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Plant Disease Detection Using Machine Learning in a
Serverless Environment

Peng Yu
22196242

Abstract

Plant disease is a significant threat to food security, the crop loss caused by pests
and diseases is up to 40% according to the United Nations. Compared to on-site
checking by agricultural experts, Artificial Intelligence (AI) technologies especially
Convolutional Neural Networks (CNN) have a great performance to detect plant
disease. However, the seasonal and fluctuating characteristics of agricultural pro-
duction especially for family farms require a more flexible, scalable, cost-effective
solution. In this study, we proposed a plant disease detection system using Deep
Learning (DL) in a serverless environment, which potentially helps smallholders
recognize crop disease accurately and maintain an affordable budget. We trained
and compared three models on top of three CNNs including VGG19, MobileNet-V2
and ResNet50. The evaluation result shows that the MobileNet-V2 has the best
performance to detect diseases on vegetables, reaching a 98.82% accuracy. Then
we compared the latency and cost by deploying fine-tuned MobileNet-V2 on AWS
EC2 and AWS Lambda. The experiment allows us to define a threshold to estim-
ate the type of service that reduces cost according to the number of requests and
confirmed that the annual cost of Lambda is 88% lower than that of EC2 within
the acceptable range of maintaining latency for the fluctuating agricultural require-
ment. Finally, our system has a mobile application, a MobileNet-V2 model deployed
on the Lambda, providing accuracy, flexible, scalable, and low cost plant disease
detection service for smallholder farmers. Theoretically, this system will contribute
to food security, especially family farms that account for 90% of all farms globally.

1 Introduction

In the background of global climate change and population growth, maintaining food
security and agricultural sustainability is one of the most crucial challenges. Plant disease
is a significant threat to food security, the crop loss caused by pests and diseases is up
to 40% according to the Food and Agriculture Organization of the United Nations. This
can lead to catastrophic results for smallholders who live on farming, as 90% of farms are
family-owned, and they produce 80% of the world’s food, as highlighted by Lowder et al.
(2021). Thus, detecting plant disease in time and accurately is the key to maintaining
food security and agricultural sustainability.

Traditionally, plant detection relies on on-site checking and the experience of ag-
ricultural experts. As the rapid development of Machine Learning (ML) especially the
breakthrough advancements of Deep Learning (DL) technologies in computer vision, plant
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disease detection based on image recognition posed a great potential opportunity to solve
this problem.

In recent years, a lot of research has shown that DL models based on Convolutional
Neural Networks (CNN) have a great performance in plant disease detection. According
to Shoaib et al. (2023), these models not only can classify the known diseases but also
detect early diseases of plant, which provides very important support for farmers to take
action as early as possible.

At the same time, the rise of cloud computing especially the serverless computing
paradigm enables the flexible and scalable deployment and serving of those detection
models. Allowing developers to build and run their applications without managing the
server, serverless computing has the advantages of on-demand provisioning, auto-scaling
and low operating costs, which are very suitable for farmers especially smallholders be-
cause of the seasonal and fluctuating requirements of agricultural production. It laid a
technical foundation for developing scalable and low-cost plant disease detection services.

Even though existing research presented the potential capabilities of plant disease de-
tection using DL, and the deployment of models on serverless computing, there are still
some limitations. On one hand, most research focus on the development of algorithms
and processes to train models, it lacks the consideration of deploying models in practical
agricultural environments. On the other hand, the rise of plant disease has characteristics
of seasonality and suddenness, the detection system needs to be able to adapt to load
change and maintain a low cost.

Research Question. How can we design and implement a system using DL and server-
less computing to achieve accurate, efficient, scalable and economic plant disease detec-
tion?

To answer this question, this project will focus on solving the following key challenges:

� Which transfer learning model among VGG19, and MobileNet-V2, ResNet50 is the
best for plant disease detection?

� Is the serverless environment a cost-efficient solution than the cloud virtual ma-
chine?

� How to deploy plant disease detection models in the resource-constrained serverless
environment?

Through solving these challenges, the following contributions are expected:

� Choose a suitable transfer learning model that can detect plant diseases with high
accuracy;

� Implement a system for plant disease detection based on DL in a serverless envir-
onment and maintain cost-efficiency and acceptable latency;

� Develop a user-friendly mobile application for farmers to diagnose plant disease
conveniently.

These contributions would not only push the boundaries of serverless computing and
DL in agricultural applications but also provide a reliable, scalable technical solution for
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farmers especially smallholders to reduce the loss of plant disease, ultimately contributing
to the global food security.

The remainder of this report is structured as follows. Section II reviews related
studies, ML in plant disease detection, serverless computing, and ML models in serverless
computing environments. Section III discusses the research methodology. Section IV talks
about the design specification of this study, the application of transfer learning, and the
implementation of serverless architecture. Section V details the implementation of this
project. Section VI represents experimental results of three CNN models and the costs
and latency of serving plant disease models in AWS Lambda and AWS EC2. Section VII
concludes and discusses feature works of this study.

2 Related Work

In this section, we review the latest developments in the scoop of ML technologies to
detect plant diseases in a serverless environment. Through the review and analysis of
existing literature, we establish a solid foundation for this study and identify the research
gaps and opportunities.

We focus on three aspects: Firstly, we explore the application of ML in plant disease
detection, including the advantages and disadvantages of different algorithms and their
challenges. Secondly, we review the development of serverless computing, examine the
deployment practices of ML models in the serverless environment, and analyze the ad-
vantages and disadvantages of existing methods. Lastly, we identify the research gaps
and innovations of this study.

2.1 ML Application in Plant Disease Detection

In recent years, the application of ML technologies has had a significant advancement
in plant disease detection. Among them, DL especially CNN has become the focus of
related research due to its powerful feature extraction, pattern recognition capabilities
and high accuracy. Furthermore, because of the lack of labelled plant leaf datasets,
pre-trained models such as Visual Geometry Group (VGG) by Simonyan and Zisserman
(2014), GoogLeNet by Szegedy et al. (2015), Residual Network (ResNet) by He et al.
(2016) and transfer learning are widely used to improve the performance of CNN models
on limited training data.

Mohameth et al. (2020) compared CNNs, VGG16, GoogLeNet, and ResNet50, on
the Plant Village dataset for plant disease detection, finding that VGG16 has the best
accuracy of 97.92, while GoogLeNet has a faster execution time. Additionally, researchers
found that extracting features using the best classifier is more efficient than transfer
learning as it has greater accuracy and less execution time.

For a cassava dataset from Tusubira et al. (2022), Alford and Tuba (2024) explored
using pre-trained CNN models and transfer learning to detect plant diseases. Among
ResNet101V2, ResNet50V2, EfficientNetB2, VGG16, VGG19, and MobileNet-V2, they
found that VGG19 has better improvements and finally results in a training accuracy of
99.31% and a test accuracy of 80.27%. However, this research only focuses on cassava
with an unbalanced dataset, and how to maintain performance across a wider range of
plant types and datasets needs to be further studied.

A comparison of InceptionV3, CNN and YOLOv5 on soybean disease detection is
carried out by Tirkey et al. (2023). Experimental results show that all models’ accuracy
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ranges from 85% to 99%, and YOLOv5 performs better compared to the other two.
At the same time, the YOLOv5 has a fast execution time and is suitable for real-time
detection. The authors also found that YOLOv5 has less computational complexity and
a small size, making it possible for mobile applications. This is handy information for
us as we also want to deploy our models on a resource-restricted serverless environment.
However, they did not extend the experiments to other crops.

In the investigation, we found that most research focuses on enhancing the perform-
ance of ML models of plant disease detection, while little research is involved in putting
forward a complete solution for disease detection in cloud computing or serverless en-
vironments. Joshi et al. (2023) presented an Android application that can detect plant
diseases using an embedded CNN model within the application. It can achieve lower cost
and inference speed but at the cost of model accuracy. Due to the limitations of phones’
performance, embedded models need to be compressed. Furthermore, this solution is
not suitable for frequent model updates. In the research, Khan et al. (2020) presented
a DL model for automated plant disease classification deployed on an AWS DeepLens
device, however, AWS DeepLens has already reached the end of its lifecycle. Neelaveni
et al. (2023) proposed a cloud-based website that can detect plant diseases achieving an
accuracy of 98.12%. Elijah et al. (2022) presented a system named chili Decision Support
Platform (chili-DSP) which combined Internet of Things (IoT), cloud computing, and
data analytics technologies to help farmers detect diseases. However, both of them do
not explain cloud services and model deployment.

Through these studies, we found that there are potential gaps in design and imple-
mentation of a complete plant disease system using ML and cloud computing technologies,
especially to deploy plant disease detection models at low cost, suitable for seasonal and
fluctuating agricultural production. In the next section, we will explore the possibility
of deploying ML models in a serverless environment, which may be able to meet our
requirements.

2.2 The Deployment of Deep Learning Models in Serverless En-
vironments

As a new computing paradigm, serverless computing attracts wide attention in both aca-
demia and industry. Castro et al. (2019) provided a comprehensive review of the concept,
characteristics and challenges of serverless computing. They pointed out that serverless
computing lowers the bar in application deployment, and promises real pay-as-you-go
billing through on-demand provisioning. For seasonal and fluctuating requirements of
agricultural production, this is an attractive reason. However, it also faces problems such
as cold start delays and resource constraints.

With the increasing use of ML, cloud providers have all developed managed ML
services for training and serving ML models, for example, AWS SagerMaker, Azure ML,
and Google Vertex AI. However, according to the research of Wu et al. (2022), compared
to managed ML services, serverless ML inference have better performance and is more
cost-effective in most cases. They designed and implemented a benchmark framework
to compare serverless and managed solutions. Take MobileNet model inferencing for
instance, results show that the average latency of AWS SagerMaker is 71.6 times slower
than AWS Lambda, while its cost is 8.56 times higher. From this point, it can be seen
that serverless computing is more suitable for applications seeking the lowest cost.

Due to the natural characteristics of serverless computing such as constrained re-
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sources, non-GPUs enabled, high latency of cold start, etc., it’s not easy to serve ML
models especially large-size deep learning models on serverless environments. Christidis
et al. (2020) proposed some techniques to reduce the size of AI codebases so that it
conforms to the limit of codebase package size of serverless environment, for example up
to 250MB for AWS Lambda, without sacrificing model performance. The steps include
trimming the dependent Python libraries, loading pre-trained ML models in runtime,
using lightweight frameworks for inference, and performance tuning for data updates and
reads. They successfully deploy their model and the evaluation results present that the
response time for different volumes of prediction requests remains almost constant. An-
other method to push the limits of codebase package size is to use container images to
create AWS Lambda functions, the size limit has been increased to 2G, which may result
in a slower cold start.

In the research, Chahal et al. (2020) proposed their methods and implementation to
migrate pre-trained large-size ML and DL models from cloud Virtual Machines (VMs)
to serverless environments. They slimed unnecessary dependencies so that the codebase
could fit the storage limit of AWS Lambda. On the other hand, they utilized Amazon
Elastic File System (EFS) mounted on Amazon Elastic Compute Cloud (EC2) to store
large models to reduce the latency of model loading. The experimental results show that
the cost per inference in AWS Lambda is less than VMs while obtaining higher scalability
and faster response. Although the cost per unit of inference has decreased according to
this study, one EC2 instance is required to keep running all the time. For seasonal and
fluctuating agricultural production especially smallholders, that’s not an ideal solution.

Researchers also tried to use model partitioning to overcome the limitation of server-
less resource constraints and computing capabilities. Jarachanthan et al. (2021) proposed
a framework named Automatic Model Partitioning for Serverless Inference (AMPS-Inf)
which can automatically perform model partitioning and serverless resource provision-
ing. It leads to a 98% cost saving without degrading the performance in comparison with
Amazon SageMaker. This solution is suitable for large-size models but increases cost as
it uses multiple serverless functions compared with a single point of deployment.

To test the performance of serverless for inference, Ishakian et al. (2018) deployed
their MxNet DL model in AWS Lambda. Experimental results showed although execu-
tion latency could be within an acceptable range, longer delays due to cold start might
lead to the risk of violating service-level agreements. Ali et al. (2020) believe that ML
inference cannot benefit from serverless computing without batching. Then they pro-
posed a framework named BATCH to identify the best parameter configuration such as
memory size and batch size to improve the performance of serverless batch inference atop
AWS Lambda. Results show that it decreases the cost by 50% while meeting user-defined
Service Level Objectives. Another option to solve the latency of cold start is keeping the
serverless service active. Ravi et al. (2023) proposed the use of a scheduler in Lambda,
which sends dummy requests to Lambda to keep it warm. They compared both deploy-
ing AI models on AWS Lambda and EC2, finding that Lambda has an overall better
performance in terms of cost, latency, and response time.

In this section, we investigated the potential capabilities and challenges of deploying
ML models especially DL models in serverless environments. Although they do not focus
on plant disease detection models, their works provide great insights for our research. In
the next section, we will identify our research gaps and the expected contribution of our
research.
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2.3 Research Niche

Despite the potential of DL in plant disease detection, existing research mainly focuses
more on improving the performance of models but less on deploying them in practical
environments, especially in serverless platforms, to satisfy the requirements of strong
seasonality and fluctuation of agriculture. Table 1 presents the comparison of existing
literature in the aspect of plant disease detection, including models, datasets, evaluation
metrics, and deployment environments. Those research focus less on the deployment of
models.

Although serverless provides the benefits of flexible computing resources and an elastic
payment mode, resource constraints and cold start latency restrict the use of plant dis-
ease detection applications, deploying models in a serverless environment requires further
study. Table 2 compares studies in different literatures on the deployment of DL models
in serverless environments, including model types, serving runtimes, sererless platforms,
deployment optimization mesures, and evaluation metrics. A variety of model types
were used in the studies, including MobileNet, VGG, ResNet50, ALBERT, Recurrent
Neural Networks (RNNs), Deep Reinforcement Learning (DRL), Counter Terrorism Pre-
paredness Network (CTPN), Inception-V3, Xception, Res-Net152V2, etc. Deployment
platform involves AWS Lambda (Lambda), Google Cloud Functions (GCF), Amazon
SagerMaker and Google AI Platform (GAP). Serving Runtimes includes TensorFlow
(TF), and Open Neural Network Exchange (ONNX). Some of the studies optimizes de-
ployment by reducing dependency libraries, loading models at runtime, and automatic
partitioning to cope with resource constraints and cold start delays in serverless environ-
ments. The evaluation metrics mainly include latency and cost. These studies illustrates
a variety of approaches to optimize the deployment of DL models on different serverless
platforms, providing a reference for this study on how to achieve efficient inference in a
resource-constrained serverless environment.

Based on the above analysis, this study is committed to filling these research gaps
by proposing a plant disease detection system using DL in a serverless environment.
As shown in the last row of Table 2, we focus on the transfer learning and performance
comparison of three CNN models, the comparison of model serving in serverless (Amazon
Lambda) and VM (AWS EC2) environments in terms of latency and cost. Additionally,
we explore deployment optimizations, including ONNX runtime, library trimming, and
the use of AWS Lambda layers. The ultimate goal is to provide a scalable and cost-
effective solution for family farmers to detect plant diseases.
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Table 1: Literature Comparison (Plant Disease Detection Models)

No. Algorithm Dataset Metrics Deployment Author

1 CNNs,
VGG16,
GoogLeNet,
and ResNet 50

Plant Village Accuracy,
F-score, Exe-
cution Time

No Mohameth et
al.

2 ResNet101V2,
ResNet50V2,
Efficient-
NetB2,
VGG16,
VGG19, and
MobileNet2

Cassava Dis-
ease Classifica-
tion

Accuracy, Pre-
cision, Recall,
F1-Score, Sup-
port

No Alford & Tuba

3 InceptionV3,
CNN and
YOLOV5

Self-Collected Accuracy,
mAP, Recall,
and Precision

No Tirkey et al.

4 ResNet-50,
AlexNet,
VGG16, VGG-
19, DenseNet,
SqueezeNet
and DarkNet

Local Farm-
lands & Plant
Village

Precision, Re-
call, Accuracy,
and F1-Score

Amazon Sage-
Maker

Khan et al.

5 MobileNet V2 Self-Collected Accuracy and
Loss

Not Mentioned Neelaveni et al.

6 CNN Self-Collected Accuracy, Pre-
cision, Recall,
and F1-Score

Cloud PaaS Elijah et al.

3 Methodology

This study follows Cross-Industry Standard Process for Data Mining (CRISP-DM) method,
ensuring that the project is implemented in a scientific and orderly manner. There are six
steps in CRISP-DM workflow, including Business Understanding, Data Understanding,
Data Preparation, Modeling, Evaluation, and Deployment.

3.1 Business Understanding

In the Business Understanding phase, the critical importance of early identification of
plant diseases to improve crop yields was clarified. Agricultural production, especially
smallholders, is suffering from severe food losses due to pests and diseases. According to
the Food and Agriculture Organization of the United Nations, about 40 percent of global
food loss each year is caused by pests and diseases, leading to over $220 billion cost.
Traditional plant disease diagnosis heavily relies on on-site assessments by agricultural
experts, which is time-consuming and costly, with limited support for smallholder farmers.
Therefore, this study aims to implement a DL and serverless architecture-based plant
disease detection system, which enables smallholder farmers to upload plant leaf photos
through mobile application to detect crop diseases in a low-cost and efficient way, thereby
reducing crop losses and improving food production efficiency.
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Table 2: Literature Comparison (Deploying DL Models in Serverless Environments)

No. Model
Type

Serving
Runtimes

Serverless
Platform

Deployment
Optimiza-
tion

Evaluation
Metrics

Author

1 MobileNet,
ALBERT,
VGG, Mo-
bileNet

TF and
ONNX

Lambda,
GCF, Sage-
Maker,
GAP

No Cost and
Latency

Wu et al.

2 RNNs and
DRL

ONNX AWS
Lambda

Trimming
dependent
libraries
and Load-
ing models
in runtime

Latency Christidis
et al.

3 CTPN Not Men-
tioned

EC2 in-
stances,
AWS
Lambda

Slimming
unnecessary
depend-
encies,
Loading
models in
runtime

Latency
and Cost

Chahal et
al.

4 ResNet50,
Inception-
V3 and
Xception

Not Men-
tioned

Lambda,
SageMaker

Partitioning
model

Latency
and Cost

Jarachanthan
et al

5 VGG19,
MobileNet-
V2, Res-
Net50

ONNX Lambda,
EC2

Trimming
libraries,
using AWS
Lambda
layers

Latency
and Cost

Peng Yu

3.2 Data Understanding

PlantVillage dataset is chosen as the training data for our study. There are 14 kinds
of plants, 38 categories of diseases and 54,305 instances in total. Among these samples,
there are 8 kinds of fruits and 6 kinds of vegetables. Due to hardware resource constrains,
we decided to use vegetables as our dataset. There is only 1 category of disease for
soybean and squash, so we finally chose corn, pepper, potato and tomato, which is still
a meaningful application for farmers to detect these vegetable diseases.

In order to better understand the characteristic of data and provide evidence for
the following data preprocessing and model training, we conducted Exploratory Data
Analysis (EDA), and the analysis content including dataset distribution, image size and
format, brightness and contrast distribution. The results of the analysis are as follows:

Data Distribution. The dataset contains 26,639 samples across 19 disease categories
and 4 types of vegetables. Figure 1 displays sample images from each category. Figure
2 illustrates the category distribution, revealing a significant imbalance. In particular,
the ’Potato Healthy’ and ’Tomato Mosaic Virus’ are underrepresented. This imbalance
suggests the need for data balancing techniques to ensure more robust model training.

Image Size and Format. The dimensions of all images in the dataset are 256x256
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Figure 1: Samples per Class

pixels and are in JPEG format. Uniform image sizes and formats simplify the data pre-
processing process, which means we don’t need extra adjustment and format conversion
to ensure the consistency of data entry.

Brightness Distribution. The average brightness of the image is concentrated
between 75 and 150, as shown in Figure 3, showing an approximate normal distribution.
This indicates that the overall brightness of the image is moderate, but there are some
brightness fluctuations.

Contrast Distribution. The contrast of images is concentrated between 20 and 80,
as shown in Figure 3, and the distribution is relatively balanced. The balanced contrast
helps the model to stably extract effective information during the feature learning process
without additional contrast enhancement.

3.3 Data Preparation

In the data preparation phase, image resizing and normalization operations need to be
conducted according to the EDA results. Following the standard practice of pre training
ImageNet models by Deng et al. (2009), we normalized the RGB channels using the
mean ([0.485, 0.456, 0.406]) and standard deviation ([0.229, 0.224, 0.225]) of the ImageNet
dataset to ensure compatibility with pre trained network weights and maintain consistent
input distributions.

Due to the imbalance of the dataset categories, we implemented weighted sampling
strategy through PyTorch’s WeightedRandomSampler. As demonstrated by Zhang et al.
(2021), oversampling can lead to overfitting of duplicate samples and increase the size
of the dataset. On the other hand, undersampling discards valuable training data from
the majority class. In contrast, weighted random sampling preserves the original dataset
while achieving balanced class representation through probability-based sampling. By
assigning higher sampling weights to the categories with small sample sizes, the model
can fully learn the characteristics of these minority samples during training, avoiding the
model biasing towards the majority sample categories.
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Figure 2: Class Distribution

3.4 Modeling

Due to the time and hardware resource limitation, this study selected three models repres-
enting deep traditional (VGG19), mobile-optimized (MobileNet-V2), and residual learn-
ing (ResNet50) network designs to provide a diverse representation of CNN architectures.
These models are pre-trained on ImageNet dataset, so they can be directly applied to
the PlantVillage dataset through transfer learning to conduct plant disease detection. As
defined by Gupta et al. (2022), transfer learning is a way to use pre-trained models as a
starting point for developing new models on different datasets.

3.5 Evaluation

There are two types of evaluation we need to conduct, including model performance and
deployment environment evaluation.

3.5.1 Model Performance Evaluation

To comprehensively evaluate the performance of models, we adopted standard evalu-
ation metrics, including Accuracy, Precision, Recall, F1-Score and Confusion Matrix.
The notations used in these metrics are defined in Table 3. These metrics evaluate the
model performance in different dimensions, helping us better understand the accuracy
and robustness of models in plant disease detection.

Accuracy. Used to measure the overall correctness of model predictions by calculat-
ing the proportion of correct predictions out of all predictions.

Accuracy =
TP + TN

TP + TN + FP + FN
(1)
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Figure 3: Brightness and Contrast Distribution

Notation Definition
True Positives (TP) The number of samples correctly predicted as a specific disease

type.
True Negatives (TN) The number of samples correctly predicted as not belonging to

a specific disease type.
False Positives (FP) The number of samples incorrectly predicted as a specific dis-

ease type when they belong to other types.
False Negatives (FN) The number of samples incorrectly predicted as not belonging

to a specific disease type when they actually do.

Table 3: Notation used in Evaluation Metrics for Multi-Class Plant Disease Detection

Precision. It indicates the proportion of diseases that the model predicts to be a
disease that actually belong to that class, reflecting the accuracy of the model for positive
classes. Higher precision means few false positives.

Precision =
TP

TP + FP
(2)

Recall. It measures the proportion of correct positive recognition out of all actual
positive samples, reflecting the sensitivity of the model. A high Recall presents that the
model is able to identify disease samples more comprehensively.

Recall =
TP

TP + FN
(3)

F1-Score. It’s the average of Precision and Recall, used to comprehensively evaluate
the performance of models on different categories, especially suitable for evaluations where
there is a trade-off between accuracy and recall.

F1-Score = 2× Precision× Recall

Precision + Recall
(4)

Confusion Matrix. It displays the detailed prediction results of a model on all
classes, including the correct prediction samples and misclassified samples for each cat-
egory. We can understand categories in which our model tends to make mistakes through
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the Confusion Matrix, which provides specific directions for subsequent model optimiza-
tion.

3.5.2 Deployment Environments Evaluation

In the deployment phase, in order to evaluate the application effect of serverless archi-
tecture in plant disease detection, we deployed the best CNN model in AWS Lambda
and AWS EC2 environments, respectively. Then we compared the cost and latency per-
formance of two different serving environments by simulating a real-world agricultural
production application scenario which includes off-peak season, regular season and peak
season of use.

4 Design Specification

The plant disease detection system this study designed aims to provide a simple, economic
and efficient disease detection tool for smallholder family farms. The design specification
of this system focuses on two core factors: the application of transfer learning, and the
implementation of serverless-based system. These factors can ensure the balance among
performance, cost, and user usability, which helps farmers obtain accuracy and convenient
plant disease detection service under the limited resource situations.

4.1 The Application of Transfer Learning

This system adopts transfer learning to implement the core functionality of plant dis-
ease detection. The choice of transfer learning can take advantage of models that are
pre-trained on large-scale datasets such as ImageNet, from where we can obtain rich im-
age features and then implement effective plant disease detection on limited agricultural
dataset. This study chose three pre-trained VGG19, MobileNet-V2 and RestNet50, which
can provide flexible options under different resource conditions and demand scenarios.

VGG19. Trained by Simonyan and Zisserman (2014), it has relatively strong feature
extraction capabilities while has a higher computational cost and it’s suitable for scenarios
with sufficient computing resources.

MobileNet-V2. Trained by Sandler et al. (2018), it’s a light weight network struc-
ture and designed for mobile devices for serverless environments. It has high computing
efficiency and low memory footprint, is the preferred model for the deployment of this
system.

ResNet50. Trained by He et al. (2016). By introducing the residual blocks, ResNet50
improved the stability of the deep network training and is suitable for scenarios that
require high classification accuracy.

The application of transfer learning reduces the training time, as described by Gupta
et al. (2022). Furthermore, by fine-tuning the model we can adapt its structure to the
specific task of plant disease detection, avoiding the data and resource consumption of
training from scratch.

4.2 Serverless-based System Architecture

In the design of the system architecture, the application of serverless architecture enables
the system to gain significant advantages in terms of elastic scalability and cost con-
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trol. As a serverless computing service, AWS Lambda supports scalability and billing on
demand, which is particularly suitable for applications with large seasonal demand fluc-
tuations in agriculture. Through the elastic scalability of AWS Lambda, the system can
quickly scale the number of instances during peak demand periods to meet the large-scale
demands while automatically scaled back to avoid unnecessary costs during low demand
periods.

There are three layers in our design, Data Persistence layer, Business Logic layer and
Presentation layer, as shown in Figure 4. The main components among different layers
include the following:

Figure 4: System Architecture

Frontend Application. The frontend of the system adopts the mobile application
based on React Native to provide convenient user interaction methods.

Amazon API Gateway. As a unified entry point to the system, API Gateway
receives HTTP requests from frontend clients and routes them to the corresponding
Lambda functions. It also provides authentication and access control features to ensure
the security of system.

AWS Lambda. Lambda functions are the computing cores of the system and there
are three Lambda function deployed. Register & Login function is used to implement
the user register and login feature, it combines the JSON Web Tokens (JWT) technology
to generate and verify tokens to ensure the legitimacy of user identity. Model Inference
function is used to serve the ONNX format plant disease detection model, it processes the
images uploaded by users and infers quickly then send the results back. Authentication
function is called by API Gateway before it routes requests to Model Inference function.
It performs validity checks on the JWT token provided by users provide security for the
protected API.

Amazon DynamoDB. This system uses DynamoDB as the database to store user
data including username and hashed password. DynamoDB is high-performance and
serverless which can cope with the read and write requirements in the high concurrency
scenarios while maintaining a low cost.
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5 Implementation

The implementation of this system consists of the following key steps: model training
and evaluation, model deployment and frontend application development. Each step is
designed and implemented in strict accordance with the design specification, ensuring the
efficiency and stability of the system in practical applications.

5.1 Model Training and Evaluation

In the model training phase, this study fine-tuned and evaluated three transfer learning
models, VGG19, MobileNet-V2 and RestNet50.

Transfer Learning Model Loading. All three CNN models use weights pre-trained
on the ImageNet dataset. Most of the early layers are frozen and only the last layer is
fine-tuned to apply them on the plant disease classification tasks. This transfer learning
method makes efficient use of the feature extraction capabilities of pre-trained models
and reduces the dependency on large-scale dataset.

Hyperparameter Setting. During the model training process, the cross-entropy is
used as the loss function as it is the standard choice for classification tasks, particularly
in multi-class classification problems, according to Goodfellow et al. (2016). Adam is
used as the optimizer. According to Kingma (2014), Adam combines the advantages of
momentum and adaptive scaling, resulting in faster convergence and robustness across
various optimization problems. They also suggested a default learning rate of 0.001, which
has been shown to work effectively for a wide range of deep learning tasks. A batch size of
32 is chosen to balance computational efficiency and model generalization. According to
Keskar et al. (2017), small-batch training introduces noise in gradient estimation, helping
models escape sharp minima and converge to flat minima, which improves generalization.
Additionally, a batch size of 32 is computationally efficient for our constrained GPU
resource. The value for the early stop was selected based on the unimproved performance
(UP) criterion, as described by Prechelt (1998). Specifically, the method triggers early
stopping when the validation loss fails to improve for 5 consecutive evaluations.

5.2 Model Deployment

In the deployment phase, we deployed the MobileNet-V2 in AWS Lambda and AWS EC2
two environments to compare the effect of serverless architecture with the traditional VM
environments for agricultural application.

AWS Lambda Deployment. The mobileNet-V2 model is converted to ONNX
format and is loaded by AWS Lambda function to infer. There are many benefits to use
ONNX format such as the cross-platform compatibility, framework-agnostic transforma-
tions, easy deployment. For serverless environments, it can also reduce the dependency
library size and thus decrease the cold start time. Lambda layers are also used in the
system to manage and reuse the dependencies. To accept requests from users, AWS API
Gateway is used to provide an HTTP interface, which can be called by users through
the frontend application to do the real-time plant disease detection. Specifically, API
Gateway routes user request to the Lambda function and Lambda function returns the
detection result.

AWS EC2 Deployment. The MobileNet-V2 model with ONNX format is deployed
as a RESTful API through the FastAPI web framework. EC2 provides an always-on
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computing environment that is suitable for frequently invoked scenarios. The purpose is
to compare the inference latency and cost efficiency of AWS Lambda and AWS EC2 for
seasonal requirements of agricultural applications.

Base64 Encoding. Because AWS API Gateway automatically encodes the binary
image file to Base64 format for Lambda to use, we decided to transfer Base64 encoded
images from the frontend to the backend, which also makes it easier to just handle
string format data. To ensure the model inference results will not be affected, this study
conducted a comparison between model inferences on regular image and Base64 format
image and the experiment shows that results in terms of the prediction, confidence score
and accuracy are totally identical. Figure 5 presents the confidence score between regular
image and Base64 formats.

Figure 5: Comparison of Regular and Base64

5.3 Mobile Application

An React Native-based mobile application is implemented for farmers to use. Users
can register and login through the application. After logging in, users can upload plant
images to trigger the disease detection process. The detection result is presented in a
simple way, including the predicted disease name and confidence level, helping farmers
stay up-to-date on plant health. Figure 6 is the screenshot of the application.

6 Evaluation

There are two parts of evaluation in this study: the model performance evaluation and the
deployment environment evaluation. The evaluation of model performance includes the
comparison of Accuracy, Precision, Recall and F1-Score, while deployment environments
evaluation focuses on the inference latency and cost between AWS Lambda and AWS
EC2.
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Figure 6: Mobile Application

6.1 Model Performance Evaluation

In the process of model training and validation, we use three classical CNNs, VGG19,
MobileNet-V2 and ResNet50. The experiment results shows that the MobileNet-V2 excels
in multiple performance metrics. The accuracy of the validation set reached 98.82%, and
the training process completed in 24m 14s, which is significantly better than that of the
other two models. Table 4 shows the results of the three models (values are percentages
with % symbol omitted). 7 and 8 display the loss and accuracy line charts across epochs.
9 , 10 and 11 present the Confusion Matrix.

Table 4: Model Performance Comparison

No. Algorithm Accuracy Precision Recall F1-
Score

Training
Time

Inference
Time

1 VGG19 3.75 0.14 3.75 0.27 40m 21s 0.29ms

2 MobileNet-
V2

98.82 98.85 98.82 98.82 24m 14s 0.56ms

3 ResNet50 97.94 98 97.94 97.91 54m 53s 0.53ms

The results show that the MobileNet-V2’s performance is slightly higher than Res-
Net50 in terms of Accuracy, Precision, Recall and F1-Score. However, VGG19 failed to
learn meaningful features and collapsed to predicting a single class (Potato Late blight),
as shown in Figure 9, resulting in extremely poor performance across all metrics. At the
same time, the mobileNet-V2 has a faster training speed compared to the other models.

6.2 Deployment Environments Evaluation

In order to validate the practical effect of serverless architecture in plant disease detection,
this study deployed MobileNet-V2 model on both AWS Lambda and AWS EC2 envir-
onments and mainly focused on the performance of inference delay and cost. To ensure
a fair comparison, t2.micro EC2 instances and Lambda with the same 1GB of memory
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Figure 7: Loss and Accuracy Line Charts Across Epochs - MobileNet-V2

Figure 8: Loss and Accuracy Line Charts Across Epochs - ResNet50

Figure 9: Confusion Matrix - VGG19

were selected. For t2.mocro EC2, it has 1 vCPU, 1G RAM, and its hourly Rate is
$0.0126. For Lambda, it is configured to 1G RAM, its compute rate is $0.0000166667
per second and request rate is $0.00000020 per request.
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Figure 10: Confusion Matrix - MobileNet-V2

Figure 11: Confusion Matrix - ResNet50

We compared latency performance and cost by simulating seasonal loads in real-
world scenarios. Based on the principles of agricultural production and our knowledge,
we formulated a basic hypothesis: there are three seasons of use. During the off-peak
season, there are 2 requests per hour, lasting for 4 months; in the regular season, there
are 60 requests per hour, lasting for 6 months; and in the peak season, there are 3600
requests per hour, lasting for 2 months. Figure 12 shows the experiment results.

Cost Analysis. The annul total cost of EC2 is $108.86, because it’s needed to run
the server around the clock. While the annul cost of Lambda is only $12.76, approxim-
ately 88% savings over EC2. Even during the peak season (monthly cost EC2: $9.07 vs
Lambda: $6.12), Lambda is more economic. However, our analysis presents that when
the monthly requests exceed 3.85 million, approximately 5,277 requests per hour, EC2
becomes more cost-effective than Lambda. This threshold provides a clear guideline for
choosing between the two services based on expected workload.

Latency Performance. The latency of EC2 is between 35 and 170 millisecond (ms),
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Figure 12: Latency and Cost Comparison: EC2 vs Lambda

134 ms on average. The latency of Lambda is between 100 and 180 ms, 139 ms on average,
relatively higer then EC2. And both of these two solutions maintained a 100% success
rate in all seasons.

Scalability. The scalability evaluates a system’s ability to handle an increasing
amount of work. In our test, the latency of EC2 increases gradually as the loads increase,
indicating that the increased load affects performance. While Lambda, despite its high
latency, is stable when the load changes.

All factors considered, Lambda is a better choice for workloads below the threshold of
5,277 requests per hour. Although Lambda has slightly higher latency, it has a significant
cost advantage and scalability. For applications exceeding this threshold, EC2 provides
both cost benefits and better latency performance.

7 Conclusion and Future Work

7.1 Conclusion

This study successfully built a plant disease detection system that combined transfer
learning and serverless architecture, helping smallholder farmers diagnose plant diseases
in a cost-effective and efficient manner to reduce the yield loss caused by plant diseases.
Through the analysis and preprocessing, this study trained VGG19, MobileNet-V2 and
ResNet50 three transfer learning models and comprehensively evaluated their perform-
ance on tomato disease detection tasks. MobileNet-V2 is the best choice due to its
lightweight and high accuracy, whose accuracy reaches 98.57% on the validation set. It
performs well in terms of the inference speed, and is suitable for the deployment in the
serverless environment.

In order to balance cost and response time, the MobileNet-V2 model is deployed both
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in AWS Lambda and AWS EC2 environments. Through comparison of experiments, the
cost advantages of AWS Lambda in application scenarios with strong seasonal demand
are confirmed. The pay-per-call billing model and on-demand scaling features of AWS
Lambda reduces the operational cost for seasonal disease detection applications.

Overall, this study achieved a good balance between accuracy and economy, providing
a convenient plant disease detection tool for smallholders. Through the React Native
application, farmers can simply upload the plant leaf images and then obtain a real-time
disease detection results, which is supposed to improve the production decision-making
ability of farmers.

7.2 Future Work

In the future work, will plan to extend and optimize our system in multiple aspects.
The first priority is to increase the size and diversity of the dataset, enabling the system
to identify a wider range of crop disease categories to improve the practical value and
scope of the model. In terms of the model optimization, we will introduce automatic
parameter tuning technology, combined with the Cross-Validation training strategy, to
obtain an optimal hyper parameter combination, so as to improve the generalization
ability and prediction accuracy of the model. For system improvement, we plan to develop
a detection history tracking function and allow farmers to submit feedback to help us
continuously improve the model performance. Furthermore, we would like to explore
the possibility of Large Language Model integration to provide scientific and practical
disease prevention and control suggestions and solutions, which can potentially help us
build a more comprehensive and intelligent service platform for plant disease detection
and control.
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