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1. Introduction 

This research utilizes Google Colab, a robust cloud-based platform, to facilitate the 

development and execution of complex machine learning models. Google Colab provides 

complimentary access to both CPU and GPU resources, making it an invaluable tool for 

handling intensive computational tasks associated with machine learning. Additionally, the 

platform supports efficient management and backup of datasets and codebases, ensuring data 

integrity and continuity throughout the research process. Google Colab also comes pre-

equipped with numerous machine learning libraries, streamlining the implementation process 

by reducing the need for extensive setup, thereby enabling quicker and more efficient project 

execution.  

 

2. System Specification 

The system configuration used in this project are: 

● Operating system: Linux 

● Processor: Intel Xeon CPU (2) 

● RAM: 13GB 

This configuration provides the necessary computational power to efficiently process and 

analyze large datasets, essential for training and testing the machine learning models 

employed in this research. 

 

3. Software Tools 

The primary software tools used in the implementation of this project are centered around the 

Python programming language, with Google Colab serving as the development environment. 

The following tools were integral to the project’s success: 

 

 Python: The core programming language used for developing machine learning 

models. 

 Google Colab: The cloud-based platform that facilitated code execution, model 

training, and deployment. 

 Jupyter Notebook: Used within Google Colab for interactive code development and 

testing. 

These tools provided a cohesive environment for the development, testing, and deployment of 

machine learning models. 

 

 

4. Implementation 

The implementation of this project involved several key Python libraries that provided the 

necessary functionality for data manipulation, model development, and evaluation: 

 Numpy: Used for numerical computations and data manipulation. 
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 Pandas: Provided tools for data analysis and manipulation, particularly for handling 

data frames. 

 Matplotlib: Facilitated the creation of visualizations for data analysis and model 

evaluation. 

 Sklearn (Scikit-learn): A machine learning library used for model training, 

evaluation, and feature extraction. 

 NLTK (Natural Language Toolkit): Employed for text preprocessing tasks, 

including tokenization, stop word removal, and lemmatization. 

 LightGBM: A gradient boosting framework that was utilized for efficient model 

training and prediction. 

 XGBoost: Another gradient boosting library, used alongside LightGBM for model 

comparison. 

These libraries formed the backbone of the project’s implementation, enabling sophisticated 

data processing and model training. Figure Descriptions: 

 

Fig 1: Demonstrates how the Google Colab environment was set up by mounting the 

necessary drives. 

Fig 2: Illustrates the process of importing the required Python libraries. 

Fig 3: Shows the function used to calculate and display evaluation metrics for the models. 

Fig 4: Depicts the function created for visualizing the confusion matrix, an important tool for 

evaluating model performance. 

 

 
Fig 1: Mounting the drive in google colab 

 
Fig 2: Importing Libraries 
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Fig 3: Evaluation Metrics function 

 
Fig 4: Confusion Matrix visualization function 

1 Data Gathering 

The process of data gathering involved collecting data points that were instrumental in 

distinguishing between normal and phishing emails. The steps included accessing the dataset 

path on Google Drive, creating a function to read each JSON file, converting these files into 

Pandas data frames, and labeling the data accordingly. Specifically, a new column labeled 

"Label" was added to identify each email as normal or phishing. The dataset was further 

refined by removing insignificant columns, such as 'id' and 'sender name,' as shown in the 

figures below. 

 

Fig 5: Illustrates the process of reading and processing the datasets. 

Fig 6: Shows the data gathering process, including the labeling and cleaning of the dataset. 
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Fig 5: Reading the datasets 

 
Fig 6: Data Gathering and Labelling 

2 Data Understanding 

Understanding the dataset involved gaining insights into its structure and composition. The 

dataset’s basic characteristics, such as its head, shape, and label frequency, were examined. 

The dataset comprises 3,334 rows and three features, including the target feature (label). It 

was noted that approximately 90% of the emails were normal, while 10% were phishing. 

These insights were critical for guiding the subsequent data processing steps. 
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 Fig 7: Provides information about the dataset, including the data types of each 

feature. 

 Fig 8: Displays the distribution of the target feature, highlighting the imbalance 

between normal and phishing emails. 

 

  
Fig 7: Data Info 

 
Fig 8: Target feature distribution 

3 Data Pre-processing 
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Data pre-processing is a critical step where the text data from email bodies, which serves as 

the feature (X) in the dataset, is cleaned and prepared for analysis. This involved applying 

functions for stop-word removal and lemmatization, converting text to lowercase, and 

removing unnecessary elements such as URLs, punctuation, special characters, digits, and 

repetitive words. The pre-processing steps were designed to enhance the quality of the text 

data, making it more suitable for machine learning model training. 

 Fig 9: Shows the pre-processing steps applied to the text data, illustrating the 

improvement in data quality. 

 

 

 
Fig 9: Text Data Pre-processing 

 

4 Data Visualization and Data Transformation 

Data visualization was used to identify the most frequent words in the cleaned email bodies, 

while data transformation involved converting the labels into binary values (0 for normal 

emails and 1 for phishing emails). The transformed dataset, consisting of the "clean email 

body" and "Label" features, was then prepared for building the machine learning models. 

 Fig 10: Visualizes the top words in the cleaned dataset. 

 Fig 11: Lists the top 10 words, showing their frequency. 

 Fig 12: Demonstrates the data transformation process, preparing the dataset for model 

training. 
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Fig 10: Data Visualization 

 
Fig 11: Top 10 words 

 
Fig 12: Data Transformation 

 

5 Data Splitting 

The dataset was split into training and testing sets using Scikit-learn’s train-test split function. 

This stratified approach ensured that the label distribution in both the training and testing sets 

mirrored the original dataset. The training set comprised 70% of the data, while the testing set 

included the remaining 30%, with a random seed of 42 used for reproducibility. 

 Fig 13: Illustrates the data splitting process. 
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Fig 13: Data Splitting 

 

6 Feature Extraction 

Feature extraction involved converting the text data into numerical vectors using TF-IDF 

(Term Frequency-Inverse Document Frequency). This technique was implemented using 

Scikit-learn libraries and involved setting parameters to filter text, remove rare terms, and 

handle common words effectively. The TF-IDF was fitted to the training data and 

subsequently applied to both the training and testing datasets. 

 Fig 14: Shows the feature extraction process using TF-IDF. 

 

 
Fig 14. Feature Extraction using Tf-idf 

 

7 Machine Learning Model 

Various Machine learning models are used to predict the test set. 

 

7.1 Logistics Regression 

The logistics regression confusion matrix shows that we have two false negatives. 
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Fig. 15: Logistics Regression Confusion Matrix 

7.2 Naïve Bayes 

The naïve bayes model confusion matrix shows that we have eight false positives. 
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Fig. 16: Naïve Bayes Confusion Matrix 

7.3 Decision Tree 

The decision tree model confusion matrix shows that we have one false negative. 

 

 
Fig. 17: Decision Tree Confusion Matrix 

7.4 Random Forest 

The Random Forest model confusion matrix shows that we have three false negative. 
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Fig. 18: Random Forest Confusion Matrix 

7.5 Xgboost 

The Xgboost model confusion matrix shows that we have one false negative. 
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Fig. 19: Xgboost Confusion Matrix 

7.6 LightGbm 

The Lightgbm model confusion matrix shows that we have one false negative. 

 

 
Fig. 20: LightGbm Confusion Matrix 

Results and Evaluation 

The XGBoost and LightGBM models emerged as the top performers, each achieving an 

accuracy rate of 99.91%. These models also scored the highest across various evaluation 

metrics, indicating their effectiveness in classifying phishing emails accurately. 

 

Fig 21: Comparison of model performance results. 

 

 
Fig. 21: Models Comparison results 

 



13 

 

 
Email Prediction Interface 

 

The final model was saved using a joblib file, allowing it to be utilized in real-time to predict 

whether an email is normal or phishing. The interface, built with Gradio, enables users to 

classify emails interactively. 

 

 Fig 22: Shows the real-time email classification interface. 

 Fig 23: Demonstrates the saved machine learning model and feature extraction 

function. 

 

The trained model was tested with new email inputs to validate its performance. The results 

indicated whether the emails were normal or phishing. 

 Fig 24: Interface displaying a phishing email prediction. 

 Fig 25: Interface displaying a normal email prediction. 
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Fig. 22: Email classify near real time prediction 

 

 
Fig. 23: The saved ML model and feature extraction function 

 

The feature extraction model (TF-IDF) and the saved machine learning model. Whether an 

email is normal or phishing, the model is utilized to ascertain its input. The email message is 

phishing, as shown in Fig. 24. When we run the cell and enter a new email message, the text 

input message will refresh. 

Gradio was used to develop the user interface for the email classification system. Its ease of 

integration with machine learning models and intuitive design features made it an excellent 

choice for creating a user-friendly interface. 

 

 
Fig. 24: Phishing Email interface 

 



15 

 

 

The architecture comprises several components: user interface, data pre-processing, feature 

extraction, model training and evaluation, deployment environment, and real-time 

classification. The system architecture diagram is presented in Figure 25 below. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 25: Phishing email classification system architecture 

 

User Interface 

The system leverages Gradio to create an intuitive web-based interface, allowing users to input 

email text, submit it for analysis, and receive classification results immediately. Gradio is an 

open-source library that simplifies the process of building and deploying user interfaces for 

machine learning models. It enables developers to create interactive and accessible interfaces 

without requiring extensive web development experience, making it an ideal choice for the 

email classification system. A key advantages of using Gradio is its ease of integration with 

machine learning models. With Gradio, developers can rapidly prototype and deploy 
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applications by linking pre-trained models directly to user interfaces. This capability is 

particularly valuable in the email classification system, where the model's ability to process 

and classify data in real-time is crucial for user satisfaction.  

 

The UI includes features such as: 

 Text Input Field: Users can enter email content directly into the system. 

 Submit Button: Initiates the classification process, sending the text to the backend 

model for analysis. 

 Clear Button: Resets the input field for new entries. 

 Output Display: Shows the classification result (e.g., "Phishing" or "Non-Phishing") 

along with processing time. 

 Feedback Mechanism: Users can flag emails for further review or feedback, enabling 

continuous improvement of the model. This integration of user feedback allows the 

system to learn from real-world usage and refine its detection capabilities. 
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Figure 26: User evaluation with normal and phishing emails 

 


