

Hybrid Detection of Cross-Site Scripting

(XSS) Vulnerabilities in Web Applications

MSc Industrial Internship

MSc Cyber Security

Yogesh Anandhakumar

Student ID: x23167998

School of Computing

National College of Ireland

Supervisor: Kamil Mahajan

National College of Ireland

MSc Project Submission Sheet

School of Computing

Student Name:

Yogesh Anandhakumar

Student ID:

x23167998

Programme:

MSc Cyber Security

Year:

2023-2024

Module:

MSc Industrial Internship

Supervisor:

Kamil Mahajan

Submission Due

Date:

02/09/2024

Project Title:

Hybrid Detection of Cross-Site Scripting (XSS) Vulnerability in Web

Applications

Word Count:

6247 Page Count: 19

I hereby certify that the information contained in this (my submission) is information

pertaining to research I conducted for this project. All information other than my own

contribution will be fully referenced and listed in the relevant bibliography section at the

rear of the project.

ALL internet material must be referenced in the bibliography section. Students are

required to use the Referencing Standard specified in the report template. To use other

author's written or electronic work is illegal (plagiarism) and may result in disciplinary

action.

Signature:

Yogesh Anandhakumar

Date:

02/09/2024

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple

copies)

□

Attach a Moodle submission receipt of the online project

submission, to each project (including multiple copies).

□

You must ensure that you retain a HARD COPY of the project,

both for your own reference and in case a project is lost or mislaid. It is

not sufficient to keep a copy on computer.

□

Assignments that are submitted to the Programme Coordinator Office must be placed

into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

1

Hybrid Detection of Cross-Site Scripting (XSS)

Vulnerability in Web Applications

Yogesh Anandhakumar

x23167998

Abstract

Cross-Site Scripting (XSS) is a vulnerability for web applications and their security,

by which attackers can inject malicious JavaScript into the system, leading to account

takeover, session hijacking, or cookie stealing, among other issues. To address this, the

research introduces a novel hybrid XSS detection approach and its implementation in the

form of a tool named XSSFind. This tool integrates Static Application Security Testing

with Dynamic Application Security Testing methodologies through white-box and black-

box testing techniques to improve the discovery rate of cross-site scripting vulnerabilities.

This work was motivated by existing tools that rely either on static or dynamic analysis

but cannot provide comprehensive coverage. XSSFind offers the strength of both static

and dynamic approaches, detecting vulnerabilities at the code level and runtime level-

wise, thereby enabling a comprehensive security assessment. Results show that these

combined approaches have given required results in terms of finding actual XSS

vulnerabilities, making them a promising addition to the web security community. The

findings further suggest directions for future improvement, such as extending payload

libraries and detection models based on machine learning.

1 Introduction

Web application have been essential for daily life purposes such as online shopping, banking,

and other services(Garcia-Alfaro and Navarro-Arribas 2007). Modern enterprise systems

require their web applications for service delivery and user data management, but since most

of these applications involves private information, the whole operation has to be as secure as

possible(Garcia-Alfaro and Navarro-Arribas 2007). Rising dependence on web applications

brought along a larger attack surface in the form of security vulnerabilities. Of these, XSS

vulnerabilities are among the most dangerous and widespread (Hannousse, Yahiouche and

Nait-Hamoud, 2024). According to Open Web Application Security Project (OWASP), in the

case of XSS vulnerability, attackers can use malicious JavaScript on the behalf of victim in the

browser of the victim. XSS vulnerabilities (Mahmoud et al. 2017) enable attackers to execute

malicious scripts into web pages the victim has access to, and these codes are run in browsers,

enabling many attacks such as data theft, session hijacking, or even changing the content of the

affected page1. The newest version of OWASP Top 102 has seen XSS vulnerabilities rise from

#A07 in the year 2017 to a higher position at #A03, as they present both high severity and

prevalence over recent years. Although with solutions available, many web applications are

still vulnerable to XSS vulnerabilities because the detection level is not advanced enough to

detect these vulnerabilities3. Therefore, a unified tool that addresses all forms of XSS

vulnerabilities can be highly advantageous. The aim of this research is to develop a generic

tool that merges Static Application Security Testing (SAST) and Dynamic Application

1 https://owasp.org/Top10/A03_2021-Injection/
2 https://owasp.org/Top10/
3 https://www.bleepingcomputer.com/news/security/high-severity-gitlab-flaw-lets-attackers-take-over-accounts/

https://owasp.org/Top10/A03_2021-Injection/
https://owasp.org/Top10/
https://www.bleepingcomputer.com/news/security/high-severity-gitlab-flaw-lets-attackers-take-over-accounts/

2

Security Testing (DAST) to improve the detection of XSS vulnerabilities by leveraging

strengths of both code-level and runtime-level analysis. SAST can identify issues within the

source code without execution, while DAST involves interacting with the application in its

operational or runtime environment.

1.1 Research Question

The research question posed in this thesis is -

“How does the integration of static & dynamic analysis security techniques enhance the

detection of XSS vulnerabilities in web applications?”

1.2 Research Objectives:

The goal of this research has proposed a hybrid XSS detection tool that merges the strength of

both SAST and DAST. The research objectives are as follows:

• Undertake a literature review to identify the implementations of static and dynamic

analysis.

• Develop a hybrid method that integrates static and dynamic analysis to detect XSS

vulnerabilities more effectively.

• Develop a tool to perform hybrid analysis and compare the tool against existing

solutions, such as Snyk4 for SAST and Burp Suite5 for DAST, to assess its accuracy,

and false positive rate.

• Design a user-friendly interface that simplifies the scanning process and generates clear

and detailed reports.

This research contributes towards enhancing web application security by offering an effective

solution for detecting XSS vulnerabilities.

2 Related Work

XSS vulnerability detection in web security has been a domain of wide research. Since then,

different techniques of protecting against these attacks have been proposed, each presenting its

strengths and weaknesses. This section critically reviews the existing literature of approaches

to detecting XSS, where the main focus will be on static analysis (SAST), dynamic analysis

(DAST), and techniques that use both approaches.

2.1 XSS Detection in Web Applications

Cross-Site Scripting vulnerability is a kind of Injection vulnerability that allows the attacker to

inject their malicious code or payloads in a website that has XSS vulnerabilities(OWASP -

XSS 2024). There are three types of XSS vulnerabilities: DOM-based XSS, Reflected XSS,

and Stored XSS.

DOM-based XSS occurs when the JavaScript code of the web page directly uses the user input

without a proper check. This allows the attacker to embed their own malicious code within a

payload and transmit it to the unsuspecting victim. Once the victim opens it, the attacker's

4 https://snyk.io/
5 https://portswigger.net/burp

https://snyk.io/
https://portswigger.net/burp

3

malicious code will execute directly in the user’s browser, possibly carrying out harmful

actions like session hijacking, redirects to malicious web pages, etc(Portswigger, 2024). In

reflected XSS, an attacker sends the payload inside a URL to a victim; upon clicking by the

victim, the payload is executed. This has also been called non-persistent XSS (Nidecki, 2024).

Stored XSS is where the attacker crafts a payload and sends it to the Web application; then, the

Web application stores it in its database. Then the payload will execute for everyone who

comes on that particular payload injected webpage of the web application (TrendMicro, 2023).

Detection of XSS in Web applications is basically identifying vulnerabilities that can be used

to inject the malicious scripts in the web pages, which can sometimes lead to session hacking

and data theft (Cui, Cui and Hu, 2020). Tools like “XSS-Check” were developed by Jasmine

Devi and George (2017) that would take the URL and file and inject payloads to discover the

XSS vulnerability. The work on the study of XSS vulnerability was done in great detail by Di

Lucca et al. (2004) showing the lacunas that might bring in the attack. Research has concluded

that this XSS vulnerability is a critical issue and although many existing methods are here, still

a lot of improvement is needed. According to Sarmah, U., Bhattacharyya, D.K., Kalita, J.K.

(2018), a lot of improvements have come, and tools are created, but still a gap exists because

emerging web vulnerabilities are getting complex. According to Liu et al. (2019) in their

survey, they have differentiated the different types of methods to find XSS vulnerability.

Broadly they can be classified as static, dynamic, and hybrid analysis techniques. Baranwal

(2012) compared and analysed tools that can be used to mitigate SQL injection and XSS

attacks. It is also concluded as that there is still a lot more improvement required because the

web changes every day. Baranwal (2012) further explains that the tools being used are not

100% accurate; the false positive incomplete coverage of the attacks are some of the existing

problems that need to be addressed.

2.2 Static Analysis of XSS Vulnerabilities in Web Applications

SAST is a method of security analysis used to secure the web applications, by analysing it’s

source code without running the application. Wassermann and Su (2008) have mentioned that

the XSS vulnerability has been the high reporting 21.5% of vulnerability in 2006. They

proposed a tool which bridged the gap on false positives with static analysis. It focuses on both

unchecked and inadequate checked inputs. Jingyu et al. (2021) have used a subsequence

matching algorithm that identifies the common subsequence input parameters and generates

the data which detects the XSS attacks. It has mainly focused on the DOM-based XSS,

Reflected XSS and Stored XSS. Jovanovic, Kruegel and Kirda (2006) created a tool called

Pixy which is a static analysis tool for XSS vulnerability specifically for PHP applications. It

used context-sensitive data flow analysis, flow sensitive, and intraprocedural to identify taint-

style vulnerabilities with SQL injection. However, it does not support object-oriented of PHP.

Talib and Doh (2021) have done a review on the SAST tools. In this paper, the authors

identified seven tools such as PHPCS, PhsSAFE, Pixy, RIPS, VisualCodeGrepper (VCG),

Web Application Protection (WAP), and YASCA. They came across accuracy that is as high

as 96.8% to 0.6%.

2.3 Dynamic Analysis of XSS Vulnerabilities in Web Applications

DAST is also a method of security analysis used to secure the web applications, by testing the

running web application manually or using automated tools. Singh et al. (2015) have

proposed a tool which finds vulnerabilities in web application for SQLI or XSS. It uses

payloads to perform the attack on the loopholes and analyse the response, this tool is effective

on JavaScript inputs. The study performed by Abikoye et al. (2020) was on SQLI and XSS

attack, they proposed a tool that uses the Knuth-Morris-Pratt (KMP) string machine

4

algorithm. The system was developed using a PHP and Apache XAMPP server where it is

comparing the user input with the known attack pattern to find the vulnerability. In the

research of Stock et al. (2014), they have researched about the tools for client-side Cross-Site

Scripting (XSS) filters, which includes Chrome’s XSS Auditor and other tools which relies

on the string-based matching technique; it comes to light that it mostly bypasses the non-

trivial injection contexts and because of that attackers can exploit the system. They proposed

a model using dynamic taint tracking with the combination of taint-aware parsers. It keeps on

tracking the characters within the browser for the detection whenever an attacker tries to

control the inputs through executed code. This mitigates the parsing of malicious inputs at

runtime. Gupta, Singh and Dixit (2017) have used the Intrusion Detection System -Snort to

find the XSS attack in the web application. The system uses network packets and through

signature-based it identifies the malicious patterns and detect the XSS attack.

2.4 Hybrid Analysis of XSS Vulnerabilities in Web Applications

Choi et al. (2017) have introduced a hybrid system with static string analysis and dynamic

browser rendering. They used PhantomJS, a headless browser to find the XSS vulnerability.

The system successfully identified 55 unique XSS vulnerabilities and gave low false positives.

In the research conducted by Mubaiwa and Mukosera (2022) they have specifically targeted

SQL injection and XSS with the use of white box and black box testing techniques. In this

model they have used a crawler, fuzzing component with report generating, which has given

high accuracy then the scanners like Vegam and Arachini. This tool needs to be optimized in

terms of scan time.

2.5 Research Gap Identified

The research has been intensive within the scope of web security for the development of a

system by both SAST and DAST in detecting XSS vulnerabilities. Literature available suggests

that SAST is one of the ways to ensure that the vulnerability could be determined at the earlier

stage in the software life cycle process through source code analysis. Research on SAST has

shown it to be implemented effectively in the discovery of some of the most common security

vulnerabilities, such as injection attacks and insecure deserialization. etc. DAST, on the other

hand, is known to complement well with SAST and is effective for the discovery of runtime

vulnerabilities through attack simulations on a live running application. Findings from such

studies indicates that a combination of both SAST and DAST methods can give more

comprehensive security testing than is achieved individually6. The current project extended

this awareness and also the company which I worked as an AppSec intern also researching to

develop a comprehensive tool of both approaches, with an intention to enhance the detection

of XSS vulnerabilities in Python-based web applications.

3 Research Methodology

This section provides a detailed description of the research methodology employed to develop

and evaluate the proposed hybrid Cross-Site Scripting (XSS) detection tool, XSSFind. The

methodology combines both static and dynamic techniques in the enhancement of the accuracy

of detecting XSS vulnerabilities. This methodology was used in the detection of the XSS

vulnerabilities in web applications.

6 https://circleci.com/blog/sast-vs-dast-when-to-use-them/

https://circleci.com/blog/sast-vs-dast-when-to-use-them/

5

3.1 Research Procedure

Developing a hybrid XSS detection tool that combines Static Application Security Testing

(SAST) technique and Dynamic Application Security Testing (DAST) technique, was the aim

of this research. There are lots of tools available in the market performing either SAST or

DAST. For doing the SAST, there are tools like Snyk, Fortify SCA, SonarQube, and many

more to do the source code analysis and give a result of vulnerability report. Many tools are

developed for DAST, such as Burp Suite, Acunetix, Nikto, among others. None of them

provides hybrid methodology, which means SAST + DAST. So, in this research proposed tool

development of a comprehensive hybrid detection of XSS vulnerability in web applications.

Therefore, to show the practical work of hybrid methodology, a tool using python was

developed, which does SAST, DAST, and hybrid analysis. Furthermore, to compare the

effectiveness of the hybrid method, this research has utilized Burp Suite, a web application

scanner for the comparison between DAST analyses and Snyk, a source code analysis tool for

the comparison between SAST analyses.

3.2 Proposed Tool Development & Detection methods:

Python and HTML were used in the development of the hybrid XSS detection tool - XSSFind.

Continuous testing and improvement were done during the development process of XSSFind

to enhance the tool’s detecting capabilities and report generation capabilities.

• Static Analysis (SAST): The SAST tool (sast.py) was created using Python to analyse

the source code of web applications to detect possible XSS vulnerabilities without

executing the code.

• Dynamic Analysis (DAST): The DAST tool (dast.py) was created using

BeautifulSoup, concurrent.futures, requests, selenium library in it, so it could automate

web browser interactions, etc., to mimic like real user behaviour.

• Hybrid Analysis: The hybrid analysis tool (hybrid_tool.py), was created by combining

the sast.py and dast.py, where it could do static analysis security texting (SAST) and

dynamic analysis security testing (DAST).

• Web Interface: The web interface should be user friendly and options to select the

mode of analysis.

3.3 Workflow Description

The workflow of the XSSFind tool involved the following steps:

• Initialization: The user runs the app.py, a web UI will run in the local host.

• Input Submission: The user submits either the source code of a web application or a

URL or both for performing an analysis.

• Static Analysis: The SAST tool analyses the source code for detecting vulnerabilities

in the source code using regular expressions and patterns or string matching.

• Dynamic Analysis: The DAST tool simulates real-world user interactions with the web

application, injecting test payloads to identify XSS vulnerabilities, which happens

during the runtime of the target web application.

• Result Integration: The hybrid tool combines the findings from both the static and

dynamic analysis and provides a comprehensive vulnerability report.

• Report Generation: The final report is automatically generated and saved in the tool

directory, which explains the detected vulnerabilities with providing recommendations

for mitigation.

6

4 Design Specification

This section outlines the design and architecture of the hybrid XSS detection tool - XSSFind,

developed as part of this research. The design focuses on integrating Static Application

Security Testing (SAST) and Dynamic Application Security Testing (DAST) techniques to

create a robust solution capable of detecting a wide range of Cross-Site Scripting (XSS)

vulnerabilities. The design specification covers the system architecture, component

interactions, algorithmic approaches, user interface considerations, and system requirements.

4.1 Proposed System Architecture

The XSSFind tool’s architecture was designed to support the integration of static (SAST) and

dynamic (DAST) analysis techniques. This tool was developed with separate codes for Hybrid

method, SAST method and DAST method, in order to generate a detailed report after each

analysis phase.

• Initiation: Once app.py is executed, a flask application runs at localhost at port 5000,

a user interface is there in the web UI, where user inputs like source code or URL can

be given.

• Input: The tool accepts the source code of a web application for SAST or a URL for

DAST, or both source code and URL for Hybrid.

• Processing: The static, dynamic, and hybrid tools process their inputs independently,

after analysis it generates detailed reports.

• Output: The sast.py and dast.py give the actual results. The hybrid tool merges the

results of SAST & DAST analyses, producing a comprehensive report of the detected

vulnerabilities.

Figure 1: XSSFind Architecture7

Figure 1 above is the architecture of the hybrid method proposed for this research, developed

using the “online.visual-paradigm” website.

7 https://online.visual-paradigm.com/

https://online.visual-paradigm.com/

7

4.1.1 SAST – XSSFind

This tool uses regular expressions matching and string analysis techniques to identify common

XSS patterns, such as Unsanitized User Input, DOM Manipulation issues, Stored User input,

etc. Then finally gives a detailed report of detected vulnerabilities. Figure 2 illustrates the

different patterns used to match and identify XSS within the sast.py code.

Figure 2: XSSFind – sast.py

4.1.2 Dynamic – XSSFind

Once the target URL is given and the tool starts crawling the website and injects the malicious

payloads into different entry points or input fields, forms are present on the website to detect

the XSS vulnerability during running of website. Then finally provides a detailed report of

detected vulnerabilities. Below Figure 3, represents the dast.py code in the tool repo.

Figure 3: XSSFind – dast.py

4.1.3 Hybrid – XSSFind

It is developed by combining the sast.py and dast.py, where it does static analysis security

texting (SAST) and dynamic analysis security testing (DAST). Then provides a comprehensive

detailed report of detected vulnerabilities, which consists of both SAST & DAST

vulnerabilities. Below Figure 4 represents the hybrid_tool.py code of the tool repo.

8

Figure 4 XSSFind – hybrid_tool.py

4.1.4 Web Interface – XSSFind

Web Interface is created using Flask, and it is built separately in a file named – app.py. Once

this tool is executed, a flask application will be running in the localhost at port 5000, there the

testing inputs has to be given, like source code for SAST, URL for DAST, and source code &

URL for hybrid. After analysis phase, a detailed comprehensive report of SAST and DAST

vulnerabilities will be automatically generated in the same folder with a timestamp for future

usage Users can customize the analysis process by selecting specific modules (SAST, DAST,

or both). Below Figure 5 represents the app.py code of the tool repo and Figure 6 represents

the Web UI of the Tool.

Figure 5: XSSFind – app.py

9

Figure 6: Web Interface

4.2 System Requirements

4.2.1 Hardware Requirements

The proposed tool is designed to run on standard personal computers. The minimum hardware

requirements are:

• CPU: Intel i5 or equivalent

• RAM: 8 GB

• Storage: 500 MB of free disk space

• Network: Internet connection required for dynamic analysis and accessing online

vulnerable web applications.

4.2.2 Software Requirements

The tool requires the following software:

• Operating System: Windows 10/11, Linux, MacOS

• Python: Version 3.7 or higher

• Framework: Flask 3.0

• Web Browser: Google Chrome or Mozilla Firefox (for dynamic analysis)

• Web Server: Apache or Nginx (optional for hosting web applications during testing)

4.2.3 Libraries/Modules:

The development of XSSFind relied on several Python libraries and modules, including:

• requests: For sending HTTP requests to web applications.

• BeautifulSoup: For parsing HTML content during dynamic analysis.

• selenium: For automating browser interactions.

• pandas: For handling and analysing tabular data.

• csv: For generating and processing reports.

4.2.4 Development Tools

The following development tools were used:

• Integrated Development Environment (IDE): PyCharm or Visual Studio Code.

• Version Control: Git for version management and collaboration.

• Testing Environment: VirtualBox with Kali Linux to test in Linux environments. Also,

a Web browser (Chrome or Firefox) for testing the web interface.

10

5 Implementation
Static Application Security Testing (SAST) and Dynamic Application Security Testing

(DAST) methodologies were integrated into the development of the proposed hybrid

methodology - XSSFind, resulting in a powerful hybrid XSS detection tool that supports

several platforms. Various tools and environments were used during the development and

testing process to guarantee its efficiency, compatibility, and ease of use.

5.1 Development Environment

• Visual Code Studio: An Integrated Development Environment (IDE) which is popular

and adaptable, Visual Studio Code, was used to build the XSSFind tool. Visual Studio

Code was selected because it supports python, has a lot of extensions to help while

development, inbuilt terminals – Python, Command Prompt, PowerShell, Bash, etc.

Also, it helps during development, debugging, and testing processes, like if any errors

made in coding, it would highlight the error, so it reduces the coding errors.

• Python: The primary programming language used to develop XSSFind, chose for its

ease of use, large number of libraries, and excellent community support. Python’s large

ecosystem of libraries made it easy for efficient development of the hybrid method.

Key libraries included requests for HTTP interactions, BeautifulSoup for parsing

HTML, and selenium for browser automation during dynamic analysis, etc.

• Virtual Environments: Through the entire development process of hybrid tool, virtual

environments have been used, to manage all the dependencies required for the hybrid

tool and make sure the tool operates properly in every kind of systems, like windows,

Linux. This usage also helped to easily isolate and manage dependent Python packages

required by XSSFind.

• Version Control: GitHub was used for systematic tracking of changes made in any of

the code or file in the repository, maintain versions, and collaboration with the

developers of the internship company if needed. GitHub’s platform also provided an

efficient means of sharing and deploying the tool. Below Figure 7 represents the tool

directory which is uploaded to GitHub.

Figure 7: GitHub Page and XSSFind Folder Structure (Anandhakumar 2024)

5.2 Development Platforms

• Windows Development: The XSSFind was developed in a Windows 11 machine,

using Visual Studio Code. This choice also ensured compatibility of the tool with a

significant user base.

11

• Linux Compatibility Testing: To make sure that XSSFind tool functions effectively

in a Linux environment, the tool was tested on Kali Linux, a Debian-based distribution.

Kali Linux is a popular operating system used by cyber security professionals,

penetration testers and security researchers. Also, Kali Linux has many varieties of

cyber security tools. This compatibility testing helped in understanding the multi-

platform compatibility of the XSSFind tool.

5.3 Code Structure and Management – code function explain

The codebase for XSSFind was structured to separate the static and dynamic analysis

components while allowing for easy integration via the hybrid analysis module.

• Static Analysis (sast.py): This tool was implemented with a focus on pattern matching

and data flow analysis. It scans the source code for potential XSS vulnerabilities,

focusing on common patterns such as unescaped user inputs. It imports modules like

csv for data export, re for regular expressions, os for managing file. It has given few

patterns of XSS Vulnerabilities like Unsanitized user input, DOM manipulation, etc.,

as input , so the tool will use string analysis and pattern matching technique. The

function scan_file_for_xss(file_path) checks line by line of a file using the patterns, if

any pattern detected, it would report as findings with its line number, type of

vulnerability. The function scan_directory_for_xss(directory), an extension of previous

function, which repeats the same process over all the files in the directory.

• Dynamic Analysis (dast.py): This tool is implemented to detect XSS vulnerabilities

in the web applications, during runtime. This tool imports modules like requests for

making web requests, bs4 for parsing html, selenium for automating browser

interactions, etc. The class AdvancedXSSDAST starts with a target URL, a headless

chrome browser, preconfigured XSS payloads. Then the crawl() is used to visit all the

URLs in the web application and inject the payloads, wherever forms or entry points

available. After crawling and injecting, all the data, such as crawled URLs and XSS

vulnerabilities are stored and generated as two different csv reports – crawled URLs &

dast results.

• Hybrid Integration (hybrid_tool.py): This tool is implemented to detect XSS

vulnerabilities in hybrid mode (sast + dast). It imports modules like, requests for

making web requests, beautifulsoup (bs4) for parsing html, selenium for automating

browser interactions, Abstract Syntax Tree (ast) for parsing and analysing source codes.

The class HybridXSSDetectionTool starts with a mode sast + dast, where target URL

and target web app source code is given, then the sast does pattern matching and

generates report and automatically stores in the tool folder. Then dast starts crawling

all the URL inside the web app, then injects the payloads, wherever forms or entry

points available. After crawling and injecting, all the data, such as crawled URLs and

XSS vulnerabilities are stored, combined with the sast results and generated as two

different csv reports – crawled URLs & hybrid results.

5.4 Testing and Validation

Testing and Validation are the important steps in the implementation process, making sure that

the XSSFind will work and detect XSS vulnerabilities in different environments and scenarios.

• Multi-Platform Testing: After its development on Windows, the tool was tested on

Kali Linux to check whether it is working properly and checking any performance

issues while working in the Linux environment. This testing proved that the XSSFind

tool’s functionality remained same regardless of the operating system, showcasing its

multi-platform compatibility.

12

• Validation on Real-World Applications: XSSFind was tested on a vulnerable web

application owned by Acunetix, a popular security scanner organization. This test

proved the tool’s ability in detecting XSS vulnerabilities and its ability to merge static

and dynamic analysis results after hybrid analysis.

5.5 Deployment Considerations

XSSFind was designed to be easily deployed and used, by using Python’s cross-platform

feature. Any laptop or computer running the Python version 3.7 or above can install and use

this tool. The tool has to be installed in the user system, install the requirements.txt using pip,

which has all the requires dependency packages. After installing those, the tool is ready to go

for testing web apps for detecting XSS Vulnerabilities.

6 Evaluation

The evaluation of the XSSFind tool was conducted through a series of experiments designed

to assess its effectiveness, efficiency, and accuracy in detecting Cross-Site Scripting (XSS)

vulnerabilities. The evaluation was performed by comparing the tool’s performance with

industry-standard tools such as Burp Suite for Dynamic Application Security Testing (DAST)

and Snyk for Static Application Security Testing (SAST). The evaluation focused on several

key metrics: accuracy and false positive rate.

6.1 Test Case 1: Static Analysis

• Objective: Ensure XSSFind tool analyses the XSS Vulnerability of the Simple Hospital

Management System from Code Astro, and a custom malicious Python file, which is

created and saved inside the same code repo. Also, the custom malicious file is created

to detect a XSS vulnerability in the line 23.

Figure 8: Source code file repo for SAST

6.2 Test Case 2: Dynamic Analysis

• Objective: Ensure XSSFind analyses the XSS Vulnerability of the vulnerable web

application – http://testphp.vulnweb.com .

http://testphp.vulnweb.com/

13

Figure 9: Web App for DAST.

6.3 Test Case 3: Hybrid Analysis

• Objective: Analyse XSSFind’s Hybrid method against Snyk & Burp Suite by testing

the Simple Hospital Management System from Code Astro, & a self-created malicious

Python file created & saved inside the same code repo and also the vulnerable web

application – http://testphp.vulnweb.com.

Figure 10: Source code file repo for SAST

Figure 11: Web App for DAST

6.4 Discussion

The evaluation results below indicate that XSSFind is a powerful tool for detecting XSS

vulnerabilities, particularly when leveraging the hybrid analysis approach. The tool’s ability to

combine the strengths of SAST and DAST allows it to provide a more comprehensive security

assessment than either method alone. However, the trade-offs between accuracy and false

positives. So, this research satisfies the research question.

6.4.1 Snyk vs XSSFind

• Outcome: XSSFind detected 1 vulnerability, while Snyk identified 4, which is

indicating high accuracy and no false positives of XSSFind when compared to Snyk,

which did not detect the actual vulnerability in line 23.

Table 1: XSSFind SAST Results

File/URL Context Line Number Payload Vulnerability Description Mitigation
uploads/extracted\SimpleHospitalMS-
Python\backend.py SAST 23 Use of potentially unsafe function: eval

Avoid using unsafe functions like `eval` or `exec`. Consider using safer alternatives. For
more information, visit: https://owasp.org/www-community/attacks/xss/

http://testphp.vulnweb.com/

14

Figure 12: Snyk SAST Results

6.4.2 Burp Suite vs XSSFind

• Outcome: XSSFind detected 27 runtime vulnerabilities where Burp Suite detected 19

runtime vulnerabilities.

Figure 13: Burp Suite DAST Results

15

Figure 14: XSSFind DAST Results

6.4.3 Burp Suite & Snyk Vs XSSFind Hybrid:

• Outcome: XSSFind detected 27 runtime vulnerabilities where Burp Suite detected 19

runtime vulnerabilities and also it detected 1 vulnerability, while Snyk identified 4,

indicating high accuracy with no false positive detections where Snyk didn’t detect the

vulnerability created in the custom malicious file and gave 4 false positives.

Figure 15: Burp Suite DAST Results

File/URL Context Line Number Payload Vulnerability Description Mitigation

http://testphp.vulnweb.com/ html <script>alert('XSS')</script> XSS vulnerability detected Ensure all user inputs are properly escaped before rendering in HTML. For more information, visit: https://owasp.org/www-community/attacks/xss/

http://testphp.vulnweb.com/index.php html <script>alert('XSS')</script> XSS vulnerability detected Ensure all user inputs are properly escaped before rendering in HTML. For more information, visit: https://owasp.org/www-community/attacks/xss/

http://testphp.vulnweb.com/categories.php html <script>alert('XSS')</script> XSS vulnerability detected Ensure all user inputs are properly escaped before rendering in HTML. For more information, visit: https://owasp.org/www-community/attacks/xss/

http://testphp.vulnweb.com/artists.php html <script>alert('XSS')</script> XSS vulnerability detected Ensure all user inputs are properly escaped before rendering in HTML. For more information, visit: https://owasp.org/www-community/attacks/xss/

http://testphp.vulnweb.com/disclaimer.php html <script>alert('XSS')</script> XSS vulnerability detected Ensure all user inputs are properly escaped before rendering in HTML. For more information, visit: https://owasp.org/www-community/attacks/xss/

http://testphp.vulnweb.com/cart.php html <script>alert('XSS')</script> XSS vulnerability detected Ensure all user inputs are properly escaped before rendering in HTML. For more information, visit: https://owasp.org/www-community/attacks/xss/

http://testphp.vulnweb.com/guestbook.php html <script>alert('XSS')</script> XSS vulnerability detected Ensure all user inputs are properly escaped before rendering in HTML. For more information, visit: https://owasp.org/www-community/attacks/xss/

http://testphp.vulnweb.com/guestbook.php html <script>alert('XSS')</script> XSS vulnerability detected Ensure all user inputs are properly escaped before rendering in HTML. For more information, visit: https://owasp.org/www-community/attacks/xss/

http://testphp.vulnweb.com/login.php html <script>alert('XSS')</script> XSS vulnerability detected Ensure all user inputs are properly escaped before rendering in HTML. For more information, visit: https://owasp.org/www-community/attacks/xss/

http://testphp.vulnweb.com/signup.php html <script>alert('XSS')</script> XSS vulnerability detected Ensure all user inputs are properly escaped before rendering in HTML. For more information, visit: https://owasp.org/www-community/attacks/xss/

http://testphp.vulnweb.com/userinfo.php html <script>alert('XSS')</script> XSS vulnerability detected Ensure all user inputs are properly escaped before rendering in HTML. For more information, visit: https://owasp.org/www-community/attacks/xss/

http://testphp.vulnweb.com/artists.php?artist=1 html <script>alert('XSS')</script> XSS vulnerability detected Ensure all user inputs are properly escaped before rendering in HTML. For more information, visit: https://owasp.org/www-community/attacks/xss/

http://testphp.vulnweb.com/listproducts.php?artist=1 html <script>alert('XSS')</script> XSS vulnerability detected Ensure all user inputs are properly escaped before rendering in HTML. For more information, visit: https://owasp.org/www-community/attacks/xss/

http://testphp.vulnweb.com/product.php?pic=1 html <script>alert('XSS')</script> XSS vulnerability detected Ensure all user inputs are properly escaped before rendering in HTML. For more information, visit: https://owasp.org/www-community/attacks/xss/

http://testphp.vulnweb.com/product.php?pic=2 html <script>alert('XSS')</script> XSS vulnerability detected Ensure all user inputs are properly escaped before rendering in HTML. For more information, visit: https://owasp.org/www-community/attacks/xss/

http://testphp.vulnweb.com/product.php?pic=3 html <script>alert('XSS')</script> XSS vulnerability detected Ensure all user inputs are properly escaped before rendering in HTML. For more information, visit: https://owasp.org/www-community/attacks/xss/

http://testphp.vulnweb.com/product.php?pic=4 html <script>alert('XSS')</script> XSS vulnerability detected Ensure all user inputs are properly escaped before rendering in HTML. For more information, visit: https://owasp.org/www-community/attacks/xss/

http://testphp.vulnweb.com/product.php?pic=5 html <script>alert('XSS')</script> XSS vulnerability detected Ensure all user inputs are properly escaped before rendering in HTML. For more information, visit: https://owasp.org/www-community/attacks/xss/

http://testphp.vulnweb.com/product.php?pic=6 html <script>alert('XSS')</script> XSS vulnerability detected Ensure all user inputs are properly escaped before rendering in HTML. For more information, visit: https://owasp.org/www-community/attacks/xss/

http://testphp.vulnweb.com/artists.php?artist=2 html <script>alert('XSS')</script> XSS vulnerability detected Ensure all user inputs are properly escaped before rendering in HTML. For more information, visit: https://owasp.org/www-community/attacks/xss/

http://testphp.vulnweb.com/listproducts.php?artist=2 html <script>alert('XSS')</script> XSS vulnerability detected Ensure all user inputs are properly escaped before rendering in HTML. For more information, visit: https://owasp.org/www-community/attacks/xss/

http://testphp.vulnweb.com/product.php?pic=7 html <script>alert('XSS')</script> XSS vulnerability detected Ensure all user inputs are properly escaped before rendering in HTML. For more information, visit: https://owasp.org/www-community/attacks/xss/

http://testphp.vulnweb.com/artists.php?artist=3 html <script>alert('XSS')</script> XSS vulnerability detected Ensure all user inputs are properly escaped before rendering in HTML. For more information, visit: https://owasp.org/www-community/attacks/xss/

http://testphp.vulnweb.com/listproducts.php?artist=3 html <script>alert('XSS')</script> XSS vulnerability detected Ensure all user inputs are properly escaped before rendering in HTML. For more information, visit: https://owasp.org/www-community/attacks/xss/

http://testphp.vulnweb.com/listproducts.php?cat=1 html <script>alert('XSS')</script> XSS vulnerability detected Ensure all user inputs are properly escaped before rendering in HTML. For more information, visit: https://owasp.org/www-community/attacks/xss/

http://testphp.vulnweb.com/listproducts.php?cat=2 html <script>alert('XSS')</script> XSS vulnerability detected Ensure all user inputs are properly escaped before rendering in HTML. For more information, visit: https://owasp.org/www-community/attacks/xss/

http://testphp.vulnweb.com/listproducts.php?cat=3 html <script>alert('XSS')</script> XSS vulnerability detected Ensure all user inputs are properly escaped before rendering in HTML. For more information, visit: https://owasp.org/www-community/attacks/xss/

http://testphp.vulnweb.com/listproducts.php?cat=4 html <script>alert('XSS')</script> XSS vulnerability detected Ensure all user inputs are properly escaped before rendering in HTML. For more information, visit: https://owasp.org/www-community/attacks/xss/

16

Figure 16: Snyk SAST Results

Figure 17: XSSFind Hybrid Results

6.4.4 Strengths:

• When compared to the standalone tools like Burp Suite (DAST) and Snyk (SAST), the

proposed hybrid analysis approach greatly reduces false positives and identifies more

vulnerabilities than them.

• The user-friendly interface and comprehensive detailed reports enhance the tool’s

usability, may result in usage by a wide range of users.

6.4.5 Limitations:

• This static analysis in hybrid method is developed to analyse the source code of python

web applications alone.

• The dynamic analysis in hybrid method may require optimization for quicker results

and better performance under heavy loads & large-scale applications. Also, more

powerful effective payloads need to be added.

File/URL Context Line Number Payload Vulnerability Description Mitigation
uploads/extracted\SimpleHospitalMS-Python\backend.py SAST 23 Use of potentially unsafe function: eval Avoid using unsafe functions like `eval ̀or `exec`. Consider using safer alternatives. For more information, visit: https://owasp.org/www-community/attacks/xss/

http://testphp.vulnweb.com/ html <script>alert('XSS')</script> XSS vulnerability detected Ensure all user inputs are properly escaped before rendering in HTML. For more information, visit: https://owasp.org/www-community/attacks/xss/

http://testphp.vulnweb.com/index.php html <script>alert('XSS')</script> XSS vulnerability detected Ensure all user inputs are properly escaped before rendering in HTML. For more information, visit: https://owasp.org/www-community/attacks/xss/

http://testphp.vulnweb.com/categories.php html <script>alert('XSS')</script> XSS vulnerability detected Ensure all user inputs are properly escaped before rendering in HTML. For more information, visit: https://owasp.org/www-community/attacks/xss/

http://testphp.vulnweb.com/artists.php html <script>alert('XSS')</script> XSS vulnerability detected Ensure all user inputs are properly escaped before rendering in HTML. For more information, visit: https://owasp.org/www-community/attacks/xss/

http://testphp.vulnweb.com/disclaimer.php html <script>alert('XSS')</script> XSS vulnerability detected Ensure all user inputs are properly escaped before rendering in HTML. For more information, visit: https://owasp.org/www-community/attacks/xss/

http://testphp.vulnweb.com/cart.php html <script>alert('XSS')</script> XSS vulnerability detected Ensure all user inputs are properly escaped before rendering in HTML. For more information, visit: https://owasp.org/www-community/attacks/xss/

http://testphp.vulnweb.com/guestbook.php html <script>alert('XSS')</script> XSS vulnerability detected Ensure all user inputs are properly escaped before rendering in HTML. For more information, visit: https://owasp.org/www-community/attacks/xss/

http://testphp.vulnweb.com/guestbook.php html <script>alert('XSS')</script> XSS vulnerability detected Ensure all user inputs are properly escaped before rendering in HTML. For more information, visit: https://owasp.org/www-community/attacks/xss/

http://testphp.vulnweb.com/login.php html <script>alert('XSS')</script> XSS vulnerability detected Ensure all user inputs are properly escaped before rendering in HTML. For more information, visit: https://owasp.org/www-community/attacks/xss/

http://testphp.vulnweb.com/signup.php html <script>alert('XSS')</script> XSS vulnerability detected Ensure all user inputs are properly escaped before rendering in HTML. For more information, visit: https://owasp.org/www-community/attacks/xss/

http://testphp.vulnweb.com/userinfo.php html <script>alert('XSS')</script> XSS vulnerability detected Ensure all user inputs are properly escaped before rendering in HTML. For more information, visit: https://owasp.org/www-community/attacks/xss/

http://testphp.vulnweb.com/artists.php?artist=1 html <script>alert('XSS')</script> XSS vulnerability detected Ensure all user inputs are properly escaped before rendering in HTML. For more information, visit: https://owasp.org/www-community/attacks/xss/

http://testphp.vulnweb.com/listproducts.php?artist=1 html <script>alert('XSS')</script> XSS vulnerability detected Ensure all user inputs are properly escaped before rendering in HTML. For more information, visit: https://owasp.org/www-community/attacks/xss/

http://testphp.vulnweb.com/product.php?pic=1 html <script>alert('XSS')</script> XSS vulnerability detected Ensure all user inputs are properly escaped before rendering in HTML. For more information, visit: https://owasp.org/www-community/attacks/xss/

http://testphp.vulnweb.com/product.php?pic=2 html <script>alert('XSS')</script> XSS vulnerability detected Ensure all user inputs are properly escaped before rendering in HTML. For more information, visit: https://owasp.org/www-community/attacks/xss/

http://testphp.vulnweb.com/product.php?pic=3 html <script>alert('XSS')</script> XSS vulnerability detected Ensure all user inputs are properly escaped before rendering in HTML. For more information, visit: https://owasp.org/www-community/attacks/xss/

http://testphp.vulnweb.com/product.php?pic=4 html <script>alert('XSS')</script> XSS vulnerability detected Ensure all user inputs are properly escaped before rendering in HTML. For more information, visit: https://owasp.org/www-community/attacks/xss/

http://testphp.vulnweb.com/product.php?pic=5 html <script>alert('XSS')</script> XSS vulnerability detected Ensure all user inputs are properly escaped before rendering in HTML. For more information, visit: https://owasp.org/www-community/attacks/xss/

http://testphp.vulnweb.com/product.php?pic=6 html <script>alert('XSS')</script> XSS vulnerability detected Ensure all user inputs are properly escaped before rendering in HTML. For more information, visit: https://owasp.org/www-community/attacks/xss/

http://testphp.vulnweb.com/artists.php?artist=2 html <script>alert('XSS')</script> XSS vulnerability detected Ensure all user inputs are properly escaped before rendering in HTML. For more information, visit: https://owasp.org/www-community/attacks/xss/

http://testphp.vulnweb.com/listproducts.php?artist=2 html <script>alert('XSS')</script> XSS vulnerability detected Ensure all user inputs are properly escaped before rendering in HTML. For more information, visit: https://owasp.org/www-community/attacks/xss/

http://testphp.vulnweb.com/product.php?pic=7 html <script>alert('XSS')</script> XSS vulnerability detected Ensure all user inputs are properly escaped before rendering in HTML. For more information, visit: https://owasp.org/www-community/attacks/xss/

http://testphp.vulnweb.com/artists.php?artist=3 html <script>alert('XSS')</script> XSS vulnerability detected Ensure all user inputs are properly escaped before rendering in HTML. For more information, visit: https://owasp.org/www-community/attacks/xss/

http://testphp.vulnweb.com/listproducts.php?artist=3 html <script>alert('XSS')</script> XSS vulnerability detected Ensure all user inputs are properly escaped before rendering in HTML. For more information, visit: https://owasp.org/www-community/attacks/xss/

http://testphp.vulnweb.com/listproducts.php?cat=1 html <script>alert('XSS')</script> XSS vulnerability detected Ensure all user inputs are properly escaped before rendering in HTML. For more information, visit: https://owasp.org/www-community/attacks/xss/

http://testphp.vulnweb.com/listproducts.php?cat=2 html <script>alert('XSS')</script> XSS vulnerability detected Ensure all user inputs are properly escaped before rendering in HTML. For more information, visit: https://owasp.org/www-community/attacks/xss/

http://testphp.vulnweb.com/listproducts.php?cat=3 html <script>alert('XSS')</script> XSS vulnerability detected Ensure all user inputs are properly escaped before rendering in HTML. For more information, visit: https://owasp.org/www-community/attacks/xss/

http://testphp.vulnweb.com/listproducts.php?cat=4 html <script>alert('XSS')</script> XSS vulnerability detected Ensure all user inputs are properly escaped before rendering in HTML. For more information, visit: https://owasp.org/www-community/attacks/xss/

17

7 Conclusion and Future Work

7.1 Conclusion

In this research, the proposed method for the development of a hybrid method to detect Cross-

Site Scripting (XSS) vulnerabilities, which is named as XSSFind. It puts together both the

SAST and DAST approach in detecting XSS vulnerabilities. According to the evaluation,

XSSFind can manage to lesser false positives and enhance detection accuracy by integrating

both static and dynamic techniques of analysis. On the other hand, the methodology of Hybrid

Detection followed by XSSFind allows for even more in-depth penetration testing than what

standalone tools like Snyk and Burp Suite do.

With these benefits, a few shortcomings were observed for XSSFind: only Python source codes

are analysed in the static analysis and dast analysis also a bit slower. These findings of this

study indicates that, while the hybrid approach could be effective, but still it needs to be

improved, so that the performance can be increased, and multiple language applications can be

tested.

One of the key contributions in this research is extending the capability of a detection tool,

where XSSFind is a hybrid security testing tool implementing SAST and DAST to detect XSS

vulnerabilities in web applications. More than that, the created hybrid methodology in XSSFind

would give a complete and reliable result with lowered false positives and increased detection

in comparison to the single solutions Burp Suite (DAST) and Snyk (SAST).

7.2 Future Work

In order to reduce false positives, future research may focus on improving the SAST method,

by incorporating more advanced techniques like machine learning. In a study by

Santithanmanan, Kirimasthong and Boongoen (2024) the machine learning approach has been

used to detect the XSS attacks using numerous classifiers; they have used the algorithms such

as Decision tree, Random Forest and Gradient Boosting. While comparing it with the

traditional signature-based techniques it has shown effective results with less false positives.

Mahiuob et al. (2021) proposed XGBXSS a framework for detection of XSS using Extreme

Gradient Boosting (XSBoost) with a hybrid feature and optimization parameters. The results

have shown a 99.59% accuracy of the tool and low false rate of 0.18%. It is seen that it is more

effective in finding the zero-day XSS attack. Kumar and Ponsam (2023) have focused on a

machine learning approach using CNN, LSTM, AdaBoost and Random Forest and Decision

tree. The model with AdaBoost, Random Forest and Decision tree have performed very well

with higher accuracy and precision. In comparison to the traditional models machine learning

techniques are more accurate in finding the XSS attack. Bakır and Bakır (2024) have proposed

an approach to detect the XSS attacks using Hybrid Semantic Embeddings with the

combination of Universal Sentence encoder and Word2Vec. This method has used machine

learning and deep learning and has achieved a good accuracy and F1 score making it effective

for real-time XSS detection. These studies can help in improving the XSS detection by using

ML. Also, it may focus on improving the DAST method to handle large-scale applications

more efficiently and quickly, this could enhance the tool’s scalability and performance. Also,

may focus on integration of real-time monitoring and adaptive payload generation methods

could further increase the detection capabilities of XSSFind, which makes it more adaptable to

evolving web security threats.

18

References

Abikoye, O.C., Abubakar, A., Dokoro, A.H., Akande, O.N. and Kayode, A.A. 2020. A novel technique to prevent
SQL injection and cross-site scripting attacks using Knuth-Morris-Pratt string match algorithm. Eurasip Journal
on Information Security 2020(1), pp. 1–14. Available at: https://jis-
eurasipjournals.springeropen.com/articles/10.1186/s13635-020-00113-y [Accessed: 1 August 2024].
Anandhakumar, Y. 2024. GitHub - Yog267/XSSFind. Available at: https://github.com/Yog267/XSSFind [Accessed:
1 August 2024].
Bakır, R. and Bakır, H. 2024. Swift Detection of XSS Attacks: Enhancing XSS Attack Detection by Leveraging Hybrid
Semantic Embeddings and AI Techniques. Arabian Journal for Science and Engineering, pp. 1–17. Available at:
https://link.springer.com/article/10.1007/s13369-024-09140-0 [Accessed: 1 August 2024].
Baranwal, A.K. 2012. Approaches to detect SQL injection and XSS in web applications. The University of British
Columbia.
Choi, H., Hong, S., Cho, S. and Kim, Y.G. 2017. HXD: Hybrid XSS detection by using a headless browser.
Proceedings of the 2017 4th International Conference on Computer Applications and Information Processing
Technology, CAIPT 2017 2018-January, pp. 1–4. Available at: https://doi.org/10.1109/CAIPT.2017.8320672
Cui, Y., Cui, J. and Hu, J. 2020. A Survey on XSS Attack Detection and Prevention in Web Applications. ACM
International Conference Proceeding Series, pp. 443–449. Available at:
https://dl.acm.org/doi/10.1145/3383972.3384027 [Accessed: 1 August 2024].
Garcia-Alfaro, J. and Navarro-Arribas, G. 2007. Prevention of Cross-Site Scripting Attacks on Current Web
Applications *. Lecture Notes in Computer Science, vol 4804. Springer, Berlin, Heidelberg. Available at:
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=0b64d3fafef0fba27f8991c6fc0bde32c70b
90dc [Accessed: 1 August 2024].
Gupta, K., Ranjan Singh, R. and Dixit, M. 2017. Cross site scripting (XSS) attack detection using intrustion
detection system. Proceedings of the 2017 International Conference on Intelligent Computing and Control
Systems, ICICCS 2017 2018-January, pp. 199–203. Available at: https://doi.org/10.1109/ICCONS.2017.8250709
Hannousse, A., Yahiouche, S. and Cherif Nait-Hamoud, M. 2024. Twenty-two years since revealing cross-site
scripting attacks: A systematic mapping and a comprehensive survey. Computer Science Review, Volume 52,
2024, 100634, ISSN 1574-0137,. Available at: www.elsevier.com/locate/cosrev [Accessed: 1 August 2024].
Harish Kumar, J. and Godwin Ponsam, J.J. 2023. Cross Site Scripting (XSS) vulnerability detection using Machine
Learning and Statistical Analysis. 2023 International Conference on Computer Communication and Informatics,
ICCCI 2023. Available at: https://doi.org/10.1109/ICCCI56745.2023.10128470
Invicti. 2024. Reflected/Non-Persistent Cross-Site Scripting. Available at:
https://www.invicti.com/learn/reflected-xss-non-persistent-cross-site-scripting/ [Accessed: 1 August 2024].
Jasmine M S, Devi Kirthiga and George Geogen. 2017. (PDF) Detecting XSS Based Web Application Vulnerabilities.
Available at:
https://www.researchgate.net/publication/317166075_Detecting_XSS_Based_Web_Application_Vulnerabilitie
s [Accessed: 25 August 2024].
Jingyu, Z., Hongchao, H., Shumin, H. and Huanruo, L. 2021. A XSS Attack Detection Method Based on
Subsequence Matching Algorithm. 2021 IEEE International Conference on Artificial Intelligence and Industrial
Design, AIID 2021, pp. 83–86. Available at: https://doi.org/10.1109/AIID51893.2021.9456515
Jovanovic, N., Kruegel, C. and Kirda, E. 2006. Pixy: A static analysis tool for detecting web application
vulnerabilities (Short paper). Proceedings - IEEE Symposium on Security and Privacy 2006, pp. 258–263. Available
at: https://doi.org/10.1109/SP.2006.29
Liu, M., Zhang, B., Chen, W. and Zhang, X. 2019. A Survey of Exploitation and Detection Methods of XSS
Vulnerabilities. IEEE Access 7, pp. 182004–182016. Available at: https://doi.org/10.1109/ACCESS.2019.2960449
Di Lucca, G.A., Fasolino, A.R., Mastroianni, M. and Tramontana, P. 2004. Identifying cross site scripting
vulnerabilities in Web applications. Proceedings - Sixth IEEE International Workshop on Web Site Evolution, WSE
2004, pp. 71–80. https://doi.org/10.1109/WSE.2004.10013
Mahiuob, F., Mokbal, M., Dan, W., Xiaoxi, W., Wenbin, Z. and Lihua, F. 2021. XGBXSS: An Extreme Gradient
Boosting Detection Framework for Cross-Site Scripting Attacks Based on Hybrid Feature Selection Approach and
Parameters Optimization. Journal of Information Security and Applications 58. Available at:
https://doi.org/10.1016/j.jisa.2021.102813 [Accessed: 1 August 2024].
Mahmoud, S.K., Alfonse, M., Roushdy, M.I. and Salem, A.B.M. 2017. A comparative analysis of Cross Site
Scripting (XSS) detecting and defensive techniques. 2017 IEEE 8th International Conference on Intelligent

https://jis-eurasipjournals.springeropen.com/articles/10.1186/s13635-020-00113-y
https://jis-eurasipjournals.springeropen.com/articles/10.1186/s13635-020-00113-y
https://github.com/Yog267/XSSFind
https://link.springer.com/article/10.1007/s13369-024-09140-0
https://doi.org/10.1109/CAIPT.2017.8320672
https://dl.acm.org/doi/10.1145/3383972.3384027
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=0b64d3fafef0fba27f8991c6fc0bde32c70b90dc
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=0b64d3fafef0fba27f8991c6fc0bde32c70b90dc
https://doi.org/10.1109/ICCONS.2017.8250709
http://www.elsevier.com/locate/cosrev
https://doi.org/10.1109/ICCCI56745.2023.10128470
https://www.invicti.com/learn/reflected-xss-non-persistent-cross-site-scripting/
https://www.researchgate.net/publication/317166075_Detecting_XSS_Based_Web_Application_Vulnerabilities
https://www.researchgate.net/publication/317166075_Detecting_XSS_Based_Web_Application_Vulnerabilities
https://doi.org/10.1109/AIID51893.2021.9456515
https://doi.org/10.1109/SP.2006.29
https://doi.org/10.1109/ACCESS.2019.2960449
https://doi.org/10.1109/WSE.2004.10013
https://doi.org/10.1016/j.jisa.2021.102813

19

Computing and Information Systems, ICICIS 2017 2018-January, pp. 36–42. Available at:
https://doi.org/10.1109/INTELCIS.2017.8260024
Mubaiwa, T.G. and Mukosera, M. 2022. A HYBRID APPROACH TO DETECT SECURITY VULNERABILITIES IN WEB
APPLICATIONS. International Journal of Computer Science and Mobile Computing 11(2), pp. 89–98. Available at:
https://doi.org/10.47760/ijcsmc.2022.v11i02.011 [Accessed: 1 August 2024].
OWASP - XSS. 2024. Cross Site Scripting (XSS) | OWASP Foundation. Available at: https://owasp.org/www-
community/attacks/xss/#:~:text=Cross%2DSite%20Scripting%20(XSS),to%20a%20different%20end%20user
[Accessed: 1 August 2024].
portswigger. 2024. What is DOM-based XSS (cross-site scripting)? Tutorial & Examples | Web Security Academy.
Available at: https://portswigger.net/web-security/cross-site-scripting/dom-based [Accessed: 1 August 2024].
Santithanmanan, K., Kirimasthong, K. and Boongoen, T. 2024. Machine Learning Based XSS Attacks Detection
Method. Advances in Computational Intelligence Systems. UKCI 2023, pp. 418–429. Available at:
https://link.springer.com/chapter/10.1007/978-3-031-47508-5_33 [Accessed: 1 August 2024].
Sarmah, U., Bhattacharyya, D.K. and Kalita, J.K. 2018. A survey of detection methods for XSS attacks. Journal of
Network and Computer Applications. Available at: https://doi.org/10.1016/j.jnca.2018.06.004 [Accessed: 1
August 2024].
Singh, P., Thevar, K., Shetty, P. and Shaikh, B. 2015. Detection of SQL Injection and XSS Vulnerability in Web
Application. International Journal of Engineering and Applied Sciences (IJEAS) ISSN: 2394-3661, Volume-2, Issue-
3, March 2015. Available at: https://media.neliti.com/media/publications/257981-detection-of-sql-injection-
and-xss-vulne-3e81bb03.pdf [Accessed: 1 August 2024].
Stock, B., Lekies, S., Mueller, T., Spiegel, P. and Johns, M. 2014. Precise Client-side Protection against DOM-based
Cross-Site Scripting. Proceedings of the 23rd USENIX Security Symposium. August 20–22, 2014. Available at:
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/stock [Accessed: 1
August 2024].
Talib, N.A.A. and Doh, K.-G. 2021. Static Analysis Tools Against Cross-site Scripting Vulnerabilities in Web
Applications : An Analysis. Journal of Software Assessment and Valuation 17(2), pp. 125–142.
http://dx.doi.org/10.29056/jsav.2021.12.14
Trendmicro. 2024. 3 Types of Cross-Site Scripting (XSS) Attacks | Trend Micro (IE). Available at:
https://www.trendmicro.com/en_ie/research/23/e/cross-site-scripting-xss-attacks.html [Accessed: 1 August
2024].
Wassermann, G. and Su, Z. 2008. Static detection of cross-site scripting vulnerabilities. Proceedings -
International Conference on Software Engineering, pp. 171–180. Available at:
https://dl.acm.org/doi/10.1145/1368088.1368112 [Accessed: 1 August 2024].

https://doi.org/10.1109/INTELCIS.2017.8260024
https://doi.org/10.47760/ijcsmc.2022.v11i02.011
https://owasp.org/www-community/attacks/xss/#:~:text=Cross%2DSite%20Scripting%20(XSS),to%20a%20different%20end%20user
https://owasp.org/www-community/attacks/xss/#:~:text=Cross%2DSite%20Scripting%20(XSS),to%20a%20different%20end%20user
https://portswigger.net/web-security/cross-site-scripting/dom-based
https://link.springer.com/chapter/10.1007/978-3-031-47508-5_33
https://doi.org/10.1016/j.jnca.2018.06.004
https://media.neliti.com/media/publications/257981-detection-of-sql-injection-and-xss-vulne-3e81bb03.pdf
https://media.neliti.com/media/publications/257981-detection-of-sql-injection-and-xss-vulne-3e81bb03.pdf
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/stock
http://dx.doi.org/10.29056/jsav.2021.12.14
https://www.trendmicro.com/en_ie/research/23/e/cross-site-scripting-xss-attacks.html
https://dl.acm.org/doi/10.1145/1368088.1368112

