

Optimising Digital Forensics Investigations

in Containers as a Service Environments

Internship

MSc in Cybersecurity

Louise Elie

Student ID: 21195137

School of Computing

National College of Ireland

Supervisor: Kamil Mahajan

National College of Ireland

MSc Project Submission Sheet

School of Computing

Student Name:

Louise Elie

Student ID:

21195137

Programme:

MSc in Cybersecurity

Year:

2023-2024

Module:

Internship

Supervisor:

Kamil Mahajan

Submission Due

Date:

September 16th, 2024

Project Title:

Optimising Digital Forensics Investigations in Containers as a

Service Environments

Word Count:

7250 words Page Count 20 pages

I hereby certify that the information contained in this (my submission) is information

pertaining to research I conducted for this project. All information other than my own

contribution will be fully referenced and listed in the relevant bibliography section at the

rear of the project.

ALL internet material must be referenced in the bibliography section. Students are

required to use the Referencing Standard specified in the report template. To use other

author's written or electronic work is illegal (plagiarism) and may result in disciplinary

action.

Signature:

Date:

September 13th, 2024

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple

copies)

□

Attach a Moodle submission receipt of the online project

submission, to each project (including multiple copies).

□

You must ensure that you retain a HARD COPY of the project, both

for your own reference and in case a project is lost or mislaid. It is not

sufficient to keep a copy on computer.

□

Assignments that are submitted to the Programme Coordinator Office must be placed

into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

AI Acknowledgement Supplement

Internship

Optimising Digital Forensics Investigations in Containers as a Service
Environments

AI Acknowledgment
This section acknowledges the AI tools that were utilized in the process of completing this
assignment.

Tool Name Brief Description Link to tool

 SciSpace Find additional papers related to a research question. https://typeset.io/

 ChatGPT Chatbot to assist in diverse types of tasks. https://chatgpt.com/

Description of AI Usage
This section provides a more detailed description of how the AI tools were used in the
assignment. It includes information about the prompts given to the AI tool, the responses
received, and how these responses were utilized or modified in the assignment. One table
should be used for each tool used.

SciSpace

Due to the gap in the related work, this tool was used to find papers which could propose
solutions to a research question.

Insert the research question. Lists papers and their insights

ChatGPT

Operational errors occurred during the testing process; this tool helped in troubleshooting.

Insert the message error. Provides suggestions for solving the problem.

Evidence of AI Usage
This section includes evidence of significant prompts and responses used or generated
through the AI tool. It should provide a clear understanding of the extent to which the AI
tool was used in the assignment. Evidence may be attached via screenshots or text.

Additional Evidence:

https://typeset.io/
https://chatgpt.com/

Additional Evidence:

1

Optimising Digital Forensics Investigations in

Containers as a Service Environments

Louise Elie

Student ID: 21195137

Abstract

Cloud computing is a popular technology used among individuals and companies.

One of its models, named Containers as a Services (CaaS), combines the dynamic nature

of containers with the advantages of a managed and scalable infrastructure. This paper

focuses on the performance of digital forensics in CaaS environments, where traditional

forensic procedures must adapt to the challenges posed by the ephemeral nature of

containers and the volatile data associated with public cloud environments. With a

significant gap in the related work, this study contributes to the field by analysing

container runtime events and metadata from Kubernetes, a container orchestration tool,

to optimise forensics investigations in public cloud systems. This research proposes a

containerised infrastructure hosted on Azure with the CaaS model named Azure

Kubernetes Service (AKS) to conduct digital forensics. The proposed architecture

exposed a vulnerable WordPress application deployed with AKS. To simulated real-

world scenarios, brute force attacks using X Brute Forcer and Denial of Service (DoS)

attacks using Apache JMeter were performed on an external Kali Linux machine. The

results demonstrated that the data collected from containers runtime events and metadata

confirmed evidence of the attacks. The forensic investigations were efficient as rules for

threat detection were configurated, along with mitigation solutions.

 Keywords – digital forensics, containers security, Kubernetes, public cloud

1 Introduction

The past ten years have seen a rapid evolution of cloud computing, becoming a foundational

technology for both individuals and organisations. Nowadays, everyone uses services hosted

in the cloud, and some companies rely entirely on it (Mosca et al., 2014). Behind this concept

of “cloud” computing, infrastructure resources are hosted and managed by cloud service

providers like Amazon Web Services (AWS), Microsoft Azure, and Google Cloud Platform

(GCP). Many types of cloud models are now available, this paper will focus on Containers as

a Service (CaaS). In this architecture, the end-users have access to these lightweight isolated

environments designed to run specific software applications. This model offers containers as

resources through a container orchestration tool.

Kubernetes is a container orchestration tool that can be used to manage containers. Its

role is to automate the management of containerised applications, including deployments,

scalability, and change of configurations. Kubernetes guarantees the operation of multiple

containers across various hosts. Figure 1 illustrates the different key elements: nodes, which

are physical or virtual (e.g., local servers or instances managed on public clouds) machines

running the control plane (Kubernetes); pods, which are the smallest units that hosts one or

several containers; other resources include services which expose an application running on

2

pods as a network service, and deployments which control the updating and scaling of pods.

On cloud environments, the control planes, also known as master nodes, are managed by the

cloud service provider. Thus, some data such as audit logs may not be directly accessible.

Figure 1: Simplified Kubernetes infrastructure

Any system is a target; thus, containers are vulnerable to cyber-attacks. On managed

containerised infrastructure, in public cloud environments, digital forensics is one of the main

concerns (Tosatto, Ruiu and Attanasio, 2015). Conducting forensics on cloud computing and

containers is more complicated and challenging than doing it on local environment with

physical devices. In fact, it can be complex to locate data because of these components'

scalable nature (Singh and Chatterjee, 2017). Furthermore, the resources can be scaled up or

down in addition to being volatile.

In this context, the challenge is to be able to trace back incidents, as data may be

moved, deleted, or even inaccessible without the assistance of cloud service provider (Sultan,

Ahmad and Dimitriou, 2019). Evidence of an attack could be found using data related to

containers and the orchestration tool, specifically runtime events and metadata. Since no prior

research has been done combining digital forensics on these two complex environments:

containers and public cloud; in the next section, the literature review demonstrates a gap in

the field’s knowledge. This leads to the following research question that guides this study.

How can containers runtime events and metadata collected from a container orchestration

tool contribute to optimising the efficiency of digital forensic investigations in Containers

as a Service (CaaS) environments, and what are the key challenges in leveraging this data

in a dynamic context?

This research question aims to explore whether containers data (e.g., runtime events,

metadata) from a container orchestration tool can optimise forensic investigation in a public

cloud environment. The research will explore tools and approaches on CaaS environments to

facilitate forensic procedures. The term efficiency of the research question is defined by

specific metrics related to the attacks performed such as increased CPU and memory or

multiple login page access attempts, as well as general forensics metrics like accuracy,

3

detection time, and false positives/negatives. The goal is for organisations and forensic

investigators to improve their ability to recognise threats in these dynamic contexts and

respond to incidents more quickly. The results can also help law enforcement entities and

cloud service providers since these procedures may facilitate compliance with regulatory

requirements and improve legal conflicts.

The paper discusses digital forensics challenges in Containers as a Service

environments, along with the role of containers runtime events and metadata in section 2

related work. The research methodology presenting the different steps to validate the

hypothesis is outlined in section 3. Section 4 describes the lab design, including the

architecture diagram and the flow for the proposed technique. The implementation, which

explains the resources needed for the testing process to collect and analyse data is detailed in

section 5. Section 6 demonstrates the evaluation part of the research with a discussion of the

main findings. Finally, the last section presents the conclusion and suggestions for enhancing

the research for future work.

2 Related Work

In the past few years, there has been a growing interest in using the advantages of public

cloud environments for managing containerised infrastructures. On the cloud market,

solutions have been developed such as Azure Kubernetes Service (AKS) by Microsoft Azure

and Amazon Elastic Kubernetes Service (EKS) by Amazon Web Services (AWS).

Nonetheless, these solutions can add more complexity when recovering from cyber-attacks

considering the dynamic nature of containers and the potential inaccessibility of data

managed by cloud service providers. To give a better understanding of the role of container

runtime events and metadata in public cloud container environments for forensic

investigations, this section presents the challenges associated with public clouds and

containers and analyses existing forensics research conducted on similar architectures.

2.1 Public Cloud Computing Challenges in Forensics

Cloud computing is an innovative solution contributing to scalable capabilities and ease of

use for its users. Several types of services are offered on cloud computing: from standard

services such as Infrastructure as a Service (IaaS) to security model like Firewall as a Service

(FaaS), or even Containers as a Service (CaaS) – which the main topic of this research. In this

context, the control plane of the container orchestration tool along with the instance where it

is deployed, are managed by the cloud service provider. Singh and Chatterjee (2017) provide

an analysis of cloud computing and its associated security challenges. Digital forensics is one

of the main concerns. In traditional forensic procedures, the physical device is investigated to

determine the attack’s root cause and to trace the actions committed by the attacker. This

technique is more challenging in a cloud computing environment because of its dynamic

nature. Indeed, data is not permanently stored on physical devices; it can be moved, and its

volatile characteristic complicates the forensic process. In a similar paper written by Edington

Alex and Kishore (2017) which objective was to propose a forensic framework in this

complex cloud environment, additional elements highlighted difficulties related to digital

4

forensics. Both users and investigators have restricted access to their infrastructure. For

instance, log data like process logs, network logs, or system logs can be difficult to get

without the cooperation of the cloud service provider.

Herman et al., (2020) have defined cloud computing forensic science as “the

reconstruction of past cloud computing events through the identification, acquisition,

preservation, examination, interpretation, and reporting of potential digital evidence”. In their

publication, the authors provided technical details on data collection and data analysis. They

also cover the legal aspect and gives concerns on the absence of standardised tools, practices,

and procedures. Shah and Malik (2014) identified these issues when the cloud was

progressively being widely used. They proposed a multi-layer approach to address these

challenges. Their methodology included a front end for the API interface and data acquisition

technique, a middle layer for logs, and a back end for the presentation of collected evidence.

Their case studies on cross-site scripting attacks and external intrusions could also provide

insights on how container runtime events and metadata might be effectively leveraged in real-

world forensic scenarios.

2.2 Security Concerns on Containerisation

Regarding container security, the study by Sultan, Ahmad and Dimitriou (2019) discusses

containers vulnerabilities, threats, and potential solutions. In their open research section, the

need for a structured method in digital forensics in this domain is important, but due to its

dynamic nature it remains particularly challenging. Indeed, containers are lightweight,

portable, and isolated software environments that can be rapidly scaled up or down depending

on resource demands, adding to the difficult of conducting efficient forensic investigations.

The NIST guide on application containers security written by Souppaya, Morello and

Scarfone (2017) highlights the importance to assess vulnerabilities, secure configuration, and

add automation to respond to security challenges in containerised environments. Containers,

registries, images, and orchestrators are considered as potential targets to cyber-threats.

Moreover, Tosatto, Ruiu and Attanasio (2015) identified challenges in container

orchestration systems. These clusters manage containers deployments and monitor their

activity. This adds complexity as they must ensure security across a dynamic and distributed

infrastructure. While containers provide isolation, there is still a risk of cross-contamination

of data between containers, which can complicate forensic investigations. In a rapidly

changing environment, ensuring the integrity and availability of data can be difficult as

events may be lost or overwritten during scaling operations. Also, some monitoring solutions

do not integrate well with these containerised environments, making it difficult to collect

runtime events and metadata necessary for forensic analysis. This paper provided insights in

container orchestration tools, which is a main element of the research to collect data after an

attack for forensic investigations.

2.3 Existing Containers Forensics Analysis

A few papers are specialised on digital forensics applied to containers and container

orchestration tools. The paper written by Hyder et al. (2023) was not publicly available and a

5

copy was sent following contact with the corresponding author. The authors describe the

demand for effective forensic methods to identify attacks on containerised applications. After

a dictionary attack on a local Kubernetes infrastructure hosting a WordPress application, the

paper investigates techniques to identify security incidents with the use of log monitoring and

alerting tools. This study inspired the lab design, further detailed in section 4. Focusing on

Kubernetes, Bagheri et al. (2023) proposed a non-disruptive proactive attack mitigation

strategy. This approach involves rapid data following potential security incidents to optimise

the efficiency of forensic investigations. This leads to a quicker analysis and response.

Runtime events are leveraged with the use of a large dataset of 231k alerts based on real-

world APT attacks.

 Another analysis was conducted directly on Docker containers in a conference paper

by Franco et al. (2023). The paper identified resource utilisation as an efficiency parameter

for the investigation of on an attack. During a crypto jacking attack on Docker containers, the

authors used honeypots to collect resources and network data for their forensic investigation.

The study discovered that resource patterns such as elevated CPU and RAM usage,

temperature spikes and abnormal network traffic were a sign of unauthorized crypto mining.

Watts et al. (2019) also used Docker, and the monitoring tool Prometheus, to optimise data

acquisition in the context of digital forensics. The research also collected performance

metrics from Prometheus such as memory data and operating events. These parameters

contribute to the analyse of container behaviour during forensic investigations. The paper

also noted the short lifetime of containers, impacting data collection in these dynamic

environments. Gharaibeh et al., (2024) presented a tool designed for the collection and

analysis of container checkpoints. By capturing container states, this approach contributes to

the integrity of collected evidence. The paper also identified gaps in existing research

regarding the collection of digital evidence from container environments, particularly in the

context of incident response and forensic analysis.

2.4 Research Niche

Table I compares the different papers mentioned above, in order of appearance, with their
strengths and limitations related to the contribution of this research.

Table 1: Literature contribution to the research question

Reference Ranking1 Contribution Limitations

Singh and

Chatterjee

(2017)

A
Presentation of challenges in cloud

environments for digital forensics.

No further research on the

identified open issues.

Edington

Alex and

Kishore

(2017)

Cited by

123

List of various challenges in cloud

forensics relevant to CaaS

environments, adding complexity

to data acquisition and integrity.

Limited discussion on

metadata utilisation and no

specificity on containers.

1 https://www.core.edu.au/conference-portal

https://www.core.edu.au/conference-portal

6

Herman et

al. (2020)

Cited by

36

Overview of forensic challenges in

cloud computing and highlighting

the importance to maintain the

integrity of metadata.

Limited to the identification

of challenges.

Shah and

Malik

(2014)

Cited by

27

Proposes a structured architecture

for cloud forensics, which can be

adapted to CaaS environments.

Lack of methodology details

for implementing the

forensic process.

Sultan,

Ahmad and

Dimitrou

(2017)

Cited by

270

Guide on containers security,

including forensics investigations

in the future research section.

Absence of real-world

application.

Souppaya,

Morello and

Scarfone

(2017)

Cited by

95

Presents threats affecting

containers, along with mitigations.

Scope does not cover cloud

environments.

Tosatto,

Ruiu and

Attanasio

(2015)

Cited by

129

Overview of containerisation, its

challenges, and discusses how

containers allow for rapid scaling

and dynamic resource allocation.

Does the implications of

runtime events and metadata

in forensic investigations

Hyder et al.

(2023)
C

Similar experiment conducted on a

local Kubernetes environment

with an exposed WordPress

application. Brute force attacks

were targeting WordPress.

Forensic investigations were

not performed on a cloud

environment.

Bagheri et

al. (2023)
B

Introduces a proactive, non-

disruptive attack mitigation

strategy that leverages runtime

events and alerts.

Does not involve the

maintaining of forensic

integrity and accuracy in

dynamic context.

Franco et

al. (2023)
B

Insights on identifying

performance metrics to indicate a

potential sign of a cyber-attack.

Forensic investigations were

not performed on a

container orchestration tool.

Watts et al.

(2019)

Cited by

25

Provides evidence that monitoring

tools like Prometheus can gather

performance data from containers.

Limited scope of metrics,

security-specific events

could provide insights in the

container behaviour.

Gharaibeh

et al. (2024)
B

Emphasizes the importance of

checkpointing container memory

and filesystem for forensic

purposes.

Limited scope on runtime

events and lack of

integration with

orchestration tools.

Related work has demonstrated that, due to its scalable and evolving nature,

performing digital forensics on cloud computing remains challenging. Containers on cloud

computing add even more complexity. With the increasing adoption of containerisation

technologies, organisations tend to deploy applications in these lightweight and portable

environments. Combined with the benefits of cloud computing, it is also possible to use

models such as Containers as a Service (CaaS). When performing container forensics on

public cloud environments, it is complex to collect and store data as containers are ephemeral

and data is volatile. Moreover, a few research papers have been developed on containers

7

forensics. However, no previous work has been done on collecting containers runtime events

and metadata from container orchestration tools in a public cloud environment. This research

encompasses cloud security, container security and digital forensics. Methodologies and best

practices will be detailed in this paper to optimise digital forensics in CaaS models and

benefit forensic investigators and cloud service providers.

3 Research Methodology

Following the literature review, a research methodology was defined to propose a solution to

validate the hypothesis that containers runtime events and metadata can optimise the

efficiency of digital forensics in public cloud infrastructures. As shown in Figure 2, the

research methodology consists of five steps namely state of the art, lab design, data

collection, data analysis, and evaluation and results.

Figure 2: Research methodology

The first step, State of the Art has been carried out in the previous sections of this paper.

The introduction presented the research question. The scalable nature of the public cloud and

the ephemeral status of containers represent challenges for digital forensics. To identify

related work, the previous section provided a critical analysis of the literature review. No

previous work has investigated attack evidence in Containers as a Service (CaaS)

environments.

The second step, Lab Design involved the creation of the testing environment to collect

data from Kubernetes, the container orchestration tool. Azure was the chosen public cloud,

on which a Kubernetes cluster was deployed. The vulnerable target was a WordPress site

installed and configured on this cluster. To perform digital forensics on this environment,

attacks were conducted on the exposed application from an external Kali Linux virtual

machine. Open-source tools were used from the attacker machine: X Brute Forcer for brute

force attacks and Apache JMeter for DoS attacks. The lab design was inspired by a paper

written by Hyder et al. (2023). The authors deployed a WordPress site on a local Kubernetes

environment to perform digital forensics and find evidence of a brute force attack attempt.

8

The third step, Data Collection gathered activity information following the attacks on the

Kubernetes cluster. As stated in the research question, the two primary sources were

container runtime events and metadata. To collect this data, pod logs on the terminal and on

Azure portal provided insights on container activity, such as login attempts to the wp-

login.php WordPress file. At the node level, Kubernetes events captured recent observations,

like unavailable containers or inactive endpoints, but also a description of object and node

metadata. For instance, node metadata displayed the resources allocated to each container.

Metrics on resource usage were also visualised in Grafana, which collects logs from

Prometheus, a monitoring tool.

The fourth step, Data Analysis identified potential attack evidence from the collected

data. The testing included three trials each for brute force and DoS attacks, thus six trials in

total. After each trial, hardening solutions were also implemented to compare results with

rate-limiting, IP address blocking, login attempts restrictions, and alert rules. The data was

structured in a table with the following parameters to categorise the attack: timestamp, event

type (e.g., login attempt, network activity) and description (e.g., WordPress target file, traffic

on port 80), resource utilisation (CPU, memory, network), number of attempts, duration, and

metadata details. Another table gathered information from the attack trials based on defined

efficiency parameters. These elements are resource utilisation, failed attempts, service

availability, and investigation duration. The analysis also involved comparing the two attack

types, and the events indicating these attacks.

The fifth step, Evaluation and Results measured the metrics identified from the analysed

data to provide statistics such as failed login attempts per second for each brute force attack,

CPU memory utilisation and service availability during DoS attacks, and packet rates for

both types of attacks. Findings from the collected data and implemented hardening solutions

were interpreted to demonstrated that data from containers runtime events and metadata can

optimise the efficiency of digital forensics. For instance, a spike in resource usage indicated a

potential DoS attack, multiple logins attempt in a brief period suggested brute force attacks,

and mitigation solutions based on these observations can help anticipate attacks. A theoretical

comparison with existing tools such as Falco provided additional information on digital

forensics applied to Kubernetes, as well as for other public cloud platforms like AWS and

local environments. Limitations from the testing process were identified, along with the

definition of scope for future work.

4 Design Specification

A realistic lab environment is essential to conduct forensics investigations in a public cloud-

hosted containerised environment (also known as CaaS - Containers as a Service

environments). The following subsections identify and present the high-level design for the

implemented architecture (in Subsection 4.1) as well as the associated requirements for

collecting and analysing evidence following the attacks (in Subsection 4.2).

4.1 System Architecture

9

Different components are required to set up the lab design: a public cloud infrastructure, a

container orchestration tool, a container-based web application, log monitoring and alerting,

and open-source tools to simulate attacks on the web application. Microsoft Azure was the

provided public cloud, it has a large toolset adapted to this research. Among its services,

Azure Kubernetes Services (AKS) has the role of the managed container orchestration tool.

Figure 3 presents the architecture diagram deployed on Azure.

Figure 3: Architecture diagram

On this diagram, an AKS cluster with Kubernetes v1.28.9 was deployed in a private

subnet. A NGINX ingress controlled the traffic with the external access from the internet,

through an internal load balancer, and the internal resources. Widely used as a solution for

the testing process for its simple configuration, WordPress v6.5.3 was implemented on

autoscaling AKS pods to provide high availability in a containerised environment. Another

subnet hosted the managed a MySQL v8.0.21 database to store WordPress media. The aim is

to conduct digital forensics on Containers as a Service environments; thus, the chosen

scenario is to target an exposed containerised WordPress application. This infrastructure was

analysed with Azure managed tools such as Azure Monitor, Log Analytics, Prometheus, and

Grafana. These tools are further detailed in the following subsection.

4.2 Flow of the Proposed Technique

The brute force and the Denial of Service (DoS) attacks are used as an attack model as part of

the experiment. These attacks were performed from a local Kali Linux 2024.2 virtual

machine which is not in the Azure environment. Figure 4 illustrates the overall workflow of

10

the proposed technique for the attack sequence and data collection. Before launching attacks,

it is important to underlie that Azure has a shared responsibility model2. The public cloud

provider is not responsible of its clients’ architecture. In the context of penetration testing,

activities on resources such as containers are permitted services3.

Figure 4: Attack sequence and information gathering

The attacks were launched using open-source tools: X Brute Forcer v1.2 for brute force

attacks, and Apache JMeter v5.6.3 for DoS attacks. Both targeted the WordPress login page

hosted on the AKS pods. To analyse the data for digital forensics, containers metadata was

collected from Kubernetes objects descriptions using Azure Cloud Shell. Containers runtime

events were gathered from logs in Azure Cloud Shell, Log Analytics in the Azure portal, and

Grafana with metrics sourced from Prometheus.

5 Implementation

For this research, the implementation of the proposed solution was carried out using Azure’s

managed services. Indeed, to demonstrate the efficiency of containers runtime events and

metadata in forensic investigations, a vulnerable web application was deployed on a container

orchestration tool via a cloud service provider. Table 2 provides the list of the main tools and

technologies used, based on the previously built architecture and attack flow.

Once the cluster was deployed with the vulnerable WordPress application, the attacks

were launched from the Kali Linux machine. The first challenge was ensuring that the cloud

service provider would not block the attacks. To confirm this, the web application was

2 https://learn.microsoft.com/en-us/azure/security/fundamentals/shared-responsibility
3 https://www.microsoft.com/en-us/msrc/pentest-rules-of-engagement

https://learn.microsoft.com/en-us/azure/security/fundamentals/shared-responsibility
https://www.microsoft.com/en-us/msrc/pentest-rules-of-engagement

11

deployed without any security hardenings. As mentioned in the research methodology, each

attack was performed in three trials to compare the results. With each trial, security

hardenings were progressively added based on the observations.

Table 2: Overview of tools and technologies participating in the testing process

Tools and Technologies Role

Azure Cloud Shell
Terminal used to deploy, configure, and manage the

Kubernetes cluster in the Azure public cloud environment.

Bash Scripting language opted in Azure Cloud Shell.

Kubernetes (AKS - Azure

Kubernetes Service)

Kubernetes v1.28.9 deployed via AKS in Azure Cloud Shell.

It has the role of the container orchestration tool.

kubectl
Command-line tool for interacting with the Kubernetes

objects and events in the cluster.

Helm
Packet manager used to deploy an ingress controller and

WordPress.

YAML

Language for Kubernetes manifests, describing object

metadata and runtime events. It also manages resources such

as network policies and rate-limiting configurations.

WordPress
Vulnerable web application hosted on the AKS cluster and

accessible via internet.

MySQL (Azure Database

for MySQL)
Database storing WordPress media content.

X Brute Forcer and

Apache JMeter

Open-source tools installed on a local Kali Linux machine to

perform brute force and Denial of Service (DoS) attacks,

respectively.

Prometheus and Grafana
Monitoring and visualisation tools for gathering information

on resource utilisation.

Azure Log Analytics
Azure tool used to create rules based on log queries from data

collected by Azure Monitor.

Microsoft Excel
Spreadsheet software to analyse the collected data and create

visualisations.

Brute force attacks require a list of passwords to attempt against targeted users. As

part of WordPress vulnerability assessment and detailed in the paper written by Kyaw,

Sioquim and Joseph (2015), the following URL was fetched to list the existing users who had

published on the WordPress application: <wordpress_ip_addess>/wp-json/wp/v2/users. To

ensure a successful match with one of the users’ passwords, a password from a list of the 500

worst passwords4 was added for the creation of a new user. X Brute Forcer was then launched

from the attacker machine, targeting the WordPress IP address with this list of weak

passwords.

Based on the elements gathered from the AKS cluster, and further detailed in the

evaluation section, the WordPress add-ons WPS Limit Login was implemented to block

4 https://www.skullsecurity.org/wiki/Passwords

https://www.skullsecurity.org/wiki/Passwords

12

access the login page when multiple login attempts occur in a brief period of time. As shown

in Figure 5, an alert rule was also configured to detect repeated patterns in container runtime

events, indicating a potential brute force attack.

Figure 5: Login attempt alert rule

Regarding the DoS attacks, Apache JMeter was used for load testing. After specifying

the WordPress IP address, the target file (e.g., wp-login.php), and a thread group of 3000

users, the attack was executed over an average duration of three minutes, during which the

site became unavailable due to resource overload.

Since tools like Azure Web Application Firewall (WAF) were not provided in this

research environment to mitigate DoS attacks, rate-limiting, IP blocking, and alerts were

configured based on data collected from the AKS cluster. Unlike the customed alerts created

for brute force attacks, pre-designed Prometheus alerts were used, as rules related to the pod

resource usage were included. Figures 6 and 7 display the configurations on rate-limiting and

IP blocking added to harden the AKS cluster.

13

Figure 7: Rate-limiting configuration

Figure 8: IP blocking rule

6 Evaluation

The aim of this experiment was to answer the research question of whether container runtime

events and metadata can contribute to optimising the efficiency of digital forensics on a

Containers as a Service (CaaS) environment. To achieve this, brute force, and Denial of

Service (DoS) attacks were performed on an exposed containerised application hosted in a

public cloud environment. Considering the ephemeral status of containers and the limitations

of a lab environment managed by a cloud service provider, the objective of this research was

to identify whether traces of evidence could remain and be accessible after a cyberattack.

Metrics were defined to identify the efficiency parameters; they reflect how forensic

investigations can be conducted using containers runtime events and metadata.

6.1 Pertinence of Container Runtime Events in Attack Detection

As part of the forensics investigations, it is essential to identify elements that can determine

the cause and the impact of the attack. As mentioned in the design specification section,

container runtime events were collected to assess whether the information could contribute to

the forensic investigations. By providing real-time information about the state and behaviour

of containers, this data is essential for identifying anomalies and understanding the sequence

of events leading to an incident. To provide a comparative analysis, brute force, and Denial of

Service (DoS) attacks were conducted, each with three trials and progressively implemented

security hardenings. Runtime events were collected from Kubernetes events with information

on the state changes and decisions made by the control plane (e.g., pod creation, deletion, and

errors), the cluster terminal for logs from applications inside containers, and Grafana for

performance metrics.

Combined with metrics defining the efficiency parameters, it was observed that

specific container runtime events and metadata, such as multiple attempts to log in and spike

in resource utilisation, are indicators of these cyber-attacks. Moreover, the analysis involving

security measures on the second and third trials demonstrated that real-time monitoring of

14

container runtime events reduced the time required to detect and respond to cyber-attacks.

Table 3 presents the combined collected data from the container runtime events following

both attacks, highlighting relevant pattern associated with these threats.

Table 3: Collected data on efficiency parameters

Metrics Brute force attack DoS attack

Total attempts 1500 9000

Avg. CPU 68% 86%

Avg. Memory 215 MB 603 MB

Avg. Packet Rate 407 p/s 510 p/s

Avg. Attack Duration 90s 360s

Avg. Failed attempts 99,9% (1 success in trial 1) When the pod is restarting

Avg. Service availability Login page blocked from 10

to 20min for trials 2 and 3

2 restarts of pod during the

attack

Avg. Investigation Duration Alert detection in 5min Alert detection in 5min

Common events Login attempts Network activity

 As shown in Figure 9, it was observed on the container logs a repetitive attempt

access to the WordPress login page (e.g., wp-login.php) in a brief period of time. On the

second trial, a security add-on was implemented along with an alert rule. The login page was

not accessible after a certain number of attempts. This result highlights a decrease in the login

attempts per second across trials indicating that the attack is less effective.

Figure 9: Failed login attempts per second on brute force attacks

Following DoS attacks, CPU usage for the three trials were above 80% with a spike at

90%. Memory usage was also elevated with a minimum of 500MB and a spike at 800 MB for

the second trial. Important levels of resource utilisation can indicate the impact on the system,

and consequently the severity of the attack. The second trial indicated spikes in CPU and

memory usage. It can suggest an effective attack mitigation, such as rate limiting or request

filtering. However, the third trial showed comparable results to the first trial as presented in

Figure 10. The current resource allocation in the node was not sufficient for the pods

managing the WordPress site. Node metadata displays this type of information. Indeed, CPU

throttling, and memory could be scaled up to these pods in the node to ensure the availability

15

of the web application. However, on a regular basis these pods do not require all the allocated

resources. Consistent pod restarts across trials suggested a strained recovery mechanism.

Pods were restarted to handle high traffic, due to the prolonged DoS attacks. Additionally, a

high packet rate was observed and coincided with the performance degradation indicating the

attack's impact on the system.

Figure 10: Resource usage during DoS attacks

It is interesting to mention that the number of attempts for both attacks were different:

500 for brute force attacks, and 3000 for DoS attacks. The same number of attempts could

have shown comparable results. Once the alerts were configured, the detection time based on

container runtime events and metadata was checked at an interval of 5 minutes. This duration

time can be reduced, but it will also increase cloud costs. Indeed, shorter investigation times

provide efficient detection and response mechanisms.

6.2 Impact of Container Metadata on Forensic Analysis

To understand the context of runtime events, metadata is an essential component. It provides

static and dynamic information about the containers, the configuration, and the state of the

container orchestration environment. Data was collected from Kubernetes resources (e.g.,

pods, deployments, services). Labels, annotations, resource specifications, but also status

field are specified in this type of data. As mentioned in the previous subsection, node

metadata also contributes to the forensic analysis. Elements such as node capacity and current

resource usage can provide insights about the state of the cluster.

For instance, Figures 11 and 12 displays metadata related to pods and nodes.

Following a DoS attack, it revealed that killed processes led to the to the restart of pods,

highlighting the impact of the attack on the system. By identifying additional information on

the container orchestration tool activity, metadata improves the accuracy of forensic

investigations, leading to a better detection.

16

Figure 11: Pods metadata after a DoS attack

Figure 12: Node events on resource usage after a DoS attack

6.3 Comparison with Existing Tools

Microsoft Azure is not the only cloud service provider offering Containers as a Service

(CaaS) environments. Amazon Elastic Kubernetes Service (Amazon EKS) from Amazon

Web Services (AWS) is also widely used. Unlike Azure, AWS has a forensic tool named

Amazon Automated Forensics Orchestrator for Amazon EC2. This solution provides a

workflow to automate forensic processes and gathering collected data. Based on theoretical

approach, it can capture data from an instance, and in the context of this research, it would be

the instance where the container orchestration tool is deployed. As described in EKS

documentation5, this forensic tool can capture the container runtime events for the operating

system memory. However, it is noted on the product page6 that this tool is not suitable for

every use cases.

 Open-source runtime security tools like Falco is regularly mentioned to conduct

forensics investigation on Kubernetes environments. This agnostic solution monitors

container activity and can suspect suspicious behaviour using security rules. It is employed to

analyse evidence, determine the root cause, and understand attacker’s actions. As described

by Bisson (2024), Falco can be installed on Azure and can be integrated with Azure Security

Information and Event Management (SIEM) such as Sentinel and monitoring tools like Azure

Monitor. According to the technical documentation written by Shankar (2021), security rules

can be optimised to be more context-aware with container runtime events and metadata,

reducing false positives and improving the accuracy of attack detection. For instance,

knowing the expected resource usage of specific containers can help in detecting a potential

Denial of Service (DoS) attack. In a blog posted on Sysdig website, the creator of Falco,

5 https://aws.github.io/aws-eks-best-practices/security/docs/incidents/
6 https://docs.aws.amazon.com/solutions/latest/automated-forensics-orchestrator-for-amazon-ec2/welcome.html

https://aws.github.io/aws-eks-best-practices/security/docs/incidents/
https://docs.aws.amazon.com/solutions/latest/automated-forensics-orchestrator-for-amazon-ec2/welcome.html

17

Douglas (2022) highlights that container runtime events such as unwanted IP address can be

used in Falco rules to mitigate DoS attacks. On a scientific approach, Bagheri et al. (2023)

used Falco in the Kubernetes cluster to create a dataset of threat alerts as part of a non-

disruptive proactive mitigation approach to cyber-attacks.

6.4 Challenges in Leveraging Containers Data in Forensics

When using container runtime events and metadata for forensics investigations in this

experiment, some challenges were encountered. The multiple data sources and the large

volume of information made it difficult to effectively trace the attack in a short response time.

A tool to gather and analyse this data would have been beneficial. Unlike AWS, Azure do not

have a dedicated tool for forensics investigations. While Azure Sentinel and Azure Monitor

Investigator could have provided similar functionality, they were not accessible in this

research environment. Falco could have been a potential solution, but it required additional

time, learning, and practical experience on this open-source tool.

Some errors occurred during the testing process. Among them, the Prometheus alerts

were not triggered during the DoS attack. While Grafana dashboards showed high CPU

usage, node metadata indicated low CPU usage for the WordPress pods. It was due to the

overall resources allocated to the node rather than the individual pods. Kubernetes is a

complex infrastructure, even more when it is partially managed by the service cloud provider.

Despite configuring the rate limiting on the ingress controller, as shown in Figure 13, the logs

indicated that the WordPress service still went down.

Figure 13: Ingress controller logs

Initially, accuracy was one of the efficiency parameters. However, due to the public

cloud environment and its associated costs, the lab was only launched during the attack trials.

Thus, it would have not been relevant to measure only these data collected during and after

an attack, particularly for false positives/negatives.

6.5 Discussion

During brute force and DoS attacks, the forensic investigation identified key elements from

the container runtime events and metadata highlighting attack evidence. Information such as

the victim pod, the target file, or the attacker IP address were traced. Given the dynamic

nature of containers and the managed infrastructure hosted on a public cloud, the attacks were

successful, and data was collected both live on Azure and offline from the cluster terminal.

This reverse engineering process went back to the event of the attacks, who committed it,

when it occurred, whether it was successful, what access the attacker had, and what actions

18

they took. Patterns from the container runtime events and metadata was determined: a high

number of file access and multiple logins attempts during brute force attacks; spike in

resource utilisation, increased packet rates and service unavailability during DoS attacks.

 Three trials were conducted for each attack. However, this was insufficient to evaluate

the accuracy of forensic investigations. Additionally, the web application remained

vulnerable and implementing further security measures, such as the hardening of WordPress

and adding an HTTPS certificate, would have been more pertinent for the analysis. The

integration of a security tool like Falco could have improved the forensic investigations.

This research did not involve participants informed consent and use of dataset. As the

context environment is a public cloud, the lab design was compliant with GDPR by ensuring

the data was stored in the European Union. In alignment with the research objectives, this

work contributed to the goal 97 of the United Nations Sustainability Goals. Indeed, this

research aims for the development of a resilient infrastructure, prioritising on innovation.

Containers as a Service (CaaS) environments represent a minimalist approach of

infrastructure for hosting and managing applications. By optimising digital forensic

investigations on public cloud-based containerised environments, the research improves

digital infrastructure. While there has been research on local Kubernetes environments, no

studies on digital forensics in CaaS environments have been published yet.

7 Conclusion and Future Work

The aim of this research was to validate whether container runtime events and metadata

hosted on a public cloud environment can optimise digital forensics and to identify

challenges involved in leveraging this type of data. This research proposes a lab setup of a

containerised WordPress application hosted on Azure Kubernetes Service (AKS). Two types

of attacks, namely brute force and Denial of Service (DoS), were performed on this exposed

application with three trials each. Data was collected from container orchestration tool events

and objects, WordPress container logs, and Grafana for performance metrics.

Results demonstrate that specific patterns from containers runtime events and metadata,

such as repetitive login page access attempts in a brief period, indicate potential brute force

attacks, and traces of IP addresses, a spike in resource utilisation captured the node metadata

and Grafana, and pods restart leading to service unavailability are signs of DoS attacks.

Metadata provides a better understanding of containers runtime events. These two types of

information improve the detection response with appropriate security hardenings and the

configuration of alert rules.

A comparison with existing tools revealed that forensics tools are available in other

Containers as a Service (CaaS) environments such as Amazon Automated Forensics

Orchestrator, and open-source and agnostic tools like Falco. However, a limitation of this

study is the complexity of measure the accuracy to truly capture diverse real-world

application. The absence of a forensic tool aggregates data from the various sources would

have optimise the handling of a large volumes of information.

7 https://sdgs.un.org/goals

https://sdgs.un.org/goals

19

This research can enhance digital forensics on containers, especially in public cloud

environments. This work can be improved by complexifying the attacks. For instance, to

differentiate brute force from the DoS attacks when there are launched simultaneously, to add

other types of cyber-attacks, or to perform an attack from the target pod. Another target in the

container orchestration tool could also provide additional insights in container forensics. In

terms of a solution for any containerised environment (e.g., public, private, multi-cloud),

more research must be carried out with the use of Falco.

References

Bagheri, S. et al. (2023) ‘Warping the Defence Timeline: Non-Disruptive Proactive Attack

Mitigation for Kubernetes , in ICC 2023 - IEEE International Conference on

Communications. Rome, Italy, 28 May - 01 June 2023, pp. 777–782, IEEE Xplore. Available

at: https://doi.org/10.1109/ICC45041.2023.10278632 [Accessed 03 August 2024].

Bisson, S. (2024) ‘Securing Azure Kubernetes with Falco’, InfoWorld, 15 May. Available at:

https://www.infoworld.com/article/2336407/securing-azure-kubernetes-with-falco.html

[Accessed 27 August 2024].

Douglas, N. (2022) ‘Preventing DoS Kubernetes using Falco and Calico’, Sysdig, 10 October.

Available at: https://sysdig.com/blog/denial-of-service-kubernetes-calico-falco/ [Accessed:

03 August 2024].

Edington Alex, M. and Kishore, R. (2017) ‘Forensics framework for cloud

computing’,Computers & Electrical Engineering, 60, pp. 193–205, Elsevier. Available at:

https://doi.org/10.1016/j.compeleceng.2017.02.006 [Accessed 07 August 2024].

Franco, J. et al. (2023) ‘Forensic Analysis of Cryptojacking in Host-Based Docker

Containers Using Honeypots’, in ICC 2023 - IEEE International Conference on

Communications. Rome, Italy, 28 May - 01 June 2023, pp. 4860–4865, IEEE Xplore.

Available at: https://doi.org/10.1109/ICC45041.2023.10278764 [Accessed 13 February

2024].

Gharaibeh, T. et al. (2024) ‘Don’t, Stop, Drop, Pause: Forensics of CONtainer CheckPOINTs

(ConPoint)’, in The 19th International Conference on Availability,Reliability and Security

(ARES 2024). Vienna, Austria, 30 July - 02 August 2024, pp. 1–11, ACM. Available at:

https://doi.org/10.1145/3664476.3670895 [Accessed 26 August 2024].

Herman, M. et al. (2020) NIST cloud computing forensic science challenges. NIST IR8006.

Gaithersburg, MD, USA: National Institute of Standards and Technology. Available at:

https://doi.org/10.6028/NIST.IR.8006 [Accessed 16 February 2024].

Hyder, M.F. et al. (2023) ‘Towards Digital Forensics Investigation of WordPress

Applications Running Over Kubernetes’, IETE Journal of Research, 70(4), pp. 3856–3871,

Taylor and Francis Online. Available at:https://doi.org/10.1080/03772063.2023.2195837

[Accessed 13 February 2024].

Kyaw, A.K., Sioquim, F. and Joseph, J. (2015) ‘Dictionary attack on Wordpress: Security

and forensic in. 2015 Second International Conference onInformation Security and Cyber

20

Forensics (InfoSec), Cape Town, South Africa, 15-17November 2015, pp. 158–164, IEEE

Xplore. Available at: https://doi.org/10.1109/InfoSec.2015.7435522 [Accessed 06 June 2024.

Mosca, P. et al. (2014) ‘Cloud Security: Services, Risks, and a Case Study on Amazon Cloud

Services’, International Journal of Communications, Network and SystemSciences, 07(12),

pp. 529–535. ResearchGate. Available at: https://doi.org/10.4236/ijcns.2014.712053

[Accessed 27 August 2024].

Shah, J.J. and Malik, L.G. (2014) ‘An approach towards digital forensic framework

forcloud’, in 2014 IEEE International Advance Computing Conference (IACC), Gurgaon,

India, 21-22 February 2014, pp. 798–801, IEEE Xplore. Available at:

https://doi.org/10.1109/IAdCC.2014.6779425 [Accessed 26 August 2024].

Shankar, P. (2021) ‘Getting started with Kubernetes audit logs and Falco’, Sysdig, 9

February. Available at: https://sysdig.com/blog/kubernetes-audit-log-falco/ [Accessed 03

August 2024].

Singh, A. and Chatterjee, K. (2017) ‘Cloud security issues and challenges: A survey’,Journal

of Network and Computer Applications, 79, pp. 88–115, Elsevier. Available at:

https://doi.org/10.1016/j.jnca.2016.11.027 [Accessed 30 January 2024].

Souppaya, M., Morello, J. and Scarfone, K. (2017) Application container security guide.

NIST SP 800-190. Gaithersburg, MD, USA: National Institute of Standards and Technology.

Available at: https://doi.org/10.6028/NIST.SP.800-190 [Accessed 12 February 2024].

Sultan, S., Ahmad, I. and Dimitriou, T. (2019) ‘Container Security: Issues, Challenges,and

the Road Ahead’, IEEE Access, 7, pp. 52976–52996, IEEE Xplore. Available at:

https://doi.org/10.1109/ACCESS.2019.2911732 [Accessed 26 January 2024].

Tosatto, A., Ruiu, P. and Attanasio, A. (2015) ‘Container-Based Orchestration in Cloud:

State of the Art and , in 2015 Ninth International Conference onComplex, Intelligent, and

Software Intensive Systems, Santa Catarina, Brazil, 08-10 July 2015 pp. 70–75, IEEE Xplore.

Available at: https://doi.org/10.1109/CISIS.2015.35 [Accessed 26 August 2024].

Watts, T. et al. (2019) ‘Insight from a Docker Container Introspection’, in Proceedingsof the

52nd Hawaii International Conference on System Sciences, ResearchGate. Available at:

https://doi.org/10.24251/hicss.2019.863 [Accessed 27 August 2024].

