~

N\ National
College
Ireland

Plant Disease Detection Using Machine
Learning in a Serverless Environment
Configuration Manual

MSc Research Project
Cloud Computing

Peng Yu
Student ID: 22196242

School of Computing
National College of Ireland

Supervisor:  Jorge Mario Cortes Mendoza




National College of Ireland National

Project Submission Sheet Col]ege of
School of Computing Ireland
Student Name: Peng Yu
Student ID: 22196242
Programme: Cloud Computing
Year: 2024
Module: MSc Research Project
Supervisor: Jorge Mario Cortes Mendoza
Submission Due Date: 12/12/24
Project Title: Plant Disease Detection Using Machine Learning in a Server-
less Environment Configuration Manual

Word Count: 405
Page Count: ]

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature: Peng Yu

Date: 11th December 2024

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). O
Attach a Moodle submission receipt of the online project submission, to | [J
each project (including multiple copies).
You must ensure that you retain a HARD COPY of the project, both for | [J
your own reference and in case a project is lost or mislaid. It is not sufficient to keep

a copy on computer.

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only
Signature:

Date:
Penalty Applied (if applicable):




Plant Disease Detection Using Machine Learning in a
Serverless Environment Configuration Manual

Peng Yu
22196242

1 Overview

The Research project is about Using Machine Learning in a Serverless Environment. The
training and evaluation of three different Convolutional Neural Networks and the cost and
latency comparison between serverless environment (AWS Lambda) and cloud virtual
machine (AWS EC2). This configuration Manual has guide to setup the environment
and execute the program.

2 System Specifications

2.1 Hardware Requirements

This section provides the details of Hardware and software requirements.

Figure (1| provides the hardware specifications required.

@ Device specifications Copy ~
Device name Hugo
Processor 12th Gen Intel(R) Core(TM) i5-12500H 2.50 GHz
Installed RAM 16.0 GB (15.7 GB usable)
Device ID 3DA77B27-3405-4D71-9FD6-EED929F88698
Product ID 00326-10000-00000-AA021
System type 64-bit operating system, x64-based processor

Pen and touch No pen or touch input is available for this display

Related links  Domain or workgroup ~ System protection ~ Advanced system settings

== Windows specifications Copy A
Edition Windows 11 Home
Version 23H2
Installed on 3/25/2023
OS build 22631.4460
Serial number  YX04WMGV
Experience Windows Feature Experience Pack 1000.22700.1047.0

Microsoft Services Agreement
Microsoft Software License Terms

Figure 1: Hardware Requirements



=== CPU Information ===
CPU Model: x86_64
Number of Cores: 4

=== GPU Information ===
GPU Available: Yes
GPU Name: Tesla P100-PCIE-16GB

=== Memory Information ===
Total Memory: 33.66 GB
Used Memory: 1.11 GB
Available Memory: 32.07 GB

=== Disk Space ===

Total Disk Space: 8656.92 GB
Used Disk Space: 6456.85 GB
Free Disk Space: 2200.06 GB

Figure 2: Kaggle Hardware Requirements

Figure |2 provides the kaggle hardware specifications required.

Additionally, t2.micro EC2 instance and Lambda with 1GB of memory are also required
to serve the model.

2.2 Software Requirements

e Model Training
— Kaggle
e Lambda Deployment

— onnxruntime
— Pillow
— numpy
— python-jose
— passlib

e EC2 Deployment

— fastapi
— numpy
— onnxruntime
— passlib
— pillow
— python-jose

— uvicorn



3 Dataset

The dataset is collected from Github [https://github.com /spMohanty /PlantVillage-Dataset|

4 Preprocess & Model Training & Model Evaluation

The function has been written and only need to call the function as shown in Figure
and modify the model name to execute the entire process seamlessly.

data_dir = "/kaggle/input/plantvillage-vages"
model_name = 'mobilenet' # &: 'vggl19', 'mobilenet’, ’'resnet58’
num_epochs = 48

batch_size = 32

learning_rate = 0.001

print("Starting data preprocessing...")
dataloaders, dataset_sizes, class_names = preprocess_and_split_data(
data_dir,

batch_size=batch_size

)

num_classes = len(class_names)
print(f"\nTraining {model_name} for {num_classes} classes...")

# OIERTIFILN

model = create_model(model_name, num_classes)

criterion = nn.CrossEntropylLoss()

optimizer = optim.Adam(model.parameters(), lr=learning_rate)

# WEEL
print("\nStarting training...")
model = train_model(
model,
dataloaders,
dataset_sizes,
criterion,
optimizer,
num_epochs=num_epochs

Figure 3: Preprocess & Model Training & Model Evaluation

5 Model Format Conversion

Use the code in Figure 4] to convert the Pytorch model to ONNX format for deployment.

6 Deployment Configuration

Figure [§ shows the deployment of Lambda function and the ONNX format model.
shows the configuration of Lambda function. Figure [7] shows the route configuration of
AWS API Gateway. For the EC2 instance deployment, we just need to create a t2.micro



model_name = 'mobilenet’
num_classes = 19

modell = create_model(model_name, num_classes)
model1l.load_state_dict(torch.load('/kaggle/working/mobilenet_plant_disease_detection.pth'))
modell.eval()

import torch.onnx
onnx_model_path = 'mobilenet_plant_disease_detection.onnx'

dummy_input = torch.randn(1, 3, 224, 224) # (batch_size, channels, height, width)

torch.onnx.export(
model1,
dummy_input,
onnx_model_path,
export_params=True,
opset_version=11,
do_constant_folding=True,
input_names=["input'],
output_names=['output' ]

Figure 4: Model Format Conversion

EC2 instance and use command ‘uvicorn main:app —host 0.0.0.0 —port 8080 —reload* to
run the fastapi application.

O x22196242-plant-disease [ ==}
= EXPLORER @ lambda_function.py X O oo
v X22196242-PLANT-DISEASE @ lambda_function.py
@ @ lambda_function.py 58  def softmax(logits):
mobilenet_plant_disease_detection.onnx 62 exp_logits = np.exp(logits - np.max(logits))
/O 63 return exp_logits / np.sum(exp_logits, axis=1, keepdims=True)
64
ﬁl> 65
66 def lambda_handler(event, context):
o v DEPLOY 67 ™
68 Lambda function: accept requests
b\ 70 # handle OPTIONS request
71 if event.get('httpMethod') == 'OPTIONS':
72 return {
73 ‘statusCode’: 200,
74 'headers': headers,
75 'body': json.dumps({'message’: 'OK'})
76 }
77
78 try
NQIESHEVENIS) 79 # Get Base64 data from the request
You haven't created any test events. 80 body = json.loads(event['body"])
81 image_base64 = body['image’]
82 image_bytes = base64.b64decode(image_base64)
83
84 # Preprocess image
S, 85 input_data = preprocess_image(image_bytes)

Figure 5: Lambda Deployment

7 Benchmark: AWS Lambda vs AWS EC2

To compare the latency and cost of AWS Lambda and AWS EC2 for this application, you
need to configure the ’ec2_endpoint’ and 'lambad_endpoint’, then run the python script
to performance evaluation. For the token, if you don’t configure the Authorization in
AWS API Gateway, you don’t need to pay attention to the configuration of the token.



General configuration info

Description

Timeout
0 min 3 sec

Memory Ephemeral storage
1024 MB 512 MB

SnapStart Info
None

Figure 6: Lambda Configuration

Routes for x22196242-plant-
disease-API

[ Q Search ]
w /login
PoST
v /predict
posT
v /register

poST

Figure 7: AWS API Gateway



class CloudBenchmark:
def _ init_ (self, token, test_duration_minutes = 10):
self.ec2_endpoint = "http://3.254.58.166:8000/predict"
self.lambda_endpoint = "https://9fkwzv9jm9.execute-api.eu-west-1.amazonaws.com/test/predict"
self.lambda_headers = {"Authorization": f"Bearer {token}"}

if __name__ == "__main__":
token = "eyJhbGciOiJIUzIINiIsInR5cCI6IkpXVCI9.eyIlc2VybmFtZSI6InVzZXIxIiwiZXhwI

benchmark = CloudBenchmark(token)
benchmark.test_duration_minutes = 5

print("Starting seasonal benchmark...")
results = benchmark.run_seasonal_benchmark()

print("\nAnnual Costs:")

print(f"EC2: ${results['annual_costs']['ec2']['total_cost']:.2f}")
print(f"Lambda: ${results['annual_costs']['lambda'][ 'total_cost']:.2f}")
benchmark.plot_results(results)

timestamp = time.strftime("%Y%m%d-%H%M%S" )

with open(f"benchmark_results_{timestamp}.json", 'w') as f:
json.dump(results, f, indent=2)

Figure 8: Benchmark: AWS Lambda vs AWS EC2



	Overview
	System Specifications
	Hardware Requirements
	Software Requirements

	Dataset
	Preprocess & Model Training & Model Evaluation
	Model Format Conversion
	Deployment Configuration
	Benchmark: AWS Lambda vs AWS EC2

