

Configuration Manual

Protection Against Spear Phishing Attacks

Using the Ensemble Method of Machine

Learning

Jecinta Ifechukwu Fidelis

Student ID: 23148306

School of Computing

National College of Ireland

Supervisor:Imran Khan

National College of Ireland

MSc Project Submission Sheet

School of Computing

Student
Name:

Jecinta Ifechukwu Fidelis

…….
………………………………………………………………………………………………

……………

Student
ID:

23148306

………………………………………………………………………………………………
……………..……

Program

me:

Msc in Cyber Security
………………………………………………………

………

Year

:

2024
………………………

…..

Module:

Msc Research Practicum

………………………………………………………………………………………………
………….………

Lecturer:

Imran Khan

………………………………………………………………………………………………
………….………

Submissi
on Due

Date:

10/08/2024
………………………………………………………………………………………………

………….………

Project
Title:

………………………………………………………………………………………………
………….………

Word

Count:

……………………………………… Page Count:

………………………………….…….………

I hereby certify that the information contained in this (my submission) is information

pertaining to research I conducted for this project. All information other than my own

contribution will be fully referenced and listed in the relevant bibliography section at the

rear of the project.

ALL internet material must be referenced in the bibliography section. Students are

required to use the Referencing Standard specified in the report template. To use other

author's written or electronic work is illegal (plagiarism) and may result in disciplinary

action.

Signatur
e:

Jecinta Ifechukwu Fidelis

…………………………………………………………………………………………………
……………

Date:

10/08/2024
…………………………………………………………………………………………………

……………

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project
(including multiple copies)

□

Attach a Moodle submission receipt of the online
project submission, to each project (including multiple

copies).

□

You must ensure that you retain a HARD COPY of the
project, both for your own reference and in case a project

is lost or mislaid. It is not sufficient to keep a copy on
computer.

□

Assignments that are submitted to the Programme Coordinator Office

must be placed into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if
applicable):

1

 Configuration Manual

Jecinta Ifechukwu Fidelis

23148306

1. Introduction

This research utilizes Google Colab, a robust cloud-based platform, to facilitate the

development and execution of complex machine learning models. Google Colab provides

complimentary access to both CPU and GPU resources, making it an invaluable tool for

handling intensive computational tasks associated with machine learning. Additionally, the

platform supports efficient management and backup of datasets and codebases, ensuring data

integrity and continuity throughout the research process. Google Colab also comes pre-

equipped with numerous machine learning libraries, streamlining the implementation process

by reducing the need for extensive setup, thereby enabling quicker and more efficient project

execution.

2. System Specification

The system configuration used in this project are:

● Operating system: Linux

● Processor: Intel Xeon CPU (2)

● RAM: 13GB

This configuration provides the necessary computational power to efficiently process and

analyze large datasets, essential for training and testing the machine learning models

employed in this research.

3. Software Tools

The primary software tools used in the implementation of this project are centered around the

Python programming language, with Google Colab serving as the development environment.

The following tools were integral to the project’s success:

 Python: The core programming language used for developing machine learning

models.

 Google Colab: The cloud-based platform that facilitated code execution, model

training, and deployment.

 Jupyter Notebook: Used within Google Colab for interactive code development and

testing.

These tools provided a cohesive environment for the development, testing, and deployment of

machine learning models.

4. Implementation

The implementation of this project involved several key Python libraries that provided the

necessary functionality for data manipulation, model development, and evaluation:

 Numpy: Used for numerical computations and data manipulation.

2

 Pandas: Provided tools for data analysis and manipulation, particularly for handling

data frames.

 Matplotlib: Facilitated the creation of visualizations for data analysis and model

evaluation.

 Sklearn (Scikit-learn): A machine learning library used for model training,

evaluation, and feature extraction.

 NLTK (Natural Language Toolkit): Employed for text preprocessing tasks,

including tokenization, stop word removal, and lemmatization.

 LightGBM: A gradient boosting framework that was utilized for efficient model

training and prediction.

 XGBoost: Another gradient boosting library, used alongside LightGBM for model

comparison.

These libraries formed the backbone of the project’s implementation, enabling sophisticated

data processing and model training. Figure Descriptions:

Fig 1: Demonstrates how the Google Colab environment was set up by mounting the

necessary drives.

Fig 2: Illustrates the process of importing the required Python libraries.

Fig 3: Shows the function used to calculate and display evaluation metrics for the models.

Fig 4: Depicts the function created for visualizing the confusion matrix, an important tool for

evaluating model performance.

Fig 1: Mounting the drive in google colab

Fig 2: Importing Libraries

3

Fig 3: Evaluation Metrics function

Fig 4: Confusion Matrix visualization function

1 Data Gathering

The process of data gathering involved collecting data points that were instrumental in

distinguishing between normal and phishing emails. The steps included accessing the dataset

path on Google Drive, creating a function to read each JSON file, converting these files into

Pandas data frames, and labeling the data accordingly. Specifically, a new column labeled

"Label" was added to identify each email as normal or phishing. The dataset was further

refined by removing insignificant columns, such as 'id' and 'sender name,' as shown in the

figures below.

Fig 5: Illustrates the process of reading and processing the datasets.

Fig 6: Shows the data gathering process, including the labeling and cleaning of the dataset.

4

Fig 5: Reading the datasets

Fig 6: Data Gathering and Labelling

2 Data Understanding

Understanding the dataset involved gaining insights into its structure and composition. The

dataset’s basic characteristics, such as its head, shape, and label frequency, were examined.

The dataset comprises 3,334 rows and three features, including the target feature (label). It

was noted that approximately 90% of the emails were normal, while 10% were phishing.

These insights were critical for guiding the subsequent data processing steps.

5

 Fig 7: Provides information about the dataset, including the data types of each

feature.

 Fig 8: Displays the distribution of the target feature, highlighting the imbalance

between normal and phishing emails.

Fig 7: Data Info

Fig 8: Target feature distribution

3 Data Pre-processing

6

Data pre-processing is a critical step where the text data from email bodies, which serves as

the feature (X) in the dataset, is cleaned and prepared for analysis. This involved applying

functions for stop-word removal and lemmatization, converting text to lowercase, and

removing unnecessary elements such as URLs, punctuation, special characters, digits, and

repetitive words. The pre-processing steps were designed to enhance the quality of the text

data, making it more suitable for machine learning model training.

 Fig 9: Shows the pre-processing steps applied to the text data, illustrating the

improvement in data quality.

Fig 9: Text Data Pre-processing

4 Data Visualization and Data Transformation

Data visualization was used to identify the most frequent words in the cleaned email bodies,

while data transformation involved converting the labels into binary values (0 for normal

emails and 1 for phishing emails). The transformed dataset, consisting of the "clean email

body" and "Label" features, was then prepared for building the machine learning models.

 Fig 10: Visualizes the top words in the cleaned dataset.

 Fig 11: Lists the top 10 words, showing their frequency.

 Fig 12: Demonstrates the data transformation process, preparing the dataset for model

training.

7

Fig 10: Data Visualization

Fig 11: Top 10 words

Fig 12: Data Transformation

5 Data Splitting

The dataset was split into training and testing sets using Scikit-learn’s train-test split function.

This stratified approach ensured that the label distribution in both the training and testing sets

mirrored the original dataset. The training set comprised 70% of the data, while the testing set

included the remaining 30%, with a random seed of 42 used for reproducibility.

 Fig 13: Illustrates the data splitting process.

8

Fig 13: Data Splitting

6 Feature Extraction

Feature extraction involved converting the text data into numerical vectors using TF-IDF

(Term Frequency-Inverse Document Frequency). This technique was implemented using

Scikit-learn libraries and involved setting parameters to filter text, remove rare terms, and

handle common words effectively. The TF-IDF was fitted to the training data and

subsequently applied to both the training and testing datasets.

 Fig 14: Shows the feature extraction process using TF-IDF.

Fig 14. Feature Extraction using Tf-idf

7 Machine Learning Model

Various Machine learning models are used to predict the test set.

7.1 Logistics Regression

The logistics regression confusion matrix shows that we have two false negatives.

9

Fig. 15: Logistics Regression Confusion Matrix

7.2 Naïve Bayes

The naïve bayes model confusion matrix shows that we have eight false positives.

10

Fig. 16: Naïve Bayes Confusion Matrix

7.3 Decision Tree

The decision tree model confusion matrix shows that we have one false negative.

Fig. 17: Decision Tree Confusion Matrix

7.4 Random Forest

The Random Forest model confusion matrix shows that we have three false negative.

11

Fig. 18: Random Forest Confusion Matrix

7.5 Xgboost

The Xgboost model confusion matrix shows that we have one false negative.

12

Fig. 19: Xgboost Confusion Matrix

7.6 LightGbm

The Lightgbm model confusion matrix shows that we have one false negative.

Fig. 20: LightGbm Confusion Matrix

Results and Evaluation

The XGBoost and LightGBM models emerged as the top performers, each achieving an

accuracy rate of 99.91%. These models also scored the highest across various evaluation

metrics, indicating their effectiveness in classifying phishing emails accurately.

Fig 21: Comparison of model performance results.

Fig. 21: Models Comparison results

13

Email Prediction Interface

The final model was saved using a joblib file, allowing it to be utilized in real-time to predict

whether an email is normal or phishing. The interface, built with Gradio, enables users to

classify emails interactively.

 Fig 22: Shows the real-time email classification interface.

 Fig 23: Demonstrates the saved machine learning model and feature extraction

function.

The trained model was tested with new email inputs to validate its performance. The results

indicated whether the emails were normal or phishing.

 Fig 24: Interface displaying a phishing email prediction.

 Fig 25: Interface displaying a normal email prediction.

14

Fig. 22: Email classify near real time prediction

Fig. 23: The saved ML model and feature extraction function

The feature extraction model (TF-IDF) and the saved machine learning model. Whether an

email is normal or phishing, the model is utilized to ascertain its input. The email message is

phishing, as shown in Fig. 24. When we run the cell and enter a new email message, the text

input message will refresh.

Gradio was used to develop the user interface for the email classification system. Its ease of

integration with machine learning models and intuitive design features made it an excellent

choice for creating a user-friendly interface.

Fig. 24: Phishing Email interface

15

The architecture comprises several components: user interface, data pre-processing, feature

extraction, model training and evaluation, deployment environment, and real-time

classification. The system architecture diagram is presented in Figure 25 below.

Figure 25: Phishing email classification system architecture

User Interface

The system leverages Gradio to create an intuitive web-based interface, allowing users to input

email text, submit it for analysis, and receive classification results immediately. Gradio is an

open-source library that simplifies the process of building and deploying user interfaces for

machine learning models. It enables developers to create interactive and accessible interfaces

without requiring extensive web development experience, making it an ideal choice for the

email classification system. A key advantages of using Gradio is its ease of integration with

machine learning models. With Gradio, developers can rapidly prototype and deploy

Data Pre-

processing

Feature

Extraction

Model

Training and

Evaluation

Best Model

Selection

Backend

Processing
Data Storage

User Interface

(UI)

API Layer

Deployment

Environmen

t

Real-time

Classificatio

n

Feedback

Mechanism

Deployment and

Execution

16

applications by linking pre-trained models directly to user interfaces. This capability is

particularly valuable in the email classification system, where the model's ability to process

and classify data in real-time is crucial for user satisfaction.

The UI includes features such as:

 Text Input Field: Users can enter email content directly into the system.

 Submit Button: Initiates the classification process, sending the text to the backend

model for analysis.

 Clear Button: Resets the input field for new entries.

 Output Display: Shows the classification result (e.g., "Phishing" or "Non-Phishing")

along with processing time.

 Feedback Mechanism: Users can flag emails for further review or feedback, enabling

continuous improvement of the model. This integration of user feedback allows the

system to learn from real-world usage and refine its detection capabilities.

17

Figure 26: User evaluation with normal and phishing emails

