

Configuration Manual

Internship

MSc in Cybersecurity

Louise Elie

Student ID: 21195137

School of Computing

National College of Ireland

Supervisor: Kamil Mahajan

National College of Ireland

MSc Project Submission Sheet

School of Computing

Student Name:

Louise Elie

Student ID:

21195137

Programme:

MSc in Cybersecurity

Year:

2023-2024

Module:

Internship

Lecturer:

Kamil Mahajan

Submission Due

Date:

September 16th, 2024

Project Title:

Optimising Digital Forensics Investigations in Containers as a

Service Environments

Word Count:

2717 words Page Count: 24 pages

I hereby certify that the information contained in this (my submission) is information

pertaining to research I conducted for this project. All information other than my own

contribution will be fully referenced and listed in the relevant bibliography section at the

rear of the project.

ALL internet material must be referenced in the bibliography section. Students are

required to use the Referencing Standard specified in the report template. To use other

author's written or electronic work is illegal (plagiarism) and may result in disciplinary

action.

Signature:

Date:

September 13th, 2024

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple

copies)

□

Attach a Moodle submission receipt of the online project

submission, to each project (including multiple copies).

□

You must ensure that you retain a HARD COPY of the project, both

for your own reference and in case a project is lost or mislaid. It is not

sufficient to keep a copy on computer.

□

Assignments that are submitted to the Programme Coordinator Office must be placed

into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

1

Configuration Manual

Louise Elie

Student ID: 21195137

1 Introduction

The lab environment created as part of the research project is described in this manual, along

with additional technical information and guidance on the configuration. A containerised

WordPress application was hosted on the managed service Azure Kubernetes Service to

conduct digital forensics and gather data from containers runtime events and metadata. This

document includes details about system configuration (hardware and software), infrastructure

and application configuration, activities performed on attacker’s side, data collection, and

hardening solutions. The main paper on the research provides insights into research

methodology, design specification, and implementation.

2 System configuration

2.1 Hardware configuration

Table 1 contains the details of the hardware components and the operating systems for the

two machines used in the tests: the first one deploys the infrastructure on Azure portal and

Azure Cloud Shell, while the second one is the virtual machine to simulate attacks.

Table 1: Hardware and system specifications

Profile CPU RAM Disk Space
Operating

system

Client

machine

Intel(R) Core(TM) i7-6500U

CPU @ 2.50GHz 2.59 GHz
8.00 GB

ADATA SX8200PNP

SSD 1TB

Windows 11

Pro 22H2

Attacker

machine
2 CPU 2.00 GB 20 GB

Kali Linux

2024.2

2.2 Software configuration

Table 2 lists the different software tools that were part of the lab environment, and their

details such as a brief description and the version used.

2

Table 2: Software specifications

Tool Description Version

Azure Cloud

Shell1

Authenticated and interactive terminal to manage Azure

resources, with Bash opted as the shell language.
2.62.0

Kubernetes2
Container orchestration tool managed by Azure under the

name of Azure Kubernetes Services (AKS).
1.28.9

Helm3
Kubernetes packet manager used to deploy an ingress

controller and WordPress.
3.14.2

WordPress4
Content Management System (CMS) for admin-friendly

websites creation.
6.5.3

MySQL5
Database management system utilized to store WordPress

content and managed by Azure Database for MySQL.
8.0.21

X Brute Forcer6 Open-source and simple brute-force script. 1.2

Apache JMeter7 Open-source tool for load testing used to launch DoS attacks. 5.6.3

WPS Limit

Login8

WordPress add-on that hardens login attempts to the web

application.
1.5.9.1

3 Lab implementation guideline

This step-by-step guide provides instructions performed to replicate the deployment of the

lab environment. Azure Cloud Shell was used to configure the different components as

described in this tutorial (Microsoft Learn, 2024) and to access data from container runtime

events and metadata. Detailed commands and configuration files are available in the ICT

solution folder.

3.1 Prerequisites

The research requires the following elements to ensure the proper functioning of the attack

simulations on the hosted containerised web application:

• Create an Azure free account.

• Configure Azure Cloud Shell on your machine and select Bash as the preferred shell.

• Deploy Helm on your Azure Cloud Shell, and Bitnami Helm repository.

• Create a Kali Linux virtual machine on a hypervisor (e.g. VirtualBox).

• Download and install OpenJDK (8+ version) for Apache JMeter on Kali Linux.

• On Azure Cloud Shell, define the environment variables as shown in Figure 1.

1 https://azure.microsoft.com/en-us/get-started/azure-portal/cloud-shell
2 https://learn.microsoft.com/en-us/azure/aks/
3 https://github.com/helm/helm
4 https://wordpress.org/documentation/wordpress-version/version-6-5-3/
5 https://learn.microsoft.com/en-us/azure/mysql/
6 https://github.com/bibortone/XBruteForcer
7 https://github.com/apache/jmeter
8 https://wordpress.org/plugins/wps-limit-login/

https://azure.microsoft.com/en-us/get-started/azure-portal/cloud-shell
https://learn.microsoft.com/en-us/azure/aks/
https://github.com/helm/helm
https://wordpress.org/documentation/wordpress-version/version-6-5-3/
https://learn.microsoft.com/en-us/azure/mysql/
https://github.com/bibortone/XBruteForcer
https://github.com/apache/jmeter
https://wordpress.org/plugins/wps-limit-login/

3

Figure 1: Environment variables definition

3.2 Azure resources

The lab environment is hosted on Azure, a public cloud. The project needs two essential

components for the cloud infrastructure: a resource group, and a virtual network with a

subnet. As presented in Figure 2, a resource group must be created first with the az group

create command. It is a logical group containing Azure resources.

Figure 2: Azure resource group creation

Then, a virtual network must be created with an associated subnet with the az network

vnet create command. Figure 3 displays the command output. The virtual network enables

Kubernetes resources to securely communicate.

4

Figure 3: Azure virtual network creation

3.3 Azure database

The Azure Database for MySQL stores WordPress media content. In Figure 4, among its

attributes, the az mysql flexible-server create command indicates the server’s admin

username and password, the compute tier (Burstable), the compute size (Standard_B2s), the

retention period of seven days, and the MySQL version (specified in the previous section).

Figure 4: Azure Database for MySQL creation

5

Disable SSL connection with the az mysql flexible-server parameter set

command. in Figure 5, to include WordPress integration.

Figure 5: Disabling SSL connection

3.4 Azure Kubernetes Service

Once the core resources and the database server are deployed on Azure, the AKS cluster can

be created. Figure 6 presents the az aks create command used with its parameters. By

default, AKS will select 1.28.9 as Kubernetes’s default version.

Figure 6: AKS cluster creation

Next actions will be performed on the newly created cluster. To connect to the

Kubernetes cluster, the kubectl command-line client is used. It is already installed in Azure

Cloud Shell. Figure 7 displays the az aks get-credentials command which role is to

download credentials to use kubectl.

Figure 7: kubectl configuration

As presented in Figure 8, connection is successful as cluster nodes are listed with the

kubectl get nodes command.

Figure 8: List of cluster nodes

6

To expose the web application, an ingress controller must be created. It has the role of

both a load balancer and a reverse proxy. The ingress controller is configured with a static

public IP address. Figure 9 presents the command to install the ingress-nginx add-on via

Helm. First, the local Helm Chart repository cache must be updated and the ingress-nginx

Helm repository added.

Figure 9: Ingress controller deployment

3.5 WordPress application

WordPress is installed via the Helm chart built by Bitnami (see prerequisites). It also uses a

local MariaDB as the database, which needs to be replaced by Azure Database for MySQL.

Figure 10 displays the installation command.

Figure 10: WordPress installation via Helm

As presented in Figure 11 and confirmed in Figure 12, once WordPress is installed,

the web application’s IP address is available by fetching the Kubernetes service IP. The

command also indicates information to obtain the credentials provided during the installation.

7

Figure 11: WordPress installation via Helm

Figure 12: Exposed WordPress application

3.6 Monitoring tools

On the Azure portal, the AKS cluster is visible from the resources. Once clicked on this item

for more details, the first tab displays monitoring insights. From this option, Prometheus can

be configured as well as Grafana. Figure 13 displays these services. It is important to note

that however Grafana can be expensive as it can manage a high volume of real-time data.

8

Figure 13: Prometheus and Grafana configuration

Grafana is accessible from Azure resources. Once clicked on it, it is possible to

explore its dashboard. Figure 14 presents Grafana from the browser. Kubernetes resources are

available from the following path on Grafana dashboard: Home > Dashboard > Azure

Managed Prometheus > Kubernetes / Compute Resources / Pods.

Figure 14: Prometheus and Grafana configuration

On the cluster’s page, diagnostic settings such as Kubernetes API Server, Kubernetes

Audit and Kubernetes Audit Admin Logs can also be added. They provide significant

information from the AKS control plane components (Singh, 2022). To enable this data, the

followed tabs must be followed: Cluster > Monitoring > Diagnostic settings. Then, as

presented in Figure 15, on the creation of a diagnostic setting, the logs categories Kubernetes

API Server, Kubernetes Audit and Kubernetes Audit Admin Logs must be selected.

9

Figure 15: Kubernetes audit configuration

4 Attack simulations

Once the infrastructure and the WordPress application are installed and configured, attacks

can then be launched to these vulnerable targets. These are brute-force and DoS attacks.

4.1 Brute-force attack

Before performing a brute-force attack on the exposed WordPress application, a new user

with a weak password must be created as shown in Figure 16.

Figure 16: WordPress user creation

10

However, this user must publish an article on the WordPress site to be listed among

the users. Indeed, on the attacker machine, two users are recognised with the following URL:

<wordpress_ip_addess>/wp-json/wp/v2/users. Figure 17 displays the curl command.

Figure 17: WordPress users list from the attacker machine

The target users have been identified, and to perform the attack requires a list of

passwords to test on them. Numerous websites offer these features, the 500 worst passwords9

should contain our user’s password to ensure the success of the attack.

On the attacker’s machine, X Brute Forcer is chosen to perform the brute-force attack.

The tool is cloned from its GitHub page with the command git clone

https://github.com/bibortone/XBruteForcer.git. The X Brute Forcer’s folder should

contain the website’s URL in the list.txt file and the 500 passwords in the password.txt

file. To launch the tool, Figure 17 presents the output of the perl XBruteForcer.pl -l

list.txt -p passwords.txt command. Then, WordPress must be selected to start the brute-

force attack in Figure 18. Figure 19 displays the successful attempt of the brute-force attack.

Figure 18: WordPress selection on X Brute Forcer

Figure 19: Successful attempt of the brute force attack

9 https://www.skullsecurity.org/wiki/Passwords

https://github.com/bibortone/XBruteForcer.git
https://www.skullsecurity.org/wiki/Passwords

11

4.2 DoS attack

Apache JMeter is the tool chosen to simulate a DoS attack on the exposed WordPress site. It

is installed on the attacker’s machine using the download page10. The files inside the ZIP

folder then need to be extracted. Once the tool is downloaded, Apache JMeter GUI is

launched by typing ./jmeter on the /apache-jmeter-5.6.3/bin folder. Figure 20 displays the

output of the command, Figure 21 the Apache JMeter GUI mode.

Figure 20: Launch of Apache JMeter

Figure 21: Creation of a new test plan

To perform the DoS attack, a thread group is added to the new test plan. On Figure

22, a simulation of 3000 users were set.

10 https://github.com/apache/jmeter

https://github.com/apache/jmeter

12

Figure 22: Thread group configuration

This thread group requires a sampler, which are HTTP requests. The server’s name

and the file path can be specified by right-clicking on Thread Group, then selecting Add >

Sampler > HTTP Request. As seen in Figure 23, the server’s name is the WordPress site IP

address, and the file path /wp-login.php.

Figure 23: Launch of Apache JMeter

To perform the DoS attack, a result tree listener must be added to the test plan by

right-clicking on HTTP Request, and then selecting Listener > View Results Tree. The DoS

attack is initiated by clicking the start button at the top of Figure 24. On the right side of the

interface, there is real-time information on the time chronometer and the thread number. At

the bottom, a list of the HTTP requests is displayed.

13

Figure 24: DoS Results Tree

During the attack, the web application becomes available. Figure 25 illustrated the

status of the web application at that time.

Figure 25: Unreachable web application

5 Data collection

In line with the research hypothesis, the objective is to confirm that containers runtime events

and metadata can contribute to the optimisation of digital forensics. After launching the brute

force and DoS attacks, data must be collected from these components to gather evidence.

5.1 Container runtime events

Container runtime events can be collected from containers logs, the container orchestration

tool (Kubernetes) events and audit logs, and Prometheus metrics on Grafana.

14

On the Azure Cloud Shell, containers logs are collected with the command kubectl

logs wordpress-785c6bf9c6-zt58v -n wordpress. Figure 26 displays the output of the

command following the brute force attack. These logs are also accessible on the container

live logs from the Azure Portal, as presented in Figure 27. In comparison, with live logs, the

number of events is displayed.

Figure 26: Containers logs with kubectl command

Figure 27: Container live logs from Azure portal

In addition, events from the Kubernetes cluster can be captured with the command

kubectl get events. Figure 28 displays the output of the command following the DoS attack.

Figure 28: Recent events on the Kubernetes cluster

Grafana can be used to analyse resources metrics to trace back events. Indeed, Figure

29 indicates resource spikes during attacks.

15

Figure 28: Resource spikes on Grafana

Similarly to containers logs, audit Kubernetes logs also contain information. Audit

logs are managed by Azure and cannot be collected directly from the cluster. As presented in

Figure 29, audit logs are visible using queries from the “Logs” tab on the AKS cluster’s page.

Figure 29: Kubernetes audit logs

5.2 Container metadata

Container metadata describe information of a resource. In this project, it can be related to

object and node metadata.

Kubernetes object metadata such as pods and services can be collected with the

following command: kubectl get <object>. For example, in Figure 30, pod restarts are a

sign of a potential DoS attack.

16

Figure 30: Pod restarts

Once the kubectl get command identifies the object, the kubectl describe command

provides further detailed information including node associated, IP address or even events.

Figure 31 shows the output of kubectl describe pods <pod_name> -n <namespace> command.

Figure 31: Pod metadata

Figure 32 also displays information on the WordPress service with the output of

kubectl describe services wordpress -n wordpress command.

Figure 32: Service metadata

It is also possible to capture significant information from the nodes such as the

resource utilisation and events. After identifying the nodes with the kubectl get nodes

command, the kubectl describe nodes <node_name> command provides insights into the

allocated resources for each container and overall resource usage, as shown in Figure 33,

along with events. For instance, Figure 34 displays killed processes, which could be a

potential sign of a DoS attack.

17

Figure 33: Node metadata

Figure 34: Node events

6 Hardening solutions

To defend against these two types of attack, four mitigation solutions were implemented: a

limit login WordPress add-on, rate limiting, IP blocking, and alerts on login activities and

resource utilisation.

6.1 Limit login

The WPS Limit Login add-on11 on WordPress is widely used to limit login attempts on a

WordPress site. On the admin page at <wordpress_ip_or_url>/wp-admin, the add-on can be

downloaded from the Plugins tab on Figure 35.

11 https://wordpress.org/plugins/wps-limit-login/

https://wordpress.org/plugins/wps-limit-login/

18

Figure 35: Limit login attempts add-on installation

During the installation, as presented in Figure 36, the default configuration is chosen

to limit to 3 retries for a period of 20 minutes.

Figure 36: Limit of login attempts parameters

After another brute-force attack, Figure 37 below confirms the unsuccessful login

attempt, and thus Figure 38 the locked login page.

Figure 37: Login attempts with X Brute Forcer

19

Figure 38: Locked login page

6.2 Rate limiting and IP blocking

To mitigate DoS attacks on the Kubernetes environment, two options were implemented on

the ingress controller: rate limiting and IP blocking.

On Figure 39, the existing NGINX ingress was edited to add parameter regarding rate

limiting on the metadata section. Connections are limited to 10 IP addresses and 5 requests

per second. Once the file is saved, the modifications are applied with the following

command: kubectl apply -f ingress.yaml.

Figure 39: Rate limiting configuration

20

On the attacks performed, repetitive IP addresses have been observed. A network policy can

block those IP addresses. Figure 40 displays the rule. The modification of the file will be

applied with the kubectl apply -f netpolicy.yaml command.

Figure 40: IP blocking rule

Figure 40 presents the NGINX ingress controller logs during a DoS attack, and it

shows that the WordPress server was down numerous times. The command used is kubectl

logs -l app.kubernetes.io/name=ingress-nginx -n ingress-nginx.

Figure 41: Ingress logs

6.3 Alerts

To improve detection time, several alerts were created following the first attack attempts.

This includes login attempts and resource spikes.

An alert can be created through the “Logs” tab on the AKS cluster page. When

running queries on the system, it is possible to associate them with alerts. Figure 42 details

the rule created for multiple login attempts. If more than 10 login attempts are detected in less

than 5 minutes, an email is sent to alert.

21

Figure 42: Login attempts alert rule

Regarding resources spikes such as CPU and memory usage, Prometheus provides

predefined rules on different Kubernetes levels, from pods to cluster. As presented in Figure

43, the recommended pod level alerts were used for this project.

22

Figure 43: Prometheus preset rules

It contains rules such as alerting CPU usage above 75% as detailed in Figure 44.

Figure 44: KubeContainerAverageCPUHigh alert rule

23

Similarly, another rule detects the memory usage and alerts the user if it is above 75%

of its overall capacity in Figure 45. The email alert sent to the user is displayed in Figure 46.

Figure 45: KubeContainerAverageMemoryHigh alert rule

Figure 46: Alert email

References

Microsoft Learn (2024) Deploy WordPress on AKS cluster by using Azure CLI. Available at:

https://learn.microsoft.com/en-us/azure/mysql/flexible-server/tutorial-deploy-wordpress-on-

aks [Accessed 20 June 2024].

24

Singh, H. (2022) Investigate actions on Azure Kubernetes Service using Auditing, Medium,

29 September. Available at: https://itnext.io/whodunit-investigate-actions-on-aks-using-

auditing-1db3ccf9ae86 [Accessed 20 July 2024].

