of the attacks 

and to create the useful intelligence (Sarhaddi, F., et. al., 2021). AI also help in responding to the 



detected threats through honeypots through means such as locking down the device or blocking the IP 

address. compromised devices or blocking. Actionable real-time information and alerts concerning 

continuous threats as a result of more effective monitoring through the incorporation of artificial 

intelligence assist to strengthen the security architecture even further (Baykara, M. and Das, R., 2015). 

Through this research we intend to make a generic system using the machine learning and data 

acquisition techniques for the vulnerability detection in the iOT system 

1.3 Research Objective 

In this case it is clear that many advantages are achievable by the combination of artificial intelligence 

and honey pots but it also have some difficulties. Artificial intelligence driven honeypots may be a 

problem for some companies to deploy and manage since they require specific expertise. IoT devices 

often have limitations in the computational power, which hinders the applicability of AI algorithms. 

Like every other system, AI systems sometimes go wrong, and this leads to false positive alarms and 

possible interruption in some activities. First, cyberattacker implies the new approaches and ways for 

searching and avoiding honeypots, so the security measures must be permanent and evolving 

(Mokhtari, S., Abbaspour, A., Yen, K. and Sargolzaei, A., 2021). 

 

Figure 3: How Honeypots helps in mitigating the attacker into the system (Source: GeeksforGeeks) 

Honey pots and artificial intelligence working together has significant potential to improve IoT system 

security. By using the best parts of both technologies, businesses can learn more about online threats 

and come up with better ways to protect themselves. The need of strong and flexible security measures 

will only become more significant as IoT keeps developing. This study article is to investigate the 

present developments, advantages, and difficulties of combining honeypots with artificial intelligence 

in IoT systems, so stressing their capacity to protect our ever-linked world. 

1.4 Research Questions 

RQ: How can the integration of artificial intelligence and honeypots enhance the detection and 

mitigation of cyber threats in IoT ecosystems? 

Research Solution: To develop a framework which can help in mitigation of cyber threats in IoT 

ecosystems. For AI (Artificial Intelligence) and DS (Data Science Platform) we will use Python and for 

the simple framework we will use Streamlit connected over the Server. We will analyse not only the 

system performance in analysing the vulnerability but also the RAM usage and the storage of the 

system. 

1.5 Thesis Structure 

In the next chapter, we will further discuss the work done under the arch in terms of the various research 

undertaken for the purpose of unique identification of the research works. In the chapter on 

methodology and implementation we will elaborate on the tasks that are needed to do this proposed 



implementation. In the results we will outline the findings of this research and evaluate the findings of 

this study. 

Chapter 2: Literature review 
By using honeypot data to produce labelled datasets for machine learning and deep learning algorithms 

(Ahmed, Y., Beyioku, K. and Yousefi, M., 2024), this research advances the subject of IoT security. 

By utilising these algorithms, the research exhibits strong threat identification abilities.  

 

Figure 4: An enhanced and intelligent with interactive Honeypot based approach to th network threat 

management (Ahmed, Y., Beyioku, K. and Yousefi, M., 2024) 

The best indexing algorithm was decision trees with accuracy ranging from 99%. 26% and 99. around 

92% of the time on different datasets and iterations. Further research should collect more datasets with 

IoT honeypot label, and investigate applications which are related to healthcare, smart grid, and smart 

home domains, while ensuring the scalability and the real-time intelligence of these security systems. 

 

Figure 5: Zero day attacks detection using the enhances ML methods (Lanka, P., Gupta, K. and Varol, 

C., 2024) 

As it attracts and ensnars attackers, honeypots are useful for security because of the information it 

provides about methods used by the attackers. In order to raise their efficiency (Lanka, P., Gupta, K. 

and Varol, C., 2024), every type of honeypots, including low-interaction, high-interaction, and the 

system that combines them both, has to be deployed intentionally and purposefully. If compliance and 

privacy are to be maintained, then the legal and ethical considerations have to be scrutinized properly. 

Honeypots are effectively used to enhance threat detection and to get an early warning of malicious 

activities. Thus, with the help of AI, honeypots benefit from fewer false alarms and automation of 

replies, being thus invaluable tools for cybersecurity. The necessity for efficient detective and 



preventive measures is increasing because of the constantly rising number of cyber threats targeting 

critical infrastructures and IoT networks (Morozov, D.S., et. al., 2023). The cyber deception systems 

and sound honeypot solutions are the key and reasonable techniques that deliver comprehensive 

understanding of the methods and tools of threats. Subsequent researches are aimed at creating a 

credible Honypot Io T network to collect data on attack behaviors and courses. Thus, incorporating 

machine learning technology into this network would improve the identification and analysis of 

attackers, thus improving IoT security in general. 

As technology changes, so do the ways that we protect it (Sharma, D. et. al., 2023). Honeypots and 

honeynets are two types of trickery technology that have been created to fix holes in Internet of Things 

networks. This change will become more important for emerging technologies like 5G as the Internet 

of Things grows. As the 5G network grows, better security measures will be needed to protect the 

privacy of data and deal with the new problems that come up because of the better connections. From 

its inception to its most current evolution, we have examined the history of honeypot technology in 

great detail (Schmitt, M., 2023). You should weigh the benefits and drawbacks of each honeypot kind. 

Honeypots will probably become increasingly valuable as automation and AI continue to improve. As 

cyber threats change, honeypots will become even more useful for finding and stopping attacks. People 

and businesses need to buy honeypot technology to keep their resources safe and stay one step ahead 

of hackers. 

The attack area has grown a lot since IoT and cyber-physical systems have brought the digital and 

physical worlds together. Because people are connecting more and more, we need systems that can find 

threats intelligently using machine learning and deep learning. With the help of artificial intelligence, 

security systems can block hackers and other threats more effectively. Businesses, government agencies, 

and important assets must add AI-powered security features to their current systems in order to protect 

themselves from complex cyber threats. A highly interactive honeypot threat management system can 

be developed using a modular design approach (Yang, X., Yuan, J., Yang, H., Kong, Y., Zhang, H. 

and Zhao, J., 2023). 

 

Figure 6: A virtualised honeypots to protect the iOTs (IoATC) (Yang, X., Yuan, J., Yang, H., Kong, 

Y., Zhang, H. and Zhao, J., 2023) 

This method refines the idea of honeypots and makes the utilization of honeypots clearer as well as 

easier for SMBs and MSEs. The system integrates good UI and employs high-interaction honeypots in 

information collection. Subsequent researches will continue to explore enhancing honeypot 

corresponding security technologies and appliances and extending honeypot to other areas such as the 

defense against DoS and anti-phishing. As a proof of the design in a real world environment, a hybrid 

honeynet model that will utilize the Dock technology has been implemented (Amal, M.R. and 

Venkadesh, P., 2023). This methodology applies fuzzy rule bases to improve the security of IoT 

networks while, at the same time, monitoring the number of observed occurrences of the host 



ransomware action. Moreover, the identified H-DOCTOR technology is capable of reducing the 

ransomware effects by avoiding the loss of data as the suggested technology is far accurate in the 

detection process in comparison with the current advanced technologies available in the market. 

Therefore, the primary areas for improvement in approaching the main iterations will be tied to the 

direct application of skills in relation to transfer learning, which will allow the maximum use of 

resources. Therefore, honeypots contribute a great deal to expanding the amount of information that 

businesses can gather about danger landscapes (VS Devi Priya and S Sibi Chakkaravarthy, 2023). 

Although they are mainly oriented for surveillance of the activity aimed at the honeypot, the data 

collected by them are invaluable for analytical description of tendencies of assault. The system 

configurative offered of all-inclusive data analytical capability and workability was established to be 

useful in detecting DDoS threats in live settings. In the future, attention will be focused on the 

enhancement of obstruction appraisal/interference detection and prevention and the knowledge essential 

for creating early diagnosis for obstructions and on the vulnerabilities of the system. 

2.1 Research Summary 

The objectives of the study are to enhance the security of the IoT systems employing machine learning 

and honeypot data, and deep learning techniques. Decision trees were considered to be very efficient 

whereby they yielded accuracy of between 99. 26% to 99. reliability of 92% has been obtained for using 

the proposed framework across the various datasets and multiple times. As for the follow-up studies, 

more IoT honeypot datasets are expected to be obtained to develop in several directions, such as 

healthcare, smart grids, and smart home ones. It is crucial to analysis also the predictability and 

practically usage of these security solutions. Addressing honeypots is an inevitable part of catching 

intruders since they help in obtaining valuable information about their actions. It was identified that by 

applying different forms of honeypot, including low-interaction, high-interaction, and low and high 

hybrid honeypot systems, it is likely to enhance the endeavour of cybersecurity, to reduce the noise rates 

or false alarms, and to integrate or automate reaction procedures. In this context the specifics of study 

include the analysis of cyber deception systems and complex honeypot solutions – in particular IoT 

honeynets – in a method for data collection on attacks and in integrating machine learning technology. 

The changes in the threats identified in the research show the dynamics and constant evolution, 

meaning that there is always a need to enhance the developments of honeypot technology. Its use 

in AI and deep learning, especially in identifying threats in the future Connecticut IoT and cyber-

physical system architectures, is deemed necessary. All in all, the research contributes the priority 

of honeypots and advanced ML approaches in enhancing the protective Ost of IoT by enhancing 

the knowledge and presence of risks in the network environment. 

2.2 Research Niche 

This study will focuses on deploying a smart honeypot model on IoT that will be overseen by the best 

machine learning algorithm to detect unauthorized access and or install honeypots. The employed 

models like LightGBM that have high accuracy ensure that dangerous threats are noticed while 

minimizing false signals. This strategy improves the functionality of the memory by only engaging the 

honeypots in the high-confidence threat situation; thus, avoiding wastage of resources. Thus, machine 

learning increases the potential of real-time threat identification and response. This leads to something 

like securing our IoT environment in a way that is malleable, efficient, and robust and which targets the 

severest situations. 



Chapter 3: Methodology 

3.1 Research Resource: Dataset for training the Machine Learning Models 

3.1.1 Data Collection and Preprocessing 

The gathering and preliminary analysis of honeypot data are essential stages in this research. In order 

to draw in and seize harmful activity, honeypots mimic susceptible Internet of things devices. This 

creates a controlled environment in which to gather attack data. The data is made clean, standardised, 

and analysis-ready through preprocessing. This is an important step since, prior to applying machine 

learning algorithms, raw data from honeypots frequently contains noise, missing numbers, and 

inconsistencies that must be resolved. Preprocessing makes trustworthy analysis and model training 

possible by guaranteeing data consistency and quality, which is necessary for precise threat 

identification and classification. 

Following are the datasets that are used for the analysis, 

a. Standard Datasets after a thorough literature review and web searching to prove the hypothesis 

b. Real Time Dataset to check if the application using a webapp works fine along the deployed best 

machine learning model. 

3.1.1.1Dataset 1: DDS Dataset Creation - Link - https://research.aalto.fi/en/datasets/iot-devices-

captures 

Description: The file is an original compressed CSV file in the tar/gzip format taken from the dataset 

of AWS honeypots. The information data provided into the system is a compressed CSV file containing 

the domain name and its category. The classification includes two primary categories: Collecting two 

kinds of domains, one is the domain generated by algorithm 'dga' (short for domain generated 

algorithmically) and the other is the legitimate one, 'legit'. Further, the “legit” category is subclassified 

into types that are, namely, “cryptolocker,” “gox,” and “newgoz” ". 

3.1.1.2 Dataset 2: IoT devices captures - Link - https://research.aalto.fi/en/datasets/iot-devices-

captures 

Description: This dataset involves the communication for the setup of the 31 Internet of Things (IoT) 

devices that are present in smart homes. These devices fall into 27 different types, and four of these 

types include two of the named devices each. Each configuration exhibited was performed a minimum 

of twenty times for each sort of device. 

3.1.1.3 Dataset 3: Threat_Research - Link - https://github.com/JonathanPhillips/Threat_Research 

Description: A centralised repository is needed to store threat research data collected from my network 

of honeypots. 

3.1.2 Exploratory Data Analysis 

The analysis of the honeypot data entails the exploration of the characteristics and behaviors, which can 

only be determined by EDA. EDA helps researchers in understanding the nature of relations between 

the variables or some of them, trends or/and outliners with the help of the statistical measures, 

visualizations, and assessments of the distributions. Specifically, it reveals white and black behaviour 

of IoT devices in the context of IoT security. In this way, it is possible to understand these patterns to 

select the corresponded machine learning algorithms and do the feature engineering. Thus, decisions 

about the overall approach to model development as well as the more detailed data preprocessing steps 

are also affected by EDA so as to ensure that the chosen approaches are appropriate given the 

characteristics of the data and the objectives of the study.. 



3.1.3 Feature Selection 

In order to create machine learning models for IoT security that are both fast and effective, feature 

selection is essential. Feature selection strategies aid in determining the most pertinent aspects that help 

differentiate between benign and malevolent behaviour in the context of honeypot data, which may 

contain a multitude of variables. Predictive accuracy is increased, computational complexity is 

decreased, and interpretability of the model is improved by relevant features. Researchers can create 

more reliable models that are able to precisely identify and mitigate cyber threats in Internet of Things 

environments by concentrating on the most useful elements. 

3.1.4 Data Balancing using SMOTE, ADASYN, and Stratification 

In cybersecurity applications, imbalanced datasets—where the proportion of normal behaviour to attack 

instances is large—are frequently encountered. In order to balance the dataset, two oversampling 

strategies called SMOTE and ADASYN create artificial samples of the minority class, or assaults. 

Maintaining this balance will help machine learning models identify rare but serious security threats 

more accurately by preventing them from becoming biassed in favour of the majority class. By 

maintaining class proportions in training and testing datasets, stratification protects the integrity of 

measures used in model evaluation. When combined, these methods improve the efficacy and 

dependability of machine learning models in Internet of Things security applications, guaranteeing 

strong performance in a variety of attack scenarios. 

  

              (a)                                                        (b) 

 

(c) 

Figure 7: (a) The working of SMOTE, (b) The working of ADASYN and (c) The working of 

Stratification (Source: AnalyticsVidya) 

Integrated there are two possibilities toward which the data balancing can be carried out. A one is 

oversampling while the other is undersampling. In the case of SMOTE which stands for Synthetic 

Minority Oversampling Technique, to begin with, the value of oversampling observations, N, is 

determined. In most cases, it is applied to guarantee that the distribution of classes is equal; in this case, 



50:50 for the binary class. Nevertheless, with regard to the degree of tuning it can simply be stated that 

this parameter can be tuned to the degree required. As to the next step, it randomly selects a positive 

class instance to begin the loop. Next, the immediate top K neighbours (default is 5) for that given 

instance are obtained. Last, N out of these Kinstances are selected with the view of creating new 

synthetic instances through interpolation. To achieve this, an Lp distance measure is used to express the 

divergence between the feature vector and its next neighboring vectors. Now, this disparity is multiplied 

by a random number between 0 and 1 but excluding 0 and is then added on the previous feature vector 

(Devi Priya, V.S. and Chakkaravarthy, S.S., 2023).   

ADASYN is another version of SMOTE where the former is an expanded version of the latter. This 

method also aims at advancing the numbers in the minority class by enumerating as many fake cases as 

possible towards that class. Nevertheless, it differs from the mentioned approaches by regards to the 

density distribution, ri with using it to define the number of synthetic examples to generate for difficult 

samples to learn. Thus, it helps in achieving the flow of the parameters of the judgment limits based on 

the samples that are difficult to learn. This constitutes the first imperative difference when comparing 

to SMOTE. 

They ensure that in the sampling process every subclass in the population is well represented in the 

sample by the use of Stratified Sampling. This strategy allows attaining greater precision in estimating 

the model parameters in cases when the population can be subdivided into fairly homogeneous 

subsamples. Consequently, simple random sampling is quite useful in cases where the section of 

population is known not to be compartmentalized into different subgroups by virtue of the many 

variations in the population. 

3.2 Research Resource: Machine Learning Algorithms 

3.2.1 Decision Trees 

Determining decision rules from data features, Decision Trees are non-parametric supervised learning 

models (Devi Priya, V.S. and Chakkaravarthy, S.S., 2023). They work especially well at capturing 

intricate connections and interactions between different aspects in IoT security datasets. Decision Trees 

generate a tree-like structure with each internal node representing a feature, each branch representing a 

decision rule, and each leaf node representing a class label (attack or non-attack) by recursively splitting 

the data into subsets based on the most important features. These models may produce human-readable 

rules that explain how particular traits help identify cyber dangers in Internet of Things environments. 

They are also interpretable. 

 

Figure 8: The decision nodes focusing upon the detection of the Malware using the Honeypots 

Researchers have effectively developed decision tree classifiers by utilizing data obtained from 

honeypots, which are decoy devices strategically placed on a network to attract attackers, as well as 

data from regular network operations. The investigation results in the formulation of decision criteria 

for detecting malicious activities (Grégio et al., 2007). 



3.2.2 Random Forest 

To increase accuracy and resilience, Random Forest is an ensemble learning technique that constructs 

several decision trees and aggregates their predictions (Ali, J., Khan, R., Ahmad, N. and Maqsood, 

I., 2022). Unlike individual decision trees, each decision tree in the forest is trained individually using 

a subset of features and data, which reduces the likelihood of overfitting. Random Forests are 

particularly good in IoT security because they can handle noisy datasets and high-dimensional data, 

which are common in honeypot-based cybersecurity applications. By integrating the prediction strength 

of several decision trees, they improve generalisation performance and offer trustworthy cyber threat 

detection and categorization. 

 

Figure 9: A Random forest based malware detection with the implementation of the Honeypots (Devi 

Priya, V.S. and Chakkaravarthy, S.S., 2023) 

3.2.3 Support Vector Machines (SVM) 

These robust supervised learning models are applied to regression and classification problems alike 

(Ali, J., Khan, R., Ahmad, N. and Maqsood, I., 202). SVMs are useful in IoT security for 

decomposing large, complicated datasets into smaller groups by identifying the best hyperplane to 

maximise the margin between attack and non-attack classes. They can employ kernel functions, 

including radial basis function (RBF) kernels, to manage non-linear connections between features. 

SVMs offer excellent accuracy and reliable performance in identifying cyber threats based on honeypot 

data, making them especially appropriate in situations where the decision border between attack and 

non-attack cases is not linearly separable. 

 

Figure 10: The hyperplane showcasing how to detect the intrusions from the true datapoints. In case of 

the intrusion or the suspicious attack, the models’s hyperplane in the SVM modelling can differentiate 

easily (Evgeniou, T. and Pontil, M., 2001) 



3.2.4 XGBoost 

The gradient boosting technique known as XGBoostexcels in processing structured data because of its 

effectiveness (Chen, T. and Guestrin, C., 2016). The process iteratively constructs a group of 

ineffective learners, usually decision trees, and maximises model performance by reducing prediction 

mistakes. XGBoost works well with imbalanced datasets that are frequently found in honeypot-based 

cybersecurity applications for IoT security, where attack occurrences are much less than regular 

instances. By concentrating on regions of the dataset where misclassifications happen, it improves the 

identification and classification of cyber threats with the fewest false positives and reaches high 

accuracy. 

 

Figure 11: The image showcasing how XGBoost helps in differentiating the fraudulent or suspicious 

activity in a network (Chen, T. and Guestrin, C., 2016) 

3.2.5 LightGBM 

Another gradient boosting framework, LightGBM (Ke, G., Meng, Q., Finley, T., Wang, T., Chen, W., 

Ma, W., Ye, Q. and Liu, T.-Y., 2017), makes use of tree-based learning methods, which are renowned 

for their effectiveness and speed. It uses methods like Exclusive Feature Bundling and Gradient-based 

One-Side Sampling to handle large-scale data and deliver great performance. Because of its quick 

training pace and capacity for handling huge datasets with numerous features, LightGBM is very useful 

in the field of IoT security. It is a good contender for use in Internet of Things environments due to its 

ability to precisely detect and classify cyber threats in real-time applications. 

 

Figure 12: LGBM in the detection of the suspicious activity (Ke, G., Meng, Q., Finley, T., Wang, T., 

Chen, W., Ma, W., Ye, Q. and Liu, T.-Y., 2017) 

3.2.6 Neural Networks 

Multi-Layer Perceptron in particular are a class of neural networks that are highly effective at 

identifying intricate patterns and relationships in data[24].  



 

Figure 13: The left side of this figure depicts the biological neuron responsible for carrying the signals 

forward. The right side is the Artificial Neural Network (Popescu, M.-C., Balas, V., Perescu-Popescu, 

L. and Mastorakis, N., 2009) 

The mathematics behind the working of the ANN is as 𝑓(𝑥) = (𝑔 ∗ ℎ)(𝑥) = 𝑔[ℎ(𝑥)] then 𝑓′(𝑥) =

𝑔′[ℎ(𝑥)]. ℎ′(𝑥), this is the impact of the chain rule. When it comes to IoT security, NNs are able to 

analyse vast amounts of honeypot data and discover complex feature relationships in order to identify 

cyber risks. Their capacity to adapt to many kinds of attacks and generalise successfully on unknown 

data makes them very valuable. But they need a lot of labelled data for training, along with a lot of 

processing power. In IoT environments, NNs can detect and mitigate cyber threats with high accuracy 

and robust performance, despite these challenges. 

3.3 Research Resource: HoneyPot-Net Framework 

A honeypot (Yang, X., Yuan, J., Yang, H., Kong, Y., Zhang, H. and Zhao, J., 2023) is a cybersecurity 

measure that establishes a simulated trap to entice and capture cyber assailants. Organizations can 

employ a honeypot to identify, divert, or analyze efforts to illicitly access information systems. 

Integrating machine learning (ML) into honeypot systems can improve their efficacy by facilitating 

immediate identification of threats, adaptive reactions, and more comprehensive understanding of 

assault patterns. Essential Elements of Honeypot Framework Setting up the Honeypot are as below: 

a. Decoy Systems: Emulate susceptible systems to lure in attackers 

b. Network Services: Operate commonly targeted services, such as SSH, FTP, HTTP, and others. 

c. Logging and Monitoring: Gather information on every contact with the honeypot. 

d. Alerting: Notify security teams immediately upon detection of a potential assault. Dynamic 

Adaptation involves modifying honeypot configurations in response to certain attack types, such as 

altering IP addresses or simulating various vulnerabilities. 

e. Threat Intelligence: Disseminate knowledge to wider security networks to enhance collective 

defense. 

f. Model Evaluation: Regularly evaluate the effectiveness of machine learning models by measuring 

measures such as accuracy, recall, and F1 score. 

g. Feedback Loop: Utilize recently acquired data from identified assaults to retrain and enhance the 

models. 



3.4 Research Resource: Evaluation Criteria for the deployment 

 

Figure 14: Confusion Matrix depicting the True Positive, False Positive, False Negative and True 

Negative (Source: TowardsDataScience) 

True Positive means our algorithm has predicted positive and the actual label or class is also positive. 

Similarly, the true negative. The False Negative which is also the Type 2 error (Type II) is when the 

model predicted negative and its wrong while the False positive which is also the Type 1 error (Type I) 

is when the model predicted positive and its false. 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

The above equation can be explained by saying, from all the positive classes, how many we predicted 

correctly. Recall should be high as possible. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

The above equation can be explained by saying, from all the classes we have predicted as positive, how 

many are actually positive. Precision should be high as possible. Accuracy is from all the classes 

(positive and negative), how many of them we have predicted correctly. Accuracy should be high as 

possible. 

𝐹1 𝑆𝑐𝑜𝑟𝑒 =  
2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

It is difficult to compare two models with low precision and high recall or vice versa. So to make them 

comparable, we use F-Score. F-score helps to measure Recall and Precision at the same time. It uses 

Harmonic Mean in place of Arithmetic Mean by punishing the extreme values more. 

3.5 Research Resource: Cloud Framework 

Currently deploying this solution in a local framework. This honeypot using the machine learning based 

solution can be made available in the cloud server like AWS. The whole response system which 

comprises of two parts i.e. the trained ML algorithm and the Honeypot algorithm can be used an API 

and can be integrated to any iOT devices as required. This will help in mitigating the entry of any 

unauthorised entry. 

In this the criteria for success is to check the performance of the model in detecting the vulnerability 

and the storage of the solution and the RAM usage while the solution works. 



Chapter 4: Implementation 

 

Figure 15: Proposed Framework for the automated deploying the Honey pot when ever there is a 

probability of the intrusion detection 

 

4.1 Algorithm Flow 

Step 1: Dataset Acquisition – The data is fixed after the detailed literature review so that those features 

can be easily extracted from the real time data. 

Step 2: Data Exploration and Data Understanding – Understanding the data and to take actions on the 

data cleaning. Most important are, 

a. Missing Values Imputation: Understanding the analysis of the missing values and 

imputing them We have used median for the continuous and mode for the categorical 

b. Outliers Imputation 

Step 3: Data Sampling – Even though the data has an evenly poised target variable, different feature 

engineering techniques like SMOTE, ADASYN and stratification is implemented. For this dataset the 

stratification is used. The code is made generic so that if the data is not evenly balanced the best 

algorithm from SMOTE and ADASYN is implemented. 

Step 4: Training and Testing Set – In this case Holdout method is used for test ration 20% 

Step 5: Machine Learning Modelling – The best model is selected and saved as the pickle file. 

Step 6: Real Time honeypots Deployment – The trained machine learning model detects the real time 

data and in case the detection is found to be suspicious, honeypot is deployed. 

Step 7: Set up Honeypot Environment – The decoy systems and services using the python is deployed. 

This ensures comprehensive looging and monitoring. 

Step 8: ML saved model Integration – The saved model is deployed in the honeypot environment that 

enables real time data analysis and threat detection. 



Step 9: Automated Responses – As the above flow talsk about te logging and generating the report for 

the suspicious attack. 

Step 10: Continuous Monitoring – The system monitors and trains the ML models based on the learning 

and updates the saved model. 

4.2 Dataset Description 

The IoT DDoS Honeypot Dataset (Source Link: (https://data. mendeley. com/datasets/8dns3xbckv/1) 

which is a compilation of information to enhance the understanding of the researches on the DDoS 

attack exclusively targeting IoT devices. This dataset should comprised of a great deal of data such as; 

network traffic logs, packet captures and system level statistics. This information is created as IoT 

honeypots are run. Paragraph one of the dataset seeks to record all the methods and protocols used by 

evil people to compromise the IoT traffic and flood it with undesired traffic hence causing a denial of 

service. The collected data includes the information from the Internet of Things (IoT), collected by 

honeypot – the intentionally built system to becomes the target of cyberattacks to expose actions, 

methods and procedures used by the attackers. The main purpose of this data gathering is to carry out 

observations of the attack traffic and identify potential threats as well as the techniques and approaches 

used by the attackers. Actually, the data is stored on this program in the PCAP data format, and after 

that, the data is converted to the CSV format for further convenient retrieval of the data. The dataset 

has 10 essential attributes: dt, duration in usec, duration in nsec, total duration, packet per second, 

protocol, port no, transmitted kbps, received kbps, total kbps and name. Here, the specifics of the 

features used are outlined, 

Table 1: Dataset description 

<class 'pandas.core.frame.DataFrame'> 

RangeIndex: 103839 entries, 0 to 103838 

Data columns (total 23 columns): 

 #   Column       Non-Null Count   Dtype   

---  ------       --------------   -----   

 0   dt           103839 non-null  float64 

 1   switch       103839 non-null  int64   

 2   src          103839 non-null  object  

 3   dst          103839 non-null  object  

 4   pktcount     103839 non-null  int64   

 5   bytecount    103839 non-null  int64   

 6   dur          103839 non-null  float64 

 7   dur_nsec     103839 non-null  int64   

 8   tot_dur      103839 non-null  float64 

 9   flows        103839 non-null  int64   

 10  packetins    103839 non-null  int64   

 11  pktperflow   103839 non-null  float64 

 12  byteperflow  103839 non-null  float64 

 13  pktrate      103839 non-null  float64 

 14  Pairflow     103839 non-null  int64   

 15  Protocol     103839 non-null  object  

 16  port_no      103839 non-null  int64   

 17  tx_bytes     103839 non-null  int64   

 18  rx_bytes     103839 non-null  int64   

 19  tx_kbps      103839 non-null  float64 

 20  rx_kbps      103839 non-null  float64 



 21  tot_kbps     103839 non-null  float64 

 22  label        103839 non-null  float64 

dtypes: float64(10), int64(10), object(3) 

memory usage: 18.2+ MB 

In the above DDoS dataset, the label is the target variable in the same, the distribution of the both classes 

are as below. We can see that although the classes are not highly imbalance, we will use different class 

imbalance techniques to learn and execute. 

Table 2: Class distribution for the both class. The 0 is correct and no attack while 1 means attack 

probable 

0.0    63335 

1.0    40504 

Name: count, dtype: int64 

Missing values in each column: 

Table 3: Missing values finding for each of the features 

dt             0 

switch         0 

src            0 

dst            0 

pktcount       0 

bytecount      0 

dur            0 

dur_nsec       0 

tot_dur        0 

flows          0 

packetins      0 

pktperflow     0 

byteperflow    0 

pktrate        0 

Pairflow       0 

Protocol       0 

port_no        0 

tx_bytes       0 

rx_bytes       0 

tx_kbps        0 

rx_kbps        0 

tot_kbps       0 

label          0 

dtype: int64 

In the above table we find that there is no missing values in the datset and hence we don’t need any 

kind of missing values imputation. 

Table 4: Dataset statistical distribution 

                  dt         switch       pktcount     bytecount  \ 

count  103839.000000  103839.000000  103839.000000  1.038390e+05    

mean    17999.454165       4.214496   52781.703165  3.801729e+07    

std     11962.227566       1.956320   52061.409178  4.874544e+07    

min      2488.000000       1.000000       0.000000  0.000000e+00    



25%      7128.000000       3.000000     801.000000  7.928200e+04    

50%     11965.000000       4.000000   42557.000000  6.409692e+06    

75%     29982.000000       5.000000   94683.000000  7.597222e+07    

max     42935.000000      10.000000  260006.000000  1.471280e+08    

 

                 dur      dur_nsec       tot_dur          flows  \ 

count  103839.000000  1.038390e+05  1.038390e+05  103839.000000    

mean      322.126118  4.613734e+08  3.225151e+11       5.666339    

std       283.926141  2.771020e+08  2.838104e+11       2.951013    

min         0.000000  0.000000e+00  0.000000e+00       2.000000    

25%       128.000000  2.330000e+08  1.280000e+11       3.000000    

50%       252.000000  4.180000e+08  2.520000e+11       5.000000    

75%       413.000000  7.040000e+08  4.130000e+11       7.000000    

max      1881.000000  9.990000e+08  1.880000e+12      17.000000    

 

           packetins     pktperflow   byteperflow        pktrate  \ 

count  103839.000000  103839.000000  1.038390e+05  103839.000000    

mean     5196.261308    6365.870588  4.689472e+06     211.682248    

std      5266.631950    7413.263909  7.562023e+06     247.138265    

min         4.000000 -130933.000000 -1.464426e+08   -4365.000000    

25%      1943.000000      29.000000  2.842000e+03       0.000000    

50%      3024.000000    8304.000000  5.447360e+05     276.000000    

75%      7385.000000   10004.000000  9.727070e+06     333.000000    

max     25224.000000   19190.000000  1.495387e+07     639.000000    

 

            Pairflow        port_no      tx_bytes      rx_bytes  \ 

count  103839.000000  103839.000000  1.038390e+05  1.038390e+05    

mean        0.603916       2.337580  9.370704e+07  9.373492e+07    

std         0.489085       1.082973  1.521679e+08  1.331642e+08    

min         0.000000       1.000000  2.527000e+03  8.560000e+02    

25%         0.000000       1.000000  4.799000e+03  3.539000e+03    

50%         1.000000       2.000000  4.552643e+06  1.401134e+07    

75%         1.000000       3.000000  1.356509e+08  1.439286e+08    

max         1.000000       5.000000  1.269982e+09  9.905962e+08    

 

             tx_kbps        rx_kbps       tot_kbps          label   

count  103839.000000  103839.000000  103839.000000  103839.000000   

mean     1003.767322    1003.811420    2007.578742       0.390065   

std      2428.363391    2054.887034    3144.437173       0.487767   

min         0.000000       0.000000       0.000000       0.000000   

25%         0.000000       0.000000       0.000000       0.000000   

50%         0.000000       0.000000       4.000000       0.000000   

75%       255.000000     557.000000    3838.000000       1.000000   

max     20580.000000   16577.000000   20580.000000       1.000000   

 
From the above graphs each individual plot represents the individual statistical description. This talks 

about the extreme values and minimum values along with how the values are distributed. This helps us 

understanding what kind of feature engineering needs to be handled for each of the dataset. 



4.2 Data Analysis 

   

    

  

 

 

Figure 16: Features distribution graphically 



 

Figure 17: Correlation plots 

From the above we have derived, The Pearson correlation coefficient (PCC), which is a measure of the 

extent to which two set of data are related to each other. The correlation coefficient is a statistic that 

describes the extent of the linear relationship between two variables defined as the ratio of covariance 

between the two variables to the product of their standard deviations. It gives a standardized value 

ranging from -1 to +1, to show the intensity and type of relationship. Like covariance, this measure is 

also limited only to show the linear relationship between the variables and cannot depict any other types 

of relationships and correlations. For example, when comparing a set of data points containing some 

primary school students, one would expect the value of the correlation coefficient between the students’ 

age and height to be more than 0, but less than 1 (as a correlation coefficient of 1 is practically 

impossible). 

 



 

From the above correlation matrix, it is found that the Highly correlated feature pairs with correlation 

coefficient above 0.5 
('dt', 'Pairflow', 0.7130594434882578) 

('pktcount', 'bytecount', 0.6757916735819185) 

('bytecount', 'byteperflow', 0.5332008174381108) 

('dur', 'tot_dur', 0.9999983664257023) 

('pktperflow', 'byteperflow', 0.8129399149230081) 

('pktperflow', 'pktrate', 0.9999988366109656) 

('byteperflow', 'pktrate', 0.8129396244162204) 

('tx_kbps', 'tot_kbps', 0.757079709029326) 

('rx_kbps', 'tot_kbps', 0.6355446801842544) 

4.3 Honeypot-network 

import logging 

from datetime import datetime 

 

# Set up logging 

logging.basicConfig(filename='honeypot.log', level=logging.INFO, 

format='%(asctime)s - %(message)s') 

 

def monitor_access(): 

    """ 

    Monitor access attempts and trigger the honeypot on unauthorized 

access. 

    """ 

    authorized_users = ['user1', 'user2', 'admin']  # Replace with 

actual authorized users 

    access_log = [ 

        {'user': 'user1', 'action': 'login', 'status': 'success'}, 

        {'user': 'intruder', 'action': 'login', 'status': 'failed'}, 

        # Add more access attempts as needed 

    ] 

 

    for attempt in access_log: 

        user = attempt['user'] 

        status = attempt['status'] 

 

        if user not in authorized_users and status == 'failed': 

            logging.warning(f'Unauthorized access attempt by {user}.') 



            honeypot_triggered(user) 

        else: 

            logging.info(f'Authorized access by {user}.') 

 

def honeypot_triggered(intruder): 

    """ 

    Honeypot function triggered on unauthorized access. 

    """ 

    logging.info(f'Honeypot triggered by {intruder}. Deploying 

countermeasures.') 

    # Simulate successful deployment of countermeasures 

    deploy_countermeasures(intruder) 

 

def deploy_countermeasures(intruder): 

    """ 

    Simulate the deployment of countermeasures. 

    """ 

    response = f'Successfully deployed countermeasures against 

{intruder}.' 

    logging.info(response) 

    print(response) 

 

if __name__ == "__main__": 

    monitor_access() 

 

Code Snippet 1: HoneyPot code for access monitoring 

This Python script defines a rudimentary honeypot setup that involves logging control for supervising 

the attempts at accessing the honeypot and triggering countermeasures in cases of unauthorized access. 

The program employ the services of the logging module to help it capture events and these are stored 

in a file known as honeypot. log. The access attempts are documented with a time stamp and the message 

that describes the sort of access and activities occurring next during the event. The monitor_access 

function acts as the focus of this system because it will be used for granting or denying access to the 

system. The system imitates the process of observing login attempts as through comparison of an access 

logs list with a prescribed list of permitted users. The access logs themselves remain as a list of 

dictionaries built from each username, the action that was attempted (for example, ‘login’), along with 

the result of the attempt (for example, ‘success’, ‘failure’). When a user that is not permitted tries to 

login into the system, and results a failure, then the system registers a warning and sets the honeypot. 

In the case of an undesirable attempt to traffic through the honeypot, the honeypot_triggered function 

is called. This function logs the activity in the honeypot and then puts up defenses. The 

deploy_countermeasures function emulates the procedure of countermeasures implementation. After 

executing the push operation it stores a message to show that the configuration has been pushed and 

successfully deployed and this message appears on the console. This is meant to be run as a separate 

process. When the program is run it will process the simulated access logs, logging legitimate accesses, 

a log failed attempts and how the program will mimic the triggering of the honeypot defenses to the 

attackers. Thus, this framework devotes an essential technique in honeypot functionality which includes 

identification of any malicious actions and a prompt reaction to them, while at the same time recording 

the events as a means of surveillance and assessment. 



Chapter 5: Results and Analysis 

5.1 Experiments 

The machine learning code for different model is performing as below. In this figure we have shown 

how the models are performing in the part of accuracy, precision, recall, f1-score, precision for minority. 

In tsi case the minority is the suspicious attack. 

Table 5: Comparative Analysis of different machine learning models  

 

We found that Light Gradient Boosting algorithm performed the best. In this the accuracy was achived 

to be 90.43% followed by XgBoost with 90.4%. Thus saying that boosting methods performed well. 

But we are more interested with the mnortiy precision i.e in case of the malicious attack detected or not. 

In this LGBM performed the best. 

Table 6: Recall and F1-Score comparison for different Models 

 

When checked the recall and f1-score the importance is given to the f1 score of the minority class 

detection. LGBM is the best model to be selected followed by xgboost with 87.742% and 87.7% f1 

score respectively. 

5.2 Confusion Matrix and Deep Dive for different models 

5.2.1 Decision Tree 

The Decision Tree model achieved fair accuracy for both classes, with a total of 90% accuracy; the 

model achieved good precision, a recall rate, and F1 scores. Specifically, the quality of the proposed 

model showed 88% of recall and 92% of precision for the default class (1.0) and 0. 0 for the non-default 

or correct data class and default or suspicious class. This therefore speaks volume on how well the 

Decision Tree can perform in this capacity, that is distinguishing between default and not. The 

performance is equally satisfying in both groups, which makes the model’s ability to predict loan 

defaults reliable. Some of the key findings include high accuracy that suggest that the model is fit for 

use in cases where both default sensitivity and specificity is desired as evidenced by the models’ 

balanced precision and recall measurements. 



5.2.2 Random Forest 

Similar to the Decision Tree, good accuracy of the Random Forest model was reported, with precision 

and recall of 92% and 88%, for non-default and default classes respectively. Also, concerning the 

accuracy of total number of predicted result, it was 90 percent. Less likely to overfit than a single 

decision tree because of randomness, Random Forest is a more reliable decision making model as it 

makes its decision based on several decision trees. Such an approach is most fitting in places where 

there is a need to minimize variation and enhance the model’s ability to generalize. 

 

Figure 18: Confusion Matrix for Decision Trees and Random Forest  

5.2.3 SVM 

The accuracy of the SVM model was 61% over all the folds which is significantly higher than all the 

tree based models. The default class now yielded somewhat lower precision at 53%, the non-default 

class was again slightly higher at 61%. The recall for the default class, nonetheless, was relatively lower 

at 4 percent, indicating the fact that the SVM had poor ability to correctly predict the instances that 

belong to the default class. This understandably led to a degradation of the default class’s F1-score. The 

difference in their performances is evident of the challenges which SVM experiences while working on 

imbalanced data, as it is inclined to favor the large class, which makes detection of a small class 

practically impossible. 

 

Figure 19: Confusion Matrix for SVM and NN (down) 

5.2.4 XGBoost 

To provide the evaluation, XGBoost model achieved the precision and recall at the level of 92% for the 

non-default class and 88% for the default class with the accuracy of 90% in total. Since F1-scores for 

both classes are high, it can be concluded that XGBoost handles class imbalance problem effectively as 



well as maintaining relative high predictive accuracy. The gradient boosting method of tackling errors 

of previous iterations makes it the ideal system for massive stages of predictive modelling, especially 

in cases of over-complicated datasets that are likely to be imbalanced. 

5.2.5 LightGBM 

For LightGBM, thorough examination of the results also yielded an overall accuracy of 90% with a 

good precision and recall for the non-default class and default class at 92% and 88%, respectively. 

LightGBM is suitable for real time prediction because of the high accuracy rate, efficiency and speed it 

which operates on very large datasets. That is why LightGBM can be a rather reliable answer to the 

demands of applications, where high accuracy along with fast computation are required, as well as the 

performance is approximately the same for both classes. 

 

Figure 20: Confusion Matrix for XGBoost and Light Gradient Boosting 

5.2.6 Neural Networks 

With precision and recall scores of 70% and 71% for the non-default class and 54% and 53% for the 

default class, the Neural Network model yielded an overall accuracy of 64%. The neural network 

demonstrated a reasonable capacity to predict both classes, despite its performance being inferior to that 

of the boosting techniques and tree-based models. Complex patterns in data can be effectively processed 

by neural networks, but the architecture and training procedure have a significant impact on the 

network’s effectiveness. The comparatively poorer performance in this instance can indicate that more 

complex architectures or fine-tuning of the network’s settings are required to increase its capacity to 

handle unbalanced input. 

5.3 Deployment of Honeypots 

In case an authorised access is attempted, the following error is shown, 

 

Figure 21: Warning Alert in case of an authorised access 

In order to check the model performance in the real time, we will deploy the trained model in the real 

time. 



5.3.1 Case Study 1: In case of the Normal attempt 

 

Figure 22: Deployment of the solution when the Normal solution is detected 

In the scenario when the normal solution is detected, as can be seen above, no Honeypot was deployed 

since the probability is less than 50%. We have kept the threshold as 75% so that only the confident 

scenarios where the solution is deployed. 

5.3.2 Case Study 2: In case of an unauthorised access 

 

Figure 23: Deployment of the solution when the unauthorised access is detected 

In the scenario when the unauthorised access is detected, as can be seen above, Honeypot was deployed 

since the probability is 98%. We have kept the threshold as 75% so that only the confident scenarios 

where the solution is deployed. In this case the LGBM which is the best machine learning model that 

has been deployed as for the detection purpose identified the vulrenability and hence the protection 

measure is deployed. If we check the task manager not much of the space is utilized, hence this solution 

is very beneficial. 

Chapter 6: Conclusion and Future Work 
This paper shows that honeypots play a central role in improving the security of the Internet of Things 

(IoT) using advanced machine learning and deep learning methods. The study also carried out numerous 

tests and realized that LightGBM as well as XGBoost are the best-suited models to detect honeypot. 

These models produced high levels of accuracy, precision, and recall with the evaluated documents. 

Such models help in providing accurate results in terms of unauthorized access and the positioning of 

honeypots, thereby solving the problems of random resource misuse and high false positives. Honeypots 

are significant parts of the modern security strategies. They attract and capture hostile activity, which 

helps analyze the actions and intents of the attackers. This level of intelligence is crucial for primary 

determine and fight menace factors within the society. In addition, honeypot helps to reduce the number 

of false alarms that are produced by the security devices which in turn increases the overall efficiency 

and accuracy of security solutions, providing legal activities do not interfere. This work argues that the 

various kinds of honeypots low, high and hybrid; should be placed appropriately to enhance their 

operations. When placed correctly, honeypots enhance the ability to identify threats, decrease the 

number of false alarms, and automatically outline the response measures, which makes honeypots 

valuable tools in the sphere of cybersecurity. 

Future research needs to focus on getting more datasets with classification as IoT honeypots and 

exploring further opportunities for their usage in varying fields: healthcare, smart electric grids, smart 

homes, etc. Besides, the large scale functionality and real-time effectiveness of such solutions should 



also be considered for their easy acceptance and integration. The applied research of integration of the 

honeypot systems with AI/ML techniques reveal the promising perspective to enhance IoT devices 

security and counteract with the constantly emerging cyber threats. In conclusion, this study implies the 

usefulness of the honeypots, developed and tuned with modern machine learning algorithms, for the 

aim of providing an efficient response to the possible security threats in the IoT environment. Other 

continued advancements and most importantly their deployment will be of great importance in 

safeguarding of critical infrastructures against increasingly sophisticated cyber threats. 
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