

Configuration Manual

Internship MSc in Cybersecurity

Louise Elie Student ID: 21195137

School of Computing National College of Ireland

Supervisor:

Kamil Mahajan

National College of Ireland

MSc Project Submission Sheet

School of Computing

Student Name:	Louise Elie		
Student ID:	21195137		
Programme:	MSc in Cybersecurity	Year:	2023-2024
Module:	Internship		
Lecturer: Submission Due	Kamil Mahajan		
Date:	September 16 th , 2024		
Project Title:	Optimising Digital Forensics Investiga Service Environments	tions in Conta	iners as a

Word Count:2717 wordsPage Count: 24 pages

I hereby certify that the information contained in this (my submission) is information pertaining to research I conducted for this project. All information other than my own contribution will be fully referenced and listed in the relevant bibliography section at the rear of the project.

<u>ALL</u> internet material must be referenced in the bibliography section. Students are required to use the Referencing Standard specified in the report template. To use other author's written or electronic work is illegal (plagiarism) and may result in disciplinary action.

Signature:

Date:

September 13th, 2024

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple copies)	
Attach a Moodle submission receipt of the online project submission, to each project (including multiple copies).	
You must ensure that you retain a HARD COPY of the project, both for your own reference and in case a project is lost or mislaid. It is not sufficient to keep a copy on computer.	

Assignments that are submitted to the Programme Coordinator Office must be placed into the assignment box located outside the office.

Office Use Only	
Signature:	
Date:	
Penalty Applied (if applicable):	

Configuration Manual

Louise Elie Student ID: 21195137

1 Introduction

The lab environment created as part of the research project is described in this manual, along with additional technical information and guidance on the configuration. A containerised WordPress application was hosted on the managed service Azure Kubernetes Service to conduct digital forensics and gather data from containers runtime events and metadata. This document includes details about system configuration (hardware and software), infrastructure and application configuration, activities performed on attacker's side, data collection, and hardening solutions. The main paper on the research provides insights into research methodology, design specification, and implementation.

2 System configuration

2.1 Hardware configuration

Table 1 contains the details of the hardware components and the operating systems for the two machines used in the tests: the first one deploys the infrastructure on Azure portal and Azure Cloud Shell, while the second one is the virtual machine to simulate attacks.

Profile	CPU	RAM	Disk Space	Operating system
Client machine	Intel(R) Core(TM) i7-6500U CPU @ 2.50GHz 2.59 GHz	8.00 GB	ADATA SX8200PNP SSD 1TB	Windows 11 Pro 22H2
Attacker machine	2 CPU	2.00 GB	20 GB	Kali Linux 2024.2

Table 1: Hardware and system specifications

2.2 Software configuration

Table 2 lists the different software tools that were part of the lab environment, and their details such as a brief description and the version used.

Tool	Description	
Azure Cloud Shell ¹	Authenticated and interactive terminal to manage Azure resources, with Bash opted as the shell language.	2.62.0
Kubernetes ²	Container orchestration tool managed by Azure under the name of Azure Kubernetes Services (AKS).	
Helm ³	Kubernetes packet manager used to deploy an ingress controller and WordPress.	3.14.2
WordPress⁴	Content Management System (CMS) for admin-friendly websites creation.	
MySQL ⁵	Database management system utilized to store WordPress content and managed by Azure Database for MySQL.	8.0.21
X Brute Forcer ⁶	Open-source and simple brute-force script.	1.2
Apache JMeter ⁷	Open-source tool for load testing used to launch DoS attacks.	5.6.3
WPS Limit Login ⁸	WordPress add-on that hardens login attempts to the web application.	1.5.9.1

Table 2: Software specifications

3 Lab implementation guideline

This step-by-step guide provides instructions performed to replicate the deployment of the lab environment. Azure Cloud Shell was used to configure the different components as described in this tutorial (*Microsoft Learn*, 2024) and to access data from container runtime events and metadata. Detailed commands and configuration files are available in the ICT solution folder.

3.1 Prerequisites

The research requires the following elements to ensure the proper functioning of the attack simulations on the hosted containerised web application:

- Create an Azure free account.
- Configure Azure Cloud Shell on your machine and select Bash as the preferred shell.
- Deploy Helm on your Azure Cloud Shell, and Bitnami Helm repository.
- Create a Kali Linux virtual machine on a hypervisor (e.g. VirtualBox).
- Download and install OpenJDK (8+ version) for Apache JMeter on Kali Linux.
- On Azure Cloud Shell, define the environment variables as shown in Figure 1.

 $^{^{1}\}underline{ https://azure.microsoft.com/en-us/get-started/azure-portal/cloud-shell} \\$

² <u>https://learn.microsoft.com/en-us/azure/aks/</u>

³ <u>https://github.com/helm/helm</u>

⁴ <u>https://wordpress.org/documentation/wordpress-version/version-6-5-3/</u>

⁵ https://learn.microsoft.com/en-us/azure/mysql/

⁶ <u>https://github.com/bibortone/XBruteForcer</u>

⁷ <u>https://github.com/apache/jmeter</u>

⁸ <u>https://wordpress.org/plugins/wps-limit-login/</u>

Figure 1: Environment variables definition

3.2 Azure resources

The lab environment is hosted on Azure, a public cloud. The project needs two essential components for the cloud infrastructure: a resource group, and a virtual network with a subnet. As presented in Figure 2, a resource group must be created first with the az group create command. It is a logical group containing Azure resources.

Figure 2: Azure resource group creation

Then, a virtual network must be created with an associated subnet with the az network vnet create command. Figure 3 displays the command output. The virtual network enables Kubernetes resources to securely communicate.

Figure 3: Azure virtual network creation

3.3 Azure database

The Azure Database for MySQL stores WordPress media content. In Figure 4, among its attributes, the az mysql flexible-server create command indicates the server's admin username and password, the compute tier (Burstable), the compute size (Standard_B2s), the retention period of seven days, and the MySQL version (specified in the previous section).

Figure 4: Azure Database for MySQL creation

Disable SSL connection with the az mysql flexible-server parameter set command. in Figure 5, to include WordPress integration.

Figure 5: Disabling SSL connection

3.4 Azure Kubernetes Service

Once the core resources and the database server are deployed on Azure, the AKS cluster can be created. Figure 6 presents the az aks create command used with its parameters. By default, AKS will select 1.28.9 as Kubernetes's default version.

louise [~]\$ export MY_SN_ID=\$(az network vnet subnet listresource-group \$MY_RESOURCE_GROUP_NAMEvnet-name \$MY_VNET_NAMEqu ery "[0].id"output tsv)
louise [~]\$
az aks create \
resource-group \$MY_RESOURCE_GROUP_NAME \
name \$MY_AKS_CLUSTER_NAME \
auto-upgrade-channel stable \
enable-cluster-autoscaler \
enable-addons monitoring \
location \$REGION \
node-count 1 \
min-count 1 \
max-count 3 \
network-plugin azure
network-policy azure \ vnet-subnet-id \$MY_SN_ID \
vne-ssh-kev \
node-vm-size Standard_DS2_v2 \
service-cidr 10.255.0.0/24 \
dns-service-ip 10.255.0.10
-zones 1 2 3
docker_bridge_cidr is not a known attribute of class <class 'azure.mgmt.containerservice.v2024_02_01.modelsmodels_py3.containerse<="" td=""></class>
rviceNetworkProfile'> and will be ignored

Figure 6: AKS cluster creation

Next actions will be performed on the newly created cluster. To connect to the Kubernetes cluster, the kubectl command-line client is used. It is already installed in Azure Cloud Shell. Figure 7 displays the az aks get-credentials command which role is to download credentials to use kubectl.

```
louise [ ~ ]$ az aks get-credentials --resource-group $MY_RESOURCE_GROUP_NAME --name $MY_AKS_CLUSTER_NAME --overwrite-existing
Merged "mvAKSCluster86029c" as current context in /home/louise/.kube/confic
```

Figure 7: kubectl configuration

As presented in Figure 8, connection is successful as cluster nodes are listed with the kubectl get nodes command.

Figure 8: List of cluster nodes

To expose the web application, an ingress controller must be created. It has the role of both a load balancer and a reverse proxy. The ingress controller is configured with a static public IP address. Figure 9 presents the command to install the ingress-nginx add-on via Helm. First, the local Helm Chart repository cache must be updated and the ingress-nginx Helm repository added.

Figure 9: Ingress controller deployment

3.5 WordPress application

WordPress is installed via the Helm chart built by Bitnami (see prerequisites). It also uses a local MariaDB as the database, which needs to be replaced by Azure Database for MySQL. Figure 10 displays the installation command.

<pre>louise [~/practikube]\$ helm upgradeinstallcleanup-on-fail \ waittimeout 10m0s \ namespace wordpress \ create-namespace \ set wordpressUsername="\$MY_WP_ADMIN_USER" \ set wordpressEmail="\$MY_WP_ADMIN_PW" \ set wordpressEmail="\$SSL_EMAIL_ADDRESS" \ set externalDatabase.host="\$MY_MYSQL_HOSTNAME" \ set externalDatabase.user="\$MY_MYSQL_ADMIN_USERNAME" \ set externalDatabase.password="\$MY_MYSQL_ADMIN_PW" \ set externalDatabase.password="\$MY_MYSQL_ADMIN_PW" \ set externalDatabase.password="\$MY_MYSQL_ADMIN_USERNAME" \ set ingress.hostname="\$MY_MYSQL_ADMIN_USERNAME" \ set ingress.hostname="\$MY_MYSQL_ADMIN_USERNAM</pre>

Figure 10: WordPress installation via Helm

As presented in Figure 11 and confirmed in Figure 12, once WordPress is installed, the web application's IP address is available by fetching the Kubernetes service IP. The command also indicates information to obtain the credentials provided during the installation.

Release "wordpress" does not exist. Installing it now. NAME: wordpress LAST DEPLOYED: Thu Jun 20 10:20:15 2024 NAMESPACE: wordpress STATUS: deployed REVISION: 1 TEST SUITE: None NOTES: CHART VAME: wordpress CHART VERSION: 22.4.13 APP VERSION: 6.5.4
** Please be patient while the chart is being deployed **
Your WordPress site can be accessed through the following DNS name from within your cluster:
wordpress.wordpress.svc.cluster.local (port 80)
To access your WordPress site from outside the cluster follow the steps below:
1. Get the WordPress URL by running these commands:
NOTE: It may take a few minutes for the LoadBalancer IP to be available. Watch the status with: 'kubectl get svcnamespace wordpress -w wordpress'
export SERVICE_IP=\$(kubectl get svcnamespace wordpress wordpresstemplate "{{ range (index .status.loadBalancer.ingress 0) }}{{ .}}{{ end }}") echo "WordPress URL: http://\$SERVICE_IP/" echo "WordPress Admin URL: http://\$SERVICE_IP/admin"
2. Open a browser and access WordPress using the obtained URL.
3. Login with the following credentials below to see your blog:
echo Username: wpcliadmin echo Password: \$(kubectl get secretnamespace wordpress wordpress -o jsonpath="{.data.wordpress-password}" base64 -d)
WARNING: There are "resources" sections in the chart not set. Using "resourcesPreset" is not recommended for production. For produc tion installations, please set the following values according to your workload needs:
- resources +info https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/

Figure 11: WordPress installation via Helm

Figure 12: Exposed WordPress application

3.6 Monitoring tools

On the Azure portal, the AKS cluster is visible from the resources. Once clicked on this item for more details, the first tab displays monitoring insights. From this option, Prometheus can be configured as well as Grafana. Figure 13 displays these services. It is important to note that however Grafana can be expensive as it can manage a high volume of real-time data.

Configure Prometheus

Managed Prometheus

Managed Prometheus provides a highly available, scalable and secure metrics platform to monitor your containerized workloads. Learn more

Enable Prometheus metrics
An Azure Monitor workspace (defaultazuremonitorworkspace-neu) will be created automatically.

Managed Grafana
Selecting a fully managed instance of Grafana to visualize your managed Prometheus data stored in your Azure Monitor workspace. Learn
more about pricing
Fnable Grafana
A Grafana Instance (grafana-202452105717-ne) will be created automatically.

Figure 13: Prometheus and Grafana configuration

Grafana is accessible from Azure resources. Once clicked on it, it is possible to explore its dashboard. Figure 14 presents Grafana from the browser. Kubernetes resources are available from the following path on Grafana dashboard: *Home > Dashboard > Azure Managed Prometheus > Kubernetes / Compute Resources / Pods*.

← C 🗅 https://grafana-20245211154-neu	-e4eqa6fmfjfwh3bc.neu.grafana.azure.com	/d/ac3253a2c4a149d68ccd0a58	c7ab6738/kuber A රි	口 🖆 🕀	∞ …
Ø	Q Search or jump to) 🕮 ctrl+k			» 🤤
	eth > Kubernetes / Compute Res	☆ Add ∽ Share	② Last 1 hour UTC ~	ର୍ 🕻 1m ~	
Data Source Managed_Prometheus_defaultazur	emonitorworkspace-neu × cluster	myakscluster86029c ×	namespace wordpress ~		
pod wordpress-785c6bf9c6-hfx78 ~					
~ CPU Usage					
CPU Usage 🔺					
0.400					
0.300					
0.200					
0.100					
09:35 09:40 09:45 09: Value – wordpress – requests – lim		10:05 10:10 1	0:15 10:20	10:25 10:30	

Figure 14: Prometheus and Grafana configuration

On the cluster's page, diagnostic settings such as Kubernetes API Server, Kubernetes Audit and Kubernetes Audit Admin Logs can also be added. They provide significant information from the AKS control plane components (Singh, 2022). To enable this data, the followed tabs must be followed: *Cluster* > *Monitoring* > *Diagnostic settings*. Then, as presented in Figure 15, on the creation of a diagnostic setting, the logs categories Kubernetes API Server, Kubernetes Audit and Kubernetes Audit Admin Logs must be selected.

8

Home > myAKSCluster86029c Dia	agnostic settings >	
Diagnostic setting		
🔚 Save 🗙 Discard 🗐 Delete	🖗 Feedback	
	would stream them to. Normal u	r metrics that you want to collect from a resource, sage charges for the destination will occur. Learn
Diagnostic setting name *	practidiag	✓
Logs		Destination details
Categories		Send to Log Analytics workspace
Kubernetes API Server		
		Subscription
🗸 Kubernetes Audit		Azure for Students V
V Kubernetes Audit Admin L		Log Analytics workspace
Kubernetes Audit Admin Lo	bgs	DefaultWorkspace-c66088df-0902-4594-8569-aef412115d70-NEU (north 🗸
Kubernetes Controller Mar	ager	Destination table ①
—		Azure diagnostics Resource specific

Figure 15: Kubernetes audit configuration

4 Attack simulations

Once the infrastructure and the WordPress application are installed and configured, attacks can then be launched to these vulnerable targets. These are brute-force and DoS attacks.

4.1 Brute-force attack

Before performing a brute-force attack on the exposed WordPress application, a new user with a weak password must be created as shown in Figure 16.

🔞 🏦 User's Blog! 🖸	3 🗭 0 🕂 New		
Dashboard	Add New User		
📌 Posts	Create a brand new user and add the	em to this site.	
9) Media 📕 Pages	Username (required)	user	
Comments	Email (required)	louise.elie@intercept.ie	
AppearancePlugins (3)	First Name		
Lusers	Last Name		
Add New User Profile	Website		
🖋 Tools	Password	Generate password	
Settings		qwertyui	ø Hide
 Collapse menu 		Very weak	
	Confirm Password	✓ Confirm use of weak password	
	Send User Notification	Send the new user an email about their account	
	Role	Author V	
	Add New User		

Figure 16: WordPress user creation

However, this user must publish an article on the WordPress site to be listed among the users. Indeed, on the attacker machine, two users are recognised with the following URL: <*wordpress_ip_addess>/wp-json/wp/v2/users*. Figure 17 displays the curl command.

Figure 17: WordPress users list from the attacker machine

The target users have been identified, and to perform the attack requires a list of passwords to test on them. Numerous websites offer these features, the 500 worst passwords⁹ should contain our user's password to ensure the success of the attack.

On the attacker's machine, X Brute Forcer is chosen to perform the brute-force attack. The tool is cloned from its GitHub page with the command git clone https://github.com/bibortone/XBruteForcer.git. The X Brute Forcer's folder should contain the website's URL in the list.txt file and the 500 passwords in the password.txt file. To launch the tool, Figure 17 presents the output of the perl XBruteForcer.pl -1 list.txt -p passwords.txt command. Then, WordPress must be selected to start the brute-force attack in Figure 18. Figure 19 displays the successful attempt of the brute-force attack.

Figure 18: WordPress selection on X Brute Forcer

Figure 19: Successful attempt of the brute force attack

⁹ <u>https://www.skullsecurity.org/wiki/Passwords</u>

4.2 DoS attack

Apache JMeter is the tool chosen to simulate a DoS attack on the exposed WordPress site. It is installed on the attacker's machine using the download page¹⁰. The files inside the ZIP folder then need to be extracted. Once the tool is downloaded, Apache JMeter GUI is launched by typing ./jmeter on the */apache-jmeter-5.6.3/bin* folder. Figure 20 displays the output of the command, Figure 21 the Apache JMeter GUI mode.

	/jmeter
Р1СКӨ Ө	d up _JAVA_OPTIONS: -Dawt.useSystemAAFontSettings=on -Dswing.aatext=t
	StatusConsoleListener The use of package scanning to locate plugins i cated and will be removed in a future release
	StatusConsoleListener The use of package scanning to locate plugins i cated and will be removed in a future release
	StatusConsoleListener The use of package scanning to locate plugins i cated and will be removed in a future release
WARN	StatusConsoleListener The use of package scanning to locate plugins i cated and will be removed in a future release
_	
	use GUI mode for load testing !, only for Test creation and Test deb
ging.	
	oad testing, use CLI Mode (was NON GUI): eter -n -t [jmx file] -l [results file] -e -o [Path to web report fol
& inc	rease Java Heap to meet your test requirements: dify current env variable HEAP="-Xms1g -Xmx1g -XX:MaxMetaspaceSize=25
	the jmeter batch file
" 1n	: https://jmeter.apache.org/usermanual/best-practices.html

Figure 20: Launch of Apache JMeter

1	Apache JMeter	(5.6.3)	
<u>F</u> ile <u>E</u> dit <u>S</u> earch <u>R</u> un <u>O</u> ptions <u>T</u> ools <u>H</u>			
📰 🛱 🚔 📰 👗 🐚 🗎 + - 🍫	🕨 📐 🔘 🕲 👹 🎒 🕰	🏷 🚍 🔞	00:00:00 🛕 0 0/0 🕄
👗 Test Plan	est Plan		
	omments:		

Figure 21: Creation of a new test plan

To perform the DoS attack, a thread group is added to the new test plan. On Figure 22, a simulation of 3000 users were set.

¹⁰ <u>https://github.com/apache/jmeter</u>

/	Apache JMeter (5.6.3)	00	8
	<u>O</u> ptions <u>T</u> ools <u>H</u> elp		
🔲 🍪 🚔 📰 👗 📭	I 🖻 + - 🤣 E 💊 💿 🛛 🕷 🆓 🌋 🗛 🏷 🚍 🔞	00:00:00 \land 0 0/0	۲
✓ ▲ practicum ☆ Thread Group	Thread Group		
	Action to be taken after a Sampler error		
	💿 Continue 🔘 Start Next Thread Loop 🔵 Stop Thread 🔘 Stop Test 🔘 Stop Test N		
	Thread Properties		
	Number of Threads (users): 3000		
	Ramp-up period (seconds): 1		
	Specify Thread lifetime		

Figure 22: Thread group configuration

This thread group requires a sampler, which are HTTP requests. The server's name and the file path can be specified by right-clicking on *Thread Group*, then selecting Add > Sampler > HTTP Request. As seen in Figure 23, the server's name is the WordPress site IP address, and the file path /wp-login.php.

Figure 23: Launch of Apache JMeter

To perform the DoS attack, a result tree listener must be added to the test plan by right-clicking on *HTTP Request*, and then selecting *Listener* > *View Results Tree*. The DoS attack is initiated by clicking the start button at the top of Figure 24. On the right side of the interface, there is real-time information on the time chronometer and the thread number. At the bottom, a list of the HTTP requests is displayed.

/ View Results Tree.jmx (/h	ome/louise/Downloads/apache-jmeter-5.6.3/bin/View Results Tree.jmx) - Apache JMeter (5.6.3) 🛛 🖉 💽 🔀
<u>F</u> ile <u>E</u> dit <u>S</u> earch <u>R</u> un <u>O</u> ptions <u>I</u>	iools Help
📑 🚳 🚔 🐺 👗 📭 📵 🕂	- 🔨 🕨]) 🎯 😵 👹 🍏 🚓 🏷 🚍 👔 👘 00:00:21 🛝 0 909/3000 💿
 ✓ Å practicum ✓ ॑数 Thread Group - practicum 	View Results Tree
🗸 🖌 HTTP Request	Name: View Results Tree
🛃 View Results Tree	Comments:
	Write results to file / Read from file
	Filename Browse Log/Display Only: Errors Successes Cc
	···
	Search: Case sensitive Regular exp. Search Reset
:	···
	Text
	

Figure 24: DoS Results Tree

During the attack, the web application becomes available. Figure 25 illustrated the status of the web application at that time.

Figure 25: Unreachable web application

5 Data collection

In line with the research hypothesis, the objective is to confirm that containers runtime events and metadata can contribute to the optimisation of digital forensics. After launching the brute force and DoS attacks, data must be collected from these components to gather evidence.

5.1 Container runtime events

Container runtime events can be collected from containers logs, the container orchestration tool (Kubernetes) events and audit logs, and Prometheus metrics on Grafana.

On the Azure Cloud Shell, containers logs are collected with the command kubectl logs wordpress-785c6bf9c6-zt58v -n wordpress. Figure 26 displays the output of the command following the brute force attack. These logs are also accessible on the container live logs from the Azure Portal, as presented in Figure 27. In comparison, with live logs, the number of events is displayed.

10.177.0.39 [23/Jul/2024:13:00p-login.php HTTP/1.1" 200 4133
10.177.0.39 [23/Jul/2024:13:02:28 +0000] "GET /wp-login.php HTTP/1.1" 200 4133
10.177.0.39 [23/Jul/2024:13:02:38 +0000] "GET /wp-login.php HTTP/1.1" 200 4133
10.177.0.39 [23/Jul/2024:13:02:48 +0000] "GET /wp-login.php HTTP/1.1" 200 4133
10.177.0.39 [23/Jul/2024:13:02:58 +0000] "GET /wp-login.php HTTP/1.1" 200 4133
10.177.0.39 [23/Jul/2024:13:03:08 +0000] "GET /wp-login.php HTTP/1.1" 200 4133
10.177.0.39 [23/Jul/2024:13:03:18 +0000] "GET /wp-login.php HTTP/1.1" 200 4133
10.177.0.39 [23/Jul/2024:13:03:28 +0000] "GET /wp-login.php HTTP/1.1" 200 4133
10.177.0.39 [23/Jul/2024:13:03:38 +0000] "GET /wp-login.php HTTP/1.1" 200 4133
10.177.0.39 [23/Jul/2024:13:03:48 +0000] "GET /wp-login.php HTTP/1.1" 200 4133
10.177.0.39 [23/Jul/2024:13:03:58 +0000] "GET /wp-login.php HTTP/1.1" 200 4133
10.177.0.39 [23/Jul/2024:13:04:08 +0000] "GET /wp-login.php HTTP/1.1" 200 4133
10.177.0.39 [23/Jul/2024:13:04:08 +0000] "GET /wp-includes/blocks/navigation/view.min.js?ver=6.5.4 HTTP/1.1" 200 1135
10.177.0.39 [23/Jul/2024:13:04:08 +0000] "GET /wp-includes/js/dist/interactivity.min.js?ver=6.5.4 HTTP/1.1" 200 13147
10.177.0.39 [23/Jul/2024:13:04:08 +0000] "GET /wp-includes/blocks/navigation/style.min.css?ver=6.5.4 HTTP/1.1" 200 2290
10.177.0.10 [23/Jul/2024:13:04:08 +0000] "GET /wp-includes/blocks/image/style.min.css?ver=6.5.4 HTTP/1.1" 200 1597
10.177.0.10 [23/Jul/2024:13:04:09 +0000] "GET /wp-includes/js/wp-emoji-release.min.js?ver=6.5.4 HTTP/1.1" 200 5062
10.177.0.39 [23/Jul/2024:13:04:18 +0000] "GET /wp-login.php HTTP/1.1" 200 4133
10.177.0.39 [23/Jul/2024:13:04:28 +0000] "GET /wp-login.php HTTP/1.1" 200 4133

Figure 26: Containers logs with kubectl command

Home > myAKSCluster86029c Workle	oads > wordpress Overview > wordpress-785c6bf9c6-zt58v	
wordpress-785c6b	f9c6-zt58v Live logs	×
	🕐 Refresh 😰 View in Log Analytics	
 Overview YAML Events Live logs 	Select a Pod wordpress-785c6bf9c6-zt58v Looking for historical logs? View in Log Analytics 422 item(s). Streaming logs II Pause Scroll	HTTP/1.1" 200 4133
	23/7/2024, 14:07:28 wordpress-785c6bf9c6-zt58v 9639703eafba70b6a61a7b6ee594a40c12088f9649158ccb309272f3	10.177.0.39 [23/Jul/2024:13:0 7:28 +0000] "GET /wp-login.php HTTP/1.1" 200 4133

Figure 27: Container live logs from Azure portal

In addition, events from the Kubernetes cluster can be captured with the command kubectl get events. Figure 28 displays the output of the command following the DoS attack.

louise [~	<pre>]\$ kubectl</pre>	get events		
LAST SEEN	TYPE	REASON	OBJECT	MESSAGE
10s	Normal	Pulled	pod/wordpress-785c6bf9c6-vw6gl	Container image "docker.io/bitnami/wordpress:6.5.4-debian-12-r5"
already pr	esent on m	achine		
10s	Normal	Created	pod/wordpress-785c6bf9c6-vw6gl	Created container wordpress
10s	Normal	Started	pod/wordpress-785c6bf9c6-vw6gl	Started container wordpress
28s	Warning	Unhealthy	pod/wordpress-785c6bf9c6-vw6gl	Readiness probe failed: Get "http://10.177.0.45:8080/wp-login.ph
p": context	deadline	exceeded (Cl	ient.Timeout exceeded while await	ing headers)
98s	Warning	Unhealthy	pod/wordpress-785c6bf9c6-vw6gl	Liveness probe failed: dial tcp 10.177.0.45:8080: i/o timeout
92s	Warning		pod/wordpress-785c6bf9c6-vw6gl	Readiness probe failed: Get "http://10.177.0.45:8080/wp-login.ph
p": dial tc	p 10.177.0	.45:8080: co	nnect: connection refused	
92s	Warning	Unhealthy	pod/wordpress-785c6bf9c6-vw6gl	Liveness probe failed: dial tcp 10.177.0.45:8080: connect: conne
ction refus	ed			
22s	Warning	Back0ff	pod/wordpress-785c6bf9c6-vw6gl	Back-off restarting failed container wordpress in pod wordpress-
785c6bf9c6-	vw6gl_word	press(0a3bac	b8-dd74-4484-a891-9623d587c7d4)	

Figure 28: Recent events on the Kubernetes cluster

Grafana can be used to analyse resources metrics to trace back events. Indeed, Figure 29 indicates resource spikes during attacks.

Figure 28: Resource spikes on Grafana

Similarly to containers logs, audit Kubernetes logs also contain information. Audit logs are managed by Azure and cannot be collected directly from the cluster. As presented in Figure 29, audit logs are visible using queries from the "Logs" tab on the AKS cluster's page.

=	Microsoft Azure	\mathcal{P} Search resources, service	s, and docs (G+/)		D	Û	\$ })	x21195137@student.nc NATIONAL COLLEGE OF IRELAN	
💼 r	> myAKSCluster86029c myAKSCluster86 Kubernetes service	5 029c ∣Logs ☆								×
*	👺 New Query 1*	🏶 New Query 2* \cdots ×	+			📙 Save	× 1	Share ∨	· · · · 🔠 Queries h	ub
		Time range : Last 12 hours	Limit : 15000						KQL mode 🗸 🗸	
{	2 AKSAudit 3 where Ver 4 where Res	<pre>find unauthorized acce b in ("create", "update ponseStatus.code == 200 TimeGenerated desc</pre>		rnetes audit logs					<u>=</u> *	_
	Results Chart								م	-
	TimeGenerated [UTC]	↑↓ ··· Level Auditio	I	RequestUri			Verb	User		
	> 23/07/2024, 14:24:	56.029 Metadata bce72d	93-1201-4c05-9f7a-ffac	/apis/coordination.k8s.io/v1/names	paces/kube-syste	m/le	update	{"userr	name":"aksService","groups"	olum
	> 23/07/2024, 14:24:	56.517 Metadata 780e20	4f-9f73-40c1-a3f7-70c0	/apis/coordination.k8s.io/v1/names	paces/kube-syste	m/le	update	{"userr	name":"system:apiserver","gi	13
	> 23/07/2024, 14:24:	57.116 Metadata fbab4c	40-c7b1-4991-b08c-b6c	/apis/coordination.k8s.io/v1/names	paces/kube-syste	m/le	update	{"userr	ame":"aksService","groups"	

Figure 29: Kubernetes audit logs

5.2 Container metadata

Container metadata describe information of a resource. In this project, it can be related to object and node metadata.

Kubernetes object metadata such as pods and services can be collected with the following command: kubectl get <object>. For example, in Figure 30, pod restarts are a sign of a potential DoS attack.

louise [~]\$ kubectl get po	ds			
NAME	READY	STATUS	RESTARTS	AGE
wordpress-785c6bf9c6-vw6gl	1/1	Running	2 (7m20s ago)	17h

Figure 30: Pod restarts

Once the kubectl get command identifies the object, the kubectl describe command provides further detailed information including node associated, IP address or even events. Figure 31 shows the output of kubectl describe pods cpod_name> -n <namespace> command.

Name:	wordpress-785c6bf9c6-zt58v
Namespace:	wordpress
Priority:	0
Service Account:	wordpress
Node:	aks-nodepool1-35586775-vmss00000p/10.177.0.39
Start Time:	Tue, 23 Jul 2024 09:56:01 +0000
Labels:	app.kubernetes.io/instance=wordpress
	app.kubernetes.io/managed-by=Helm
	app.kubernetes.io/name=wordpress
	app.kubernetes.io/version=6.5.4
	helm.sh/chart=wordpress-22.4.13
	pod-template-hash=785c6bf9c6
Annotations:	<none></none>
Status:	Running
IP:	10.177.0.52

Figure 31: Pod metadata

Figure 32 also displays information on the WordPress service with the output of kubectl describe services wordpress -n wordpress command.

	scribe services wordpress -n wordpress
Name:	wordpress
Namespace:	wordpress
Labels:	app.kubernetes.io/instance=wordpress
	app.kubernetes.io/managed-by=Helm
	app.kubernetes.io/name=wordpress
	app.kubernetes.io/version=6.5.4
	helm.sh/chart=wordpress-22.4.13
Annotations:	meta.helm.sh/release-name: wordpress
	meta.helm.sh/release-namespace: wordpress
Selector:	app.kubernetes.io/instance=wordpress,app.kubernetes.io/name=wordpress
Type:	LoadBalancer
IP Family Policy:	SingleStack
IP Families:	IPv4
IP:	10.255.0.79
IPs:	10.255.0.79
LoadBalancer Ingress:	4.209.178.45
Port:	http 80/TCP
TargetPort:	http/TCP
NodePort:	http 30511/TCP
Endpoints:	10.177.0.52:8080
Port:	https 443/TCP
TargetPort:	https/TCP
NodePort:	https 31286/TCP
Endpoints:	10.177.0.52:8443
Session Affinity:	None
External Traffic Policy:	Cluster
Events:	<none></none>

Figure 32: Service metadata

It is also possible to capture significant information from the nodes such as the resource utilisation and events. After identifying the nodes with the kubectl get nodes command, the kubectl describe nodes <node_name> command provides insights into the allocated resources for each container and overall resource usage, as shown in Figure 33, along with events. For instance, Figure 34 displays killed processes, which could be a potential sign of a DoS attack.

Allocated resources:		
(Total limits may	be over 100 pe	rcent, i.e., overcommitted.)
Resource	Requests	Limits
cpu	1570m (82%)	10800m (568%)
memory	2432Mi (53%)	21164Mi (465%)
ephemeral-storage	100Mi (0%)	2Gi (1%)
hugepages-1Gi	0 (0%)	0 (0%)
hugepages-2Mi	0 (0%)	0 (0%)

Figure 33: Node metadata

Events:					
Туре	Reason	Age	From	Message	
				Memory cgroup out of memory: Killed process 10745 (httpd:) total-vm:42
				, UID:1001 pgtables:308kB oom_score_adj:964	
				Memory cgroup out of memory: Killed process 10108 (httpd)) total-vm:31
				UID:1001 pgtables:212kB oom_score_adj:964	
				Memory cgroup out of memory: Killed process 10744 (httpd)) total-vm:31
				, UID:1001 pgtables:252kB oom_score_adj:964	
				Memory cgroup out of memory: Killed process 10746 (httpd)) total-vm:31
				, UID:1001 pgtables:256kB oom_score_adj:964	
				Memory cgroup out of memory: Killed process 10748 (httpd:) total-vm:31
				, UID:1001 pgtables:256kB oom_score_adj:964	
				Memory cgroup out of memory: Killed process 11189 (httpd)) total-vm:38
				, UID:1001 pgtables:268kB oom_score_adj:964	
				Memory cgroup out of memory: Killed process 11209 (httpd:) total-vm:42
				, UID:1001 pgtables:308kB oom_score_adj:964	
				Memory cgroup out of memory: Killed process 11210 (httpd:) total-vm:39
				, UID:1001 pgtables:276kB oom_score_adj:964	
				Memory cgroup out of memory: Killed process 280833 (http:	d) total-vm:3
				B, UID:1001 pgtables:268kB oom_score_adj:964	
				(combined from similar events): Memory cgroup out of mem	
	292 (nttpd)	total-VM:314388RB, anon	-rss:12152RB, +1	le-rss:12444kB, shmem-rss:20720kB, UID:1001 pgtables:244k	s oom_score_a
dj:964					

Figure 34: Node events

6 Hardening solutions

To defend against these two types of attack, four mitigation solutions were implemented: a limit login WordPress add-on, rate limiting, IP blocking, and alerts on login activities and resource utilisation.

6.1 Limit login

The WPS Limit Login add-on¹¹ on WordPress is widely used to limit login attempts on a WordPress site. On the admin page at $< wordpress_ip_or_url > /wp-admin$, the add-on can be downloaded from the Plugins tab on Figure 35.

¹¹ <u>https://wordpress.org/plugins/wps-limit-login/</u>

Figure 35: Limit login attempts add-on installation

During the installation, as presented in Figure 36, the default configuration is chosen to limit to 3 retries for a period of 20 minutes.

đ) 📸 User's Blog!	O 11 ♥ 0 + New Hov	wdy, wpcliadmin 📃				
63	Dashboard						
*	Posts						
9	Media	WPS Limit Login limits attempts to connect to your WordPress administration.					
	Pages	😂 Configuration 🗉 Whitelist 🛛 🖽 Blacklist 🖹 Log	1				
•	Comments	Configuration					
×	Appearance	3 allowed retries for a period of 20 minutes					
Ň	Plugins 🧐						
4	Users	12 hours until retries are reset					
ø	Tools	2 lockouts increase lockout time to 24 hours					
U1	Settings	Email to admin after 2 lockouts					

Figure 36: Limit of login attempts parameters

After another brute-force attack, Figure 37 below confirms the unsuccessful login attempt, and thus Figure 38 the locked login page.

Figure 37: Login attempts with X Brute Forcer

School	lol	Ô		myAKSCluster860	29c - Microsoft 🗙	10	Kubernetes / Compute Resource:	×	🚺 Log In ‹ User	r's Blog! — WordPres	× -
\leftarrow	С	▲	Not secure	4.209.178.45	/wp-login.php						
							ERROR: Too many failed				
							Please try again in 11 m	inutes	5.		
							Username or Email Addres	55			
							Password				
									۲		
							Login form prote	ected by	v		
							WPS Limit Lo		<u>y</u>		

Figure 38: Locked login page

6.2 Rate limiting and IP blocking

To mitigate DoS attacks on the Kubernetes environment, two options were implemented on the ingress controller: rate limiting and IP blocking.

On Figure 39, the existing NGINX ingress was edited to add parameter regarding rate limiting on the metadata section. Connections are limited to 10 IP addresses and 5 requests per second. Once the file is saved, the modifications are applied with the following command: kubectl apply -f ingress.yaml.

GNU nano 6.0	ingress.yaml
apiVersion: networking.k8s.io/v1	
kind: Ingress	
metadata:	
name: wordpress-ingress	
annotations:	
nginx.ingress.kubernetes.io/limit-connections: "10"	
nginx.ingress.kubernetes.io/limit-rps: "5"	
nginx.ingress.kubernetes.io/limit-burst-multiplier:	"3"
spec:	
ingressClassName: nginx	
rules:	
- host: 4.209.178.45.nip.io # Use nip.io as we don't	have a domain
http:	
paths:	
- path: /	
pathType: Prefix	
backend:	
service:	
name: wordpress	
port:	
number: 80	

Figure 39: Rate limiting configuration

On the attacks performed, repetitive IP addresses have been observed. A network policy can block those IP addresses. Figure 40 displays the rule. The modification of the file will be applied with the kubectl apply -f netpolicy.yaml command.

Figure 40: IP blocking rule

Figure 40 presents the NGINX ingress controller logs during a DoS attack, and it shows that the WordPress server was down numerous times. The command used is kubectl logs -l app.kubernetes.io/name=ingress-nginx -n ingress-nginx.

louise [~]\$ kubectl logs -l app.kubernetes.io/name=ingress-nginx -n ingress-nginx
W0729 12:13:19.422940 7 controller.go:1213] Service "wordpress/wordpress" does not have any active Endpoint.
W0729 12:13:32.916953 7 controller.go:1213] Service "wordpress/wordpress" does not have any active Endpoint.
W0729 12:13:36.251157 7 controller.go:1213] Service "wordpress/wordpress" does not have any active Endpoint.
W0729 12:13:39.584792 7 controller.go:1213] Service "wordpress/wordpress" does not have any active Endpoint.
10.177.0.10 [29/Jul/2024:12:54:55 +0000] "POST /cgi-bin/.%2e/.%2e/.%2e/.%2e/.%2e/.%2e/.%2e/.%2e
150 "-" "-" 81 0.114 [] [] 66b5a66af181418af3cf44a92390376f
10.177.0.10 [29/Jul/2024:12:54:56 +0000] "POST /cgi-bin/%%32%65%%32%65/%%32%65%%32%65/%%32%65%%32%65/%%32%65%%32%65/%%32%65%%32%%65%%32%%65%%32%%65%%32%%
%65/%%32%65%%32%65/%%32%65%%32%65/bin/sh HTTP/1.1" 400 150 "-" "-" 136 0.118 [] [] 1adc1b6cb27c1971f9a161d7807e81a8
W0729 13:27:35.857692 7 controller.go:1213] Service "wordpress/wordpress" does not have any active Endpoint.
W0729 13:28:37.947693 7 controller.go:1213] Service "wordpress/wordpress" does not have any active Endpoint.
10.177.0.10 [29/Jul/2024:13:35:47 +0000] "POST /cgi-bin/.%2e/.%2e/.%2e/.%2e/.%2e/.%2e/.%2e/.%2e
150 "-" "-" 81 0.413 [] [] 8324f9088902013748d1f6dc7dc3fc5d
10.177.0.39 - [29/Jul/2024:13:35:49 +0000] "POST /cgi-bin/%%32%65%%32%65%%32%65%%32%65%%32%65%%32%65%%32%65%%32
%65/%%32%65%%32%65/%%32%65/%32%65/bin/sh HTTP/1.1" 400 150 "-" "-" 136 0.417 [] [] 1bb80e78657ef8567559347ba9698a95

Figure 41: Ingress logs

6.3 Alerts

To improve detection time, several alerts were created following the first attack attempts. This includes login attempts and resource spikes.

An alert can be created through the "Logs" tab on the AKS cluster page. When running queries on the system, it is possible to associate them with alerts. Figure 42 details the rule created for multiple login attempts. If more than 10 login attempts are detected in less than 5 minutes, an email is sent to alert.

Home > myAKSCluster86029c Logs >							
Create an alert rule							
Scope Condition Actions	Details Tags Review + create						
Configure when the alert rule should t	trigger by selecting a signal and defining its	s logic.					
Signal name * 🕕 👘 Custom log search 🗸							
	See all signals						
Define the logic for triggering an alert	t. Use the chart to view trends in the data. L	earn more					
The query to run on this resource's log	gs. The results returned by this query are us	sed to populate the alert definition below.					
Search query *			0				
	<pre>////////////////////////////////////</pre>	:ostring(LogMessage))					
View result and edit query in Logs 🖷)						
Measurement							
Select how to summarize the results. V	We try to detect summarized data from the	query results automatically.					
Measure (i)	Count	\checkmark					
Aggregation type 🔅	Total	\checkmark					
Aggregation granularity 🛈	5 minutes	\checkmark					
Alert logic							
Operator * (i)	Greater than	\checkmark					
Threshold value * (i)	20	\checkmark					
Frequency of evaluation * 🛈	5 minutes	\checkmark					
Estimated monthly cost \$1.50 (USD) Scope Condition Actions) Details Tags Review + create						
·	at can be applied to an alert rule. Learn mo	Dre					
+ Select action groups + Crea	ate action group						
Action group name		Contains actions					
RecommendedAlertRules-AG-1		1 Email	×				

Figure 42: Login attempts alert rule

Regarding resources spikes such as CPU and memory usage, Prometheus provides predefined rules on different Kubernetes levels, from pods to cluster. As presented in Figure 43, the recommended pod level alerts were used for this project.

Prometheus Recomm	nended Pod level Alerts - myAKSCluster8	6029c Rules ☆		×
	$+$ Add recording rule $+$ Add alert rule $~\uparrow~$ Move up $~\downarrow~$ Move do	wn 🕨 Enable 🗌 Disable	🗓 Delete	🖉 Edit
Overview	KubeHpaReplicasMismatch	Alert Rule	Enabled	
Activity log				
Access control (IAM)	KubeHpaMaxedOut	Alert Rule	Enabled	
🗳 Tags				
(History	KubePodCrashLooping	Alert Rule	Enabled	
> Settings	KubeJobStale	Alert Rule	Enabled	
\checkmark Rule group configuration				
👫 Scope	KubePodContainerRestart	Alert Rule	Enabled	
📒 Details				
E Rules	KubePodReadyStateLow	Alert Rule	Enabled	
> Automation > Help	KubePodFailedState	Alert Rule	Enabled	
	KubePodNotReadyByController	Alert Rule	Enabled	
	KubeStatefulSetGenerationMismatch	Alert Rule	Enabled	
	KubeJobFailed	Alert Rule	Enabled	
	KubeContainerAverageCPUHigh	Alert Rule	Enabled	
	KubeContainerAverageMemoryHigh	Alert Rule	Enabled	
	KubeletPodStartUpLatencyHigh	Alert Rule	Enabled	

Figure 43: Prometheus preset rules

It contains rules such as alerting CPU usage above 75% as detailed in Figure 44.

Alert rule details	
Name * 🛈	KubeContainerAverageCPUHigh
Severity * ①	Sev 0 - Critical 🗸
Condition	
Expression * ③	<pre>sum (rate(container_cpu_usage_seconds_total{image!="", container!="POD"}[5m]]) by (pod,cluster,container,namespace) / sum(container,spec_cpu_quota{image!="", container!="POD"}/container_spec_cpu_period{image! ="", container!="POD"}) by (pod,cluster,container,namespace) > .75</pre>
For ①	5 mins \checkmark

Figure 44: KubeContainerAverageCPUHigh alert rule

Similarly, another rule detects the memory usage and alerts the user if it is above 75% of its overall capacity in Figure 45. The email alert sent to the user is displayed in Figure 46.

Alert rule details	
Name * 🛈	KubeContainerAverageMemoryHigh
Severity * ①	Sev 0 - Critical
Condition	
Expression * ①	avg by (namespace, controller, container, cluster) (((container_memory_working_set_bytes{container!="", image!="", container!="POD"} / on(namespace,cluster,pod,container) group_left kube_pod_container_resource_limits{resource="memory", node!=""})*on(namespace, pod, cluster) group_left(controller) label_replace(kube_pod_owner, "controller", "\$1", "owner_name", "(.*)")) > .75)
For 🛈	10 mins

Figure 45: KubeContainerAverageMemoryHigh alert rule

Fired:Sev2 Azure Monitor Alert Login attempts on myakscluster86029c (microsoft.containerservice/managedclusters) at 7/27/2024 5:50:11 PM

MA Microsoft Azure To: Louise Elie			ⓒ ← ≪ → … Sat 27/07/2024 18:50
툽칰 This message is in English			Translate to French Never translate from English
	Microsoft Azure Fired:Sev2 Azur on myakscluste	re Monitor Alert Login attempts er86029c (ainerservice/managedclusters) :50:11 PM	
	Alert name	Login attempts	
	Severity	Sev2	
	Monitor condition	Fired	
	Affected resource	myakscluster86029c	

Figure 46: Alert email

References

Microsoft Learn (2024) *Deploy WordPress on AKS cluster by using Azure CLI*. Available at: https://learn.microsoft.com/en-us/azure/mysql/flexible-server/tutorial-deploy-wordpress-on-aks [Accessed 20 June 2024].

Singh, H. (2022) *Investigate actions on Azure Kubernetes Service using Auditing, Medium*, 29 September. Available at: https://itnext.io/whodunit-investigate-actions-on-aks-using-auditing-1db3ccf9ae86 [Accessed 20 July 2024].