
Optimizing Kubernetes Security through
automated Policy Enforcement in

Multi-Cloud Environment

MSc Research Project

MSc Cloud Computing

Soham Yadav
Student ID: X23173394

School of Computing

National College of Ireland

Supervisor: Prof. Rashid Mijumbi

www.ncirl.ie



National College of Ireland
Project Submission Sheet

School of Computing

Student Name: Soham Yadav

Student ID: X23173394

Programme: MSc Cloud Computing

Year: 2024

Module: MSc Research Project

Supervisor: Prof. Rashid Mijumbi

Submission Due Date: 12/12/2024

Project Title: Optimizing Kubernetes Security through automated Policy
Enforcement in Multi-Cloud Environment

Word Count: 2686

Page Count: 26

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature: Soham Yadav

Date: 28th January 2025

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). □
Attach a Moodle submission receipt of the online project submission, to
each project (including multiple copies).

□

You must ensure that you retain a HARD COPY of the project, both for
your own reference and in case a project is lost or mislaid. It is not sufficient to keep
a copy on computer.

□

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):



Optimizing Kubernetes Security through automated
Policy Enforcement in Multi-Cloud Environment

Soham Yadav
X23173394

Abstract

The use of Kubernetes has become crucial for the management of container-
ized applications in cloud environments. With rising advantages, there is a rise
in complexity due to its dynamic nature, this brings in significant security chal-
lenges. Traditional security tools namely AnchoreCLI generate a higher rate of
false positives, lack the ability to customize, and have a restricted ability to adapt
to multi-cloud environments, exposing the Kubernetes environments vulnerable to
evolving threats.

The study in this research proposes a novel approach by creating an automated
security framework for Kubernetes to address the limitations. The framework will
consist of a custom-built security scanning agent, which will perform active vulner-
ability detection by pulling data from the National Vulnerability Data (NVD).

In addition to the custom-built scanning agent, a dynamic and adaptive policy
enforcement engine is also created. The policy engine automatically updates the
policies based on the scanning results by the scanning agent. The policy enforce-
ment engine applies Kubernetes configurations in real time. The crucial part of
the framework is its seamless automation with the continuous integration and con-
tinuous deployment (CI/CD) pipeline. This provides the facility for automation
of initialization of the security scanning agent and policy enforcement engine at
appropriate stages during deployment to every environment. This pipeline ensures
a secure deployment and minimizes manual work leading to the low rate of human
errors. This creates a proactive solution to the evolving security threats.

The combination of real-time security scanning, adaptive policy enforcement,
and seamless CI/CD automation of the process, the proposed framework provides
a dynamic solution to the Kubernetes security complications. The study is a demon-
stration of the automation, customization, and adaptive approach for enhancing the
security of Kubernetes clusters in multi-cloud environments.

Key Words - Custom Security Scanning Agent, Adaptive Policy Enforcement,
Kubernetes, Continuous Integration and Continuous Deployment (CI/CD), Azure,
Google Cloud, National Vulnerability Database (NVD)

1 Introduction

In this modern world, cloud-native technologies have changed the process of applica-
tion, development, merging, and deployment. Kubernetes has emerged as a promising
container orchestration platform, and its abilities, such as flexibility to merge, deploy,

1



and scale the developed application over a multi-cloud environment, have catalyzed this
transformation. Kubernetes seamlessly executes tasks like load balancing, scaling, and
self-repair of workload, because of its dynamic nature of processing. This dynamic nature
comes with its advantages but also increases the complexity, which introduces various se-
curity challenges, Rahman et al. (2023). As the load or tasks over a container increases,
the possibility of exposure to vulnerabilities increases. For e.g. a tech giant like Tesla
faced a Kubernetes consol attack by hackers and sensitive data was exposed Rahman
et al. (2023), and another company like Shopify Bose et al. (2021) also faced a similar
attack where restrictions were imposed to access the data, such incidents highlight the
importance of Kubernetes security. This research aims to address such security challenges
under the research question: “How can the security of Kubernetes clusters be enhanced
through automated solutions?”

Tools that are already available such as AnchoreCLI, provide functionality for basic
vulnerability scanning and policy enforcement, Wende (2024). However, there are certain
limitations experienced with these tools, generation of high rates of false positives, and
lack of customization ability in the tool, especially when it is required during working
with a multi-cloud environment, Kamieniarz and Mazurczyk (2024). Another identified
limitation is its restriction towards real-time changes in deployment policies, this can
open the possibility of exposure to vulnerabilities causing a serious security issue. These
voids highlight the requirement for a more dynamic, adaptive, and automated approach
towards Kubernetes security.

The objectives of the research is an attempt to propose a novel framework for the
enhancement of Kubernetes security by using automated solutions that consist of custom-
built active security scanning and adaptive policy enforcement with the integration of the
CI/CD pipeline.

• The first component of this research is the custom-built security scanning agent
constructed to address the existing limitations. This tool extracts the real-time
vulnerability data from the National Vulnerability Database (NVD) and performs
scanning of container images. It focuses on accuracy and adaptability in order to
reduce the rate of false positives and to incorporate customizations for environment-
specific scans in a multi-cloud environment.

• Following the custom-built security scanning agent, an adaptive policy enforcement
engine is also proposed. This policy enforcement engine acts as a bridge between the
steps such as scanning and mitigating vulnerabilities. Based on the scanned results
by the security scanning agent, and identified vulnerabilities, the policy engine
dynamically generates the configurations YAML that make required changes in the
policy to mitigate the issues. These policies include restrictions on incoming and
outgoing traffic exposing vulnerable components or blocking entire access. This
dynamic approach of policy enforcement focuses on Kubernetes cluster security
against frequently evolving threats. The need for manual intervention in policy
changes is minimized and the risk of human error is also lowered.

• The integration of the framework with CI/CD pipelines is one of the important
aspects of this research. The custom-built security scanner and adaptive policy
enforcement in this pipeline make sure that the security scans and policy updates
get triggered automatically with each deployment. This automation process signi-
ficantly reduces manual work and minimizes the possibility of human errors and

2



this increases the rate of mitigation of security threats. This constructs a proactive
security model that continuously scans and adapts to the dynamic nature of the
Kubernetes environment, Raghunathan (n.d.).

The novel part proposed in this research consists of three components, real-time vul-
nerability detection, adaptive policy enforcement, and CI/CD pipeline automation into a
scalable framework. This proposed solution addresses the limitations of the pre-existing
tools responsible for carrying out similar tasks. The framework works parallel to the re-
quirements of modern cloud architecture. Constructing a self-regulating security frame-
work, this research aims to improve the overall Kubernetes security over a multi-cloud
environment. It provides a robust solution for security and dynamic security challenges
in the modern world’s containerized application management.

This research is a contribution to Kubernetes in the field of security, Kamieniarz and
Mazurczyk (2024), by providing a display of the potential of automated solutions for the
healthy security of containerized workloads. It focuses attention on the integration of a
custom-built real-time security scanning agent and adaptive policy enforcement engine
with a CI/CD pipeline to construct a scalable security framework. The proposed frame-
work addresses the challenges and complexity of security, immediately, as well as opens
the door for future research in the automated security framework in cloud environments.

The research paper is segregated into the following sections, Section 2 provides a
brief summary of the literature review or the related work done in the past, Section 3
describes the methodology for this research, Section 4 gives a detailed understanding of
the implementation of the tools and technologies for this research, Section 5 discusses
and evaluated the results and findings of the research along with the challenges faced
and lastly Section 6 concludes the research along with the possible future scope of the
research.

2 Related Work

Studying the existing related work, this research is an introduction to a automated frame-
work for enhancing the security of the Kubernetes cluster. Unlike the existing work, the
research addresses the gap between security scanning and policy enforcement based on
scanned results. This focuses on end-to-end automation of the process and minimization
of manual errors.

This section is bifurcated into 3 types based on the relevance of the research papers:
subsection 2.1, subsection 2.2, and subsection 2.3.

2.1 Vulnerability Detection and Management

(Bose et al.) Bose et al. (2021) In his paper, the under-reported security defect in Kuber-
netes manifest, by analyzing 5,193 commits over a range of 38 open-source repositories.
The study generated an output, that, just 0.79% of all the considered commits, were
related to security which suggested that several security-related issues were unidentified.
The author explains that such under-detected security issues can cause significant security
risks, leading to exposure of vulnerabilities. The proposal is to create a tool, a detection
mechanism for the detailed identification of security defects in the configurations and
focuses on deep research to identify the cause behind these issues.

3



The research paper “Automated Vulnerability Scanning of Kubernetes During the
CI/CD Process” Wende (2024) by Florian Wende focuses on the integration of vulnerabil-
ity scanning tools within Kubernetes CI/CD pipelines. The vulnerabilities in Kubernetes
are bifurcated into different categories such as lac misconfigurations, third-party compon-
ent flaws, and leaked secrets, highlighting the complexities of managing vulnerabilities in
the automated environment. The research displays the upper hand of combining open-
source scanning tools to enhance the vulnerability detection rate.

Rahman et al. Rahman et al. (2023) in the research have identified 11 different
categories of vulnerabilities by analyzing the security misconfigurations in the Kuber-
netes manifests, to name a few, absent security context, resource limits, and misuse of
privileged configurations. The author proposes a tool, Security Linter for Kubernetes
Manifests (SLI-KUBE), this tool improves vulnerability detection using static analysis
and minimizes false positives with the help of def-use chain analysis. The research focuses
on the critical role of rigorous static analysis and emphasizes best practices.

Kamieniarz and Mazurczk Kamieniarz and Mazurczyk (2024)studied and analyzed
Kubernetes security in four deployment models. These deployment models are divided
into two categories, firstly 0n-premise clusters namely K3S and Rancher Kubernetes En-
gine 2, and secondly managed services namely Amazon Elastic Kubernetes Service and
Google Kubernetes Engine. The author proposed and developed a tool “kube-security-
scanner” which can aggregate outputs of open-source tools like Kubescape, trivia, kube-
score, and kube-bench which are already available in the market to provide the function-
ality of automatic security scanning and provide valuable insights related to misconfigur-
ations and container vulnerabilities. The result of the analysis depicts that the managed
services have better security whereas the on-premises clusters possess more misconfigur-
ation issues.

The author Oluyede et al.Oluyede et al. (2024) in the research studies the security
challenges in container-based systems in the cloud environments. The focus is on identi-
fying the vulnerabilities related to container images, misconfigurations, and weak runtime
environments. It highlights enhancements in the CI CD pipeline such as Kernel isolation
mechanisms and access control strategies. The article identifies four important use cases
for container security. It also suggests combining software solutions with hardware tech-
nologies for significant protection.

The article “Testing the Security of a Kubernetes Cluster in a Production Environ-
ment”, Giangiulio and Malmberg (2022), by Francesco Giangiulio and Sebastien Malmberg
focuses on the security vulnerability in Kubernetes which contains custom-managed ap-
plications. The research paper analyses Precio Fishbone’s Omnia application deployed on
Azure Kubernetes Service and experiments with cross-tenant isolation within the Kuber-
netes namespaces. The crucial vulnerabilities found during the experiment were a lack
of network policies, default access to the root container, and misconfiguration in admin
privileges. Penetration testing is used to recreate the attack scenarios and demonstrate
the exploitation of the gaps. The author of this research paper proposes mitigating pro-
cesses such as implementing Role-Based Access Control, creating network policies, and
restricting account permissions for security enhancement.

4



2.2 Multi-Cloud and Network Policy Integration

The research paper “Network Policies in Kubernetes: Performance Evaluation and Se-
curity Analysis”,Budigiri et al. (2021) studies the Network policy of Kubernetes, focusing
on the performance and security effects on the 5G edge computing environments. The
research focuses on the implementation of Container Network Interface plugins such as
Calico and Cilium that enforce the network policies without affecting much of the per-
formance, providing an advantage for low-latency communication. The author emphasizes
the need for automation of policy verification for robust security.

Osmani et al.Osmani et al. (2021) in the research paper point out the limitations of
Kubernetes with regard to multi-cloud and multi-cluster environments within 5G net-
works. The novel proposal of integrating Federated Kubernetes (KubeFed) with Network
Service mesh (NSM) to provide multi-cloud connectivity and management workload dy-
namically. The solution proposed consists of secondary networking, service chaining, and
connectivity without network address translation (NAT). The proposed framework incor-
porating NSM proxyless data plane and KubeFed API, results in low latency and high
throughput. The research work completely focuses on innovating multi-cloud Kubernetes
networking.

The research paper “Enabling Service Mesh in Multi-Cloud Environment” Giandonato
(2021) studies the service mesh technologies such as Linkerd and Istio within Liqo multi-
cloud architecture. The author describes the identified challenges in a multi-cloud Kuber-
netes environment. The challenges such as namespace reflection, mutual TLS (mTLS)
certificate management, and cross-cluster service communication. Aligning with Liqo’s
capabilities, this research paper proposes a prototype to enhance cloud security and com-
munication. In all, it focuses on extended service mesh solutions.

The author Muhammad Waseem et al.Waseem et al. (2024) studies containerization
in multi-cloud environments. The research paper has divided the complications or chal-
lenges into four different frameworks, namely, security, automation, deployment, and
monitoring. There are 74 implementation strategies and frameworks, which also focus on
limitations in automated container security scanning and adaptive policy enforcement. It
provides a wide range of exposure to the architectural patterns, strategies, and attributes
of containerization.

The author Ganne Ganne (2022) analyzes the comparison between the security mech-
anism of Kubernetes and Docker Swarm in managing containerized workloads for cloud
environments. The author displays the advantages of Kubernetes over Docker specific-
ally with respect to scalability, fault tolerance, and features such as network policies and
role-based access control. Kubernetes proves to have the upper hand in secure workload
isolation and dynamic scaling, essential aspects for data protection in the distributed
cloud environment. The article also inspects the encryption techniques for secure data
transmission and storage.

In the research paper “Kunerva: Automated Network Policy Discovery Framework
for Containers”, Lee and Nam (2023) the author focuses on a framework for discovering
network policies in a dynamic containerization environment such as Kubernetes. The

5



network logs are used to automate the generation of the network policies that are used
for container isolation. The framework integrated with the existing policy enforcement
tool Gatekeeper to validate and enforce policies to reduce the risk of misconfiguration. In
addition to this, the real-life implementation of the framework demonstrated its adapt-
ability to factors like network changes with minimal overhead, and better scalability, as
it proves to be a useful asset for managing security in complex and dynamic environments.

2.3 DevSecOps and Automation in Kubernetes

The author Savitha Raghunathan Raghunathan (n.d.) addresses several challenges such
as rapid development cycles, dynamic deployments, and evolving security threats by ex-
ploring the strategies for embedding DevSecOps practices in Kubernetes environments.
The research focuses on threat modeling, static and dynamic code analysis, and container
scanning during the CI/CD pipeline workflow. The container vulnerability is identified
using tools like Clair and Trivy and the network policy in Kubernetes is monitored for
secure pod communication. In addition to this, anomaly detection and trust verification
are carried out using Falco and in-toto tools.

Blomqvist et al.Blomqvist et al. (2021) in the research describe the utilization of
Hashicorp Vault for automating secrets management in multi-cloud Kubernetes environ-
ments. The author focuses on the vault’s capabilities in terms of secure storage, secrets ro-
tation, and centralized lifecycle management and its integration with the CI/CD pipeline.
It highlights the use of tools like Terraform for Kubernetes security injection. The article
also highlights the challenges related to secrets management in multi-cloud settings such
as secret sprawl and ensuring secure success control.

The authors Amir Boroufar and Pasquale Boroufar (2020) Lepera contribute to the
study of challenges that occur during the deployment of microservices in a multi-cloud
environment. This is aligned with a focus on Kubernetes and Istio to handle traffic
management and system flexibility. The proposal architecture in this research integrates
OpenVPN for secure networking, Istio for traffic control and service mesh, and CI/CD
pipelines for automated software delivery. The research also identifies some gaps in se-
curing the CI/CD pipelines and container management in multi-cloud scenarios, but the
study successfully displays the advantages of using multi-layered DevOps for distributed
microservices.

Mustyala and Tatineni Mustyala and Tatineni (2021)in the research paper “Advanced
Security Mechanisms in Kubernetes Isolation and Access Control Strategies” explore the
security of Kubernetes and it mainly focuses on isolation techniques, sandboxing tools,
and access control strategies. The crucial points discussed in this study are namespaces,
network policies, and pod security policies for isolation methodology with an aim to min-
imize the attack surface and mitigate risks of privilege escalation and lateral movements.
The tools used for the purpose of sandboxing are gVisor and kata containers, which en-
hance workload isolation due to the lightweight virtual machine architecture. The author
in this research touches on several aspects such as access control mechanisms, specifically
Roal-Based Access Control and Attribute-Based Access Control with the integration of
an Open Policy Agent for policy enforcement and external secret management.

6



The authors Voievodin and Rozlomii Voievodin and Rozlomii (2024) explore the
possible security complications in container orchestration systems such as Kubernetes,
Docker Swarn, and Apache Mesos. The research discusses the possibility of unauthorized
access or service disruptions due to insecure configurations, supply chain vulnerabilities,
and misconfigurations. The focus is on the strategic scheduling decisions to improve se-
curity using distributed solutions. The critical components are distributed among the
nodes to reduce the impact of attacks. The proposal by the authors is to use node-
weighted and ranking algorithms to balance load properly.

Kermabon-Bobinnec et al., Kermabon-Bobinnec et al. (2022), in the research paper
“ProSPEC: Proactive Security Policy Enforcement for Containers” propose an approach
for security policy enforcement in Kubernetes. The paper points towards the limitations
of reactive security tools like OPA/Gatekeeper which have limitations such as introdu-
cing delays and exposing vulnerabilities due to their state-replication mechanism. The
ProSPEC uses predictive modeling using Bayesian networks to anticipate security events
and pre-verify policies. This ensures quick policy enforcement in about 10 ms for around
800 pods. It focuses on the seamless integration of Kubernetes with policy tools and
suggests future improvements in the form of support for other orchestrators.

3 Methodology

The methodology for this research is an attempt to provide a detailed and systematic
approach to address and mitigate the Kubernetes security challenges in a multi-cloud
environment. As Introduced in the beginning, Kubernetes is a commonly used container
orchestration platform but often faces vulnerabilities with increased complexities during
dynamic deployments, policy enforcement, and real-time security scanning. The research
proposes a novel framework to integrate the custom-built components into the CI/CD
pipeline to create seamless automation for mitigating challenges. This section focuses on
the key elements of this research.

This section is divided into specific sections and subsections describing the crucial
elements of this research in detail:

Architecture Design: This subsection provides a high-level description of the frame-
work’s architecture design. It provides an understanding of the integration of key com-
ponents and emphasizes multi-cloud adaption for scalability.

Key Components: This sub-subsection delves into the crucial components of this re-
search. The components such as “Custom Security Scanning Agent”, and “Adaptive
Policy Enforcement” are explained in detail.

The proposed methodology is built upon the relative existing research with an intro-
duction to innovative features. The existing solutions such as ”Calico”, ”Cilium” address
Kubernetes security like network policies and vulnerability scanning but lack real-time
adaptability. This research proposal fills the gaps by connecting Security Scanning Agents

7



and Policy Enforcement and automating them through the CI/CD pipeline.

3.1 Architecture Design

The architecture design of the proposed framework for Kubernetes security in a multi-
cloud environment is planned for a proper connection between the key components includ-
ing “Custom Security Scanning Agent”, “Adaptive Policy Enforcement”, CI/CD pipeline,
and multi-cloud environment.

Figure 1: Architecture Diagram

The architecture diagram, refer to the image 1 demonstrated a detailed connection
of all the components used in this research as well as provides an understanding of the
sequential workflow between all the components.

A developer develops a code for any application in any of the desired IDE, In this
case “VS Code” is used. Once the development is completed, along with all the required
YAML files for container and Kubernetes configuration, the code is pushed to the version
manager, in this case, it is “GIT”. “GIT” has crucial keys stored in its secrets, which
can be used whenever required. Once the code is pushed to “Git”, the CI/CD pipeline
“Git Jobs” gets triggered. These jobs are the steps or actions that are linked to each
other to create seamless automation. At the code build stage, the “Custom Security
Scanning Agent” job is executed, in which the metadata of “Docker” images created in
the earlier action is extracted from the container registry of “Azure” or “Google Cloud”
and that metadata is compared or matched with the “National Vulnerability Data NVD”,
then if the vulnerabilities are identified, they are stored in “Scan Results.json” YAML
file. Further, these scanned results are then provided to “Dynamic Policy Enforcement”
where the policies are created to mitigate the scanned vulnerabilities, and these policies
are stored in another YAML file “Adaptive Policies.json”. This YAML file with stored

8



policies is applied based on the coverage required such as pod level, node level, and cluster
level. Then the secured application is deployed and available for the user to access. This
process is a complete automation of identifying the vulnerabilities in Kubernetes and
mitigating them by policy enforcement and applying required restrictions for security
enhancement. When the user tries to access the application, it will get access to only
those areas that are allowed by the policies, securing unwanted privileges.

3.1.1 Architecture Overview

The design can be understood through different sections or layers:

1. Development and Containerization layer:

• A small application is developed using the ”Java Spring Boot” framework and
the version control is provided by ”GIT”.

• Docker technology is used for containerization and the created images can be
scanned, stored, and deployed.

• The configuration files in the form of YAML are stored at the application code
level to define Kubernetes configurations in terms of deployments, services,
and policies.

2. CI/CD Automation Layer:

• All the processes such as application building, containerizing, scanning vulner-
abilities, and adaptive policy enforcement are automated using the CI / CD
pipeline.

• The pipeline stages can be summarized as Build, Scan, Enforce policy, Deploy,
and Monitor.

3. Deployment Layer:

• The use of Kubernetes is deployed across clouds such as Azure ensuring scalab-
ility, fault tolerance, and distributed workload management.

3.1.2 Key Components:

1. Custom-built Security Scanning Agent:

One of the crucial components of this research is the custom-built security scan-
ning agent. The aim is to counter the limitations of the existing security scanning
tools by providing an adaptive and automated solution for the Kubernetes envir-
onment in multi-cloud scenarios. This agent is designed to dynamically analyze
the containerized application for vulnerabilities during the CI/CD processes and at
the built phase. It makes use of the National Vulnerability Database to validate
with real-time data. The approach increases accuracy in vulnerability detection
and minimizes the rate of false positives.

Purpose and Scope of the Custom-built Security Scanning Agent:

9



• Customizable scanning logic: Customization ability to specific deployment
environments and applications needs.

• Integration with multiple cloud environments: Seamless operations across
Kubernetes cluster in ”Azure Cloud Services”, ”GCP”.

• Real-time validations: Active synchronization with ”NVD” to ensure up-to-
date vulnerability assessments.

• Actionable Results: Focus on critical and high-severity vulnerabilities, provid-
ing concise and relevant insights to ensure Kubernetes security.

Use of National Vulnerability Database (NVD):

NVD is a public database that provides details about the vulnerabilities, including
the level of severity (CVSS scores) as well as the version of the software that was
affected during the process. It is a key component of the Custom-built Security
Scanning Agent.

• Reliability: ”NVD” is widely known as the best for vulnerability information
in security research and practices.

• Real-time data access: The agent uses the ”NVD CVE API 1.0” to fetch the
latest vulnerabilities.

• Standard Severity Scoring: It provides a trustable and uniform severity assess-
ment of the data stored in ”NVD”.

Mechanism of Vulnerability Detection:

(a) Container Metadata Extraction:

• The metadata such as the package name and version are extracted from
the docker images.

• The metadata should be compatible with the dynamically generated Im-
ages during the CI/CD process.

(b) Querying the NVD:

• An HTTP GET request is sent to NVD API with the required keywords
such as package names.

• Filters must be able to match the results within the package versions
present in the container.

(c) Severity-Based filtering:

• Based on the CVSS scores, the filtering can be done based on the levels
of severity, and relative results can be obtained.

• This helps in decreasing noise and priorities that are actual threats for
immediate remediation.

Code Workflow and Functionality, refer to img 2:

(a) Image analysis:

• The metadata of the docker image is extracted.

10



(b) Real-time vulnerability matching:

• Querying the NVD to match vulnerabilities based on the extracted metadata.

• The CVE entries to the package version to identify vulnerabilities relevant
to the current application specifications.

(c) Severity Assessment:

• Categorizes vulnerabilities based on the level of severity which is defined
based on CVSS score, such as critical, high, medium, and low.

(d) Report Generation:

• A JSON report is structured, that includes details about the detected
vulnerabilities, that include package name and version, CVE ID, severity
score, and description of the vulnerabilities.

Integration with the Framework:

The Custom-Built Security Scanning Agent integrates seamlessly into the research
framework.

• Triggering during CI/CD: Whenever the new images are pushed or built, scan-
ning gets initiated automatically.

• Providing real-time insights: The scan generated ascendable reports that act
as input to the adaptive policy enforcement.

• Reducing Manual Intervention: It completely automates vulnerability scan-
ning and reporting, streamlining security processes.

2. Adaptive Policy Enforcement:

Adaptive Policy Enforcement is a fundamental part of this research, that addresses
the limitations and acts as a bridge to overcome the limitations of the static policies
in the Kubernetes environment. The proposed mechanism automates policy en-
forcement in Kubernetes based on the scanned results of the vulnerabilities by the
Custom-built Security Scanner Agent. This dynamic functionality ensures increased
Kubernetes security and its robustness towards evolving security, as well as reduces
manual intervention minimizing the scope of human errors.

Purpose and Scope of the Adaptive Policy Enforcement:

The traditional Kubernetes policy configurations are defined manually and are dy-
namic in nature. This limits its ability to modify the policies dynamically or auto-
matically for the detection of vulnerabilities. Existing tools such as Calico and
Cilium provide a significant policy framework but lack dynamic adaptability based
on the Custom-built Security Scanning Agent’s results. To overcome this gap in
the security process, Adaptive Policy Enforcement is proposed in integration with
the CI/CD pipeline that will seamlessly mitigate the identified vulnerabilities.

Mechanism of policy generation and application:

11



Figure 2: Algorithm flow-chart of A. Custom Security Scanning Agent and B. Adaptive
Policy Enforcement

The key steps taken by Adaptive Policy Enforcement for policy generation are as
follows:

(a) Input from Custom-built Security Scanner Agent:

• The Custom-built Security Scanner Agent generated results of vulnerab-
ilities with details such as affected packages, severity levels, and potential
impacts. A critical vulnerability detected in the application may trigger
an immediate policy update.

(b) Adaptive Policy Enforcement:

• Based on the scanned results, the system dynamically generates YAML-
based Kubernetes policies.

• If a severity level is high for the detailed vulnerabilities, policies can block
all incoming and outgoing traffic to the affected container.

• For lower levels of security, traffic may be restricted to a specific IP range.

• These policy updates are done programmatically using Python.

(c) Automated policy application:

• The generated policies are applied automatically to the Kubernetes cluster.
The step gets triggered automatically by the CI/CD pipeline and minim-
izes the latency between vulnerability detection and policy enforcement.

12



Explanation of the Adaptive Policy Enforcement Code Flow, refer to Img 2:

The policy enforcement is established using a Python script that automates the
entire workflow, from reading scan results to applying updates.

(a) Triggering Security Scans:

• The script periodically involves a custom security scanning Agent to fetch
the latest vulnerability data via an API endpoint.

(b) Policy Decision Logic:

• Based on the scanning results, the policy is modified to mitigate the iden-
tified vulnerabilities.

• Example 1: Block incoming and outgoing traffic if a critical vulnerability
is detected.

• Example 2: Restrict incoming and outgoing traffic to a certain IP range
only.

(c) Yaml Policy Generation:

• This Adaptive Policy Enforcement script generates Kubernetes network
policy YAML files based on the new policy changes.

(d) Applying Policies:

• The script applies the generated policies to the Kubernetes cluster, to
reduce latency in threat mitigation.

3. Integration into CI/CD pipeline:

The CI/CD pipeline, refer to Img 3 and 1, is one of the crucial parts of this research.
The key components of this research, which are “Custom-built Security Scanning
Agent” and “Adaptive Policy Enforcement” are integrated into the CI/CD pipeline
for seamless automation of the process. This subsection will provide an under-
standing of the connection between the key components and Kubernetes over a
multi-cloud Kubernetes management.

Figure 3: CI CD Pipeline Build Phase

Purpose and Scope of CI/CD pipeline:

The CI/CD pipeline aims to achieve complete automation for deploying secure
Kubernetes.

13



(a) Automating vulnerabilities Detection:

• The pipeline triggers the custom security scanning agent for the identi-
fication of vulnerabilities during the build phase. This provides results of
open vulnerabilities in the docker image.

(b) Adaptive Policy Enforcement:

• The automatic enforcement of the policies is triggered based on the scanned
results of the Custom-built Security Scanning Agent.

(c) Continuous Monitoring:

• Active monitoring throughout the application and its health is achieved
without any manual intervention.

Workflow of the Stages, refer to Img 3 and 1:

The pipeline can be divided into several stages for understanding purposes:

(a) Code Commit: The code developed is pushed to a version control technology,
which triggers the CI/CD pipeline.

(b) Build Stage: The pipeline builds Docker images from the application code by
utilizing pre-defined configurations.

• Custom-built Security Scanning Agent: The custom-built Security Scan-
ning Agent analyses the docker image for the image details and verifies it
with NVD data for vulnerability identification.

• Policy Updating Stage: The updated policies are enforced and applied to
Kubernetes as per the changes required in scanned results provided by the
Custom-built Security Scanning Agent.

(c) Deployment Stage: Once all security checks are passed, the pipeline deploys
the application to the Kubernetes cluster in the cloud.

4 Implementation

The implementation section of this research report deals with the implementation of an
automated security framework, which is the proposed solution for challenges in security
faced by Kubernetes in a multi-cloud environment. This section provides an overview
of the steps for configuring the required environments and technologies for the research.
The workflow of the framework is seamlessly automated using Git Workflows which is the
integration of two critical components, “Custom Security Scanning Agent” and “Adapt-
ive Policy Enforcement” enhancing the software delivery lifecycle. The components are
designed to adapt customization and can be scaled based on the requirements enabling
secured deployments of Kubernetes clusters in Azure and Google Cloud environments.

The primary objective is to provide details about the steps taken into considera-
tion while developing the automated framework tailored to securing Kubernetes clusters.
Primarily the tools and technologies considered for the implementation of this research
idea are summarized as follows:

1. Programming Languages:

14



• Java Spring boot:
It is used to develop a small Java web-based application for testing or deploy-
ment purposes. It is a robust framework for creating applications and provides
the ability to vide a range of integrations of tools and other technologies.

• Python:
It is used for developing the “Custom Security Scanning Agent” and “Adaptive
Policy Enforcement” scripts as Python has a huge set of libraries that are easy
to use and are easy to integrate with API and YAML files.

• Bash:
It is used for shell scripting for Kubernetes and Docker integrations and man-
agement.

2. Infrastructures:

• Kubernetes:
Works as the container orchestration technology for deployment and manage-
ment of applications and security policies.

• Docker:
It is used to containerize the application and its dependencies for enhancing
application maintenance over cloud environments.

3. CI CD Pipeline:

• Git Workflows:
It is used for creating the automation CI CD pipeline using Git Actions, which
includes application image building, Scanning, Policy Enforcement, and de-
ployment of code or images including push or pull events of images.

4. Cloud Environments:

• Azure Kubernetes Services and Google Kubernetes Engine:
Deployment over a multi-cloud infrastructure to test the scalability and effect-
iveness of the proposed framework.

5. Data Source:

• National Vulnerability Data:
The source of vulnerability data used by the “Custom Security Scanning
Agent” to validate the vulnerabilities in the image is accessed via NVD API.

4.1 Development Environment Setup

The development environment setup is the foundational layer of the implementation that
deals with the base setup of the tools, infrastructure, and other essential requirement of
the research. Each component used in this process enhances the automation ability of
the proposed framework.

1. Tools and Technologies Setup:

15



• Integrated Development Environment (IDE):
Visual Studio Code is used as the IDE to develop all the codes and configur-
ation files required for this implementation. A wide range of extensions were
installed into VSCode to support seamless integration. Extensions such as
Azure, Spring Boot, Docker, Kubernetes, and other relative plugins.

• Version Control:
Git and GitHub are used for managing the versioning of application code,
Docker files, Kubernetes manifests, and almost every file in the project folder.
In addition to this, CI CD is utilized in the form of Git actions to create
and automate the pipeline of seamless end-to-end automation of triggering
the research components, analyzing the images, and applying policies and
deployments.

• Kubernetes CLI:
The Kubernetes command line tool is set up for the management of Kuber-
netes clusters, deploying applications, and applying changes in policies. These
Kubectl commands are integrated within the CI CD workflow. In addition to
this, Helm libraries are also installed to support the integration of tools like
Prometheus and Grafana for monitoring purposes.

2. Cloud Environment Setup:

• Azure Kubernetes Services (AKS):
For this research, a free version of Azure cloud is purchased and the setup
is done using Azure CLI in integration with Azure Container Registry for
storing container images. It is directly connected to the CI-CD pipeline for
the deployment and applying policies at the end of the CI-CD process.

• Google Kubernetes Engine (GKE):
A free version of Google cloud is purchased and it is setup using an API
configuration for communication between the CI CD pipeline and Kubernetes
Cluster.

3. Application Development and Setup:

• Project Structure:

– Maven Project:
The Maven ecosystem was used for managing dependencies and jar files
of the test application.

– Application:
The Application is created under the Maven ecosystem and the code,
dependencies, and configuration files are stored in Git version control.

• Containerization:

– Docker technology is used for containerizing the application. For this
process, a Docker desktop is downloaded and a Dockerfile is created at
the application level to install the required packages and set the Docker
configuration to expose the application on port 8081.

– The images created are dynamically pulled during the Continuous In-
tegration and Continuous Deployment process for ease of analysis and
deployment.

16



• Configurations:

– The Kubernetes configuration files, which include deployment and service
YAML files are developed at the project folder level within the VSCode.
These files define the amount of replicas required, resource limits, and
initial security of pods.

4.2 Kubernetes Security Framework Setup

The framework is a combination of two crucial components developed for this research.
These components facilitate automated vulnerability detection and adaptive policy en-
forcement and these components are integrated into a CI CD workflow to secure Kuber-
netes deployments.

4.2.1 Custom Security Scanning Agent

The Custom Security Scanning Agent is a Python script developed at the root level in the
project folder. The idea behind developing this script is to detect vulnerabilities within
docker images by extracting its metadata and querying the National Vulnerability Data,
database using an API. The script process is as follows:

• Image Meta Data Extraction:
The script extracts the package metadata from the docker images by communicat-
ing with ACR and using “dpkg-query”. This metadata provides information such
as package names and versions installed in the Kubernetes. This provides compat-
ibility with Devian images which are used for the Spring Boot application.

• NVD Database:
Each extracted image metadata is queried upon by using the data extracted from the
NVD database for vulnerabilities. The vulnerabilities are prioritized based on the
Common Vulnerability Scoring System (CVSS) scores which define the criticality
level of the vulnerability.

• Results:
The processed results are stored in a JSON file by filtering the duplicate entries
and these results will be further utilized for Adaptive Policy Enforcement.

4.2.2 Adaptive Policy Enforcement

The Adaptive Policy Enforcement is another Python script developed at the root level of
the project folder. It provides a set of actionable Kubernetes policies by considering the
vulnerabilities listed in the scan results JSON by the Custom Security Scanning Agent.
The script process is as follows:

• Policy Generation:
The Python script extracts the data listed in the scan results JSON file and gen-
erates a YAML configuration file with the list of policies that are required to be
applied. Just like, traffic to a pod can be blocked which has a high severity of
vulnerabilities, and securing the IP range.

17



• Policy Application :
Policies listed in the YAML file are then applied to Kubernetes using “Kubectl”
commands, minimizing the latency between the detection and mitigation of vul-
nerabilities. The strict pod security admission policy is achieved by updating the
Namespace-level security labels such as “pod-security.kubernetes.io/enforce”.

• Adaptability:
The policies applied are in the process of being applied to target specific pods and
namespaces based on the analysis and findings.

4.3 CI CD Pipeline

The GitHub Actions is used in this implementation for developing the CI CD pipeline
defined in ci-cd-pipeline YAML which is stored in the project folder, for integrating all
the components and providing complete automation of the workflow of the framework,
triggered by code commits. The pipeline is aligned with the DevSecOps principle by
integrating security validation within the pipeline workflow. The Pipeline is developed
accordingly:

• Build Stage:
The pipeline builds a docker image of the Spring Boot application by using Docker
file which has configuration details and is created at the root level in the project
folder. The build created is tagged with a unique identifier for ease of traceability.

• Security Scanning Stage:
After the image is created, it triggers the Custom Security Scanning Agent to
analyze the image for any available vulnerabilities and if found any, storing it in
scan results JSON file.

• Adaptive Policy Enforcement:
This stage is triggered after the successful implementation of the Security Scan-
ning Stage. The scan results are analyzed by the Adaptive Policy and generated
adaptable Kubernetes policies which are applied to the Kubernetes cluster using
“Kubectl” commands.

• Deployment Stage:
The pipeline then deploys the application to Kubernetes clusters which are hosted
on Azure and Google Cloud. The stage makes use of deployment, service, and
adaptable Kubernetes policies YAML files which are also developed and stored at
the root level in the project folder.

• Verifications:
Post deployment the policies applied are verified using “kubectl” commands and
the external IP for accessing the application is provided in the form of logs to access
the application.

4.4 Multi-Cloud Deployment

The implementation of a multi-cloud environment provides consistent security. This
subsection deals with two cloud services used in this research.

18



1. Azure AKS:

• The Azure Kubernetes clusters are set up using Azure CLI and Azure Active
Directory. These clusters are integrated with Docker using Azure Container
Registry, ensuring continuous push and pull of images across clusters.

• The Last phase of the CI CD pipeline deploys the application and applies the
adaptive policies to the Kubernetes cluster within the AKS.

2. Google GKS:

• The GKS clusters are set up using the Workload Identity in Google Cloud
Console for communication between GCP services and Kubernetes.

• The last phase of the CI CD pipeline communicates with the GKE Authen-
tication to ensure that the images deployed are scanned and analyzed.

4.5 Monitoring and Validation

To subsection deals with integrating the ability to monitor the application performance
and overall cluster health from a security point of view. Also, this will validate the
framework mechanism. To achieve this, the following tools are considered in this research:

1. Prometheus:

• To configure Prometheus, Helm needs to be installed first, after that the Pro-
metheus repository is added to the Helm and it is installed in the next step in
the monitoring namespace.

• The installed Prometheus is accessed locally by port forwarding the Prometh-
eus UI to a specific port, in this research, it is 9090, and the address to access
the Prometheus dashboard is localhost:9090.

2. Grafana:

• If the Helm is already installed, directly install Grafana using the command
in the CMD or PowerShell.

• The visualization of the matrix of Prometheus is available in Grafana using the
predefined dashboards. The different panels on the dashboard display different
information.

• Grafana dashboard is port forwarded to a specific port, in this research, it is
3000, and the address to access the Prometheus dashboard is localhost:3000.

5 Evaluation

This section evaluates and discusses the successful implementation of the research on
the Kubernetes security framework and provides a comprehensive understanding of the
framework and its components with the help of results and findings acquired during the
process.

19



5.1 Case Study 1 - Custom Security Scanning Agent

Figure 4: CI CD Pipeline Build Phase

One of the crucial components of this study is the Custom Security Scanning Agent,
it is integrated with the CI CD Pipeline to analyze the docker images and quarry the
metadata to find vulnerabilities. The scanned results provide output stating the name of
the vulnerability (e.g. openssl and p11-kit) along with a few more details like severity (e.g.
HIGH and LOW) based on its security score by CVSS. This output depends upon the
response received by the “NVD API”, where if available, it also provides a description of
the recorded vulnerabilities. The scanning process took approximately 30 seconds which
demonstrates efficient functionality. The approximation of policy percentage with HIGH
severity can be around 5 percent, refer to img 4 and 5.

Figure 5: CI CD Pipeline Build Phase

20



5.2 Case Study 2 - Adaptive Policy Enforcement

Figure 6: CI CD Pipeline Build Phase

The second crucial component of the research is Adaptive Policy Enforcement, it is also
integrated in the CI CD pipeline and takes the scanned results stored in JSON file as its
input. Based on that policies like Network policy (e.g. blocking external traffic for pods
with certain vulnerabilities)and Resource Quota policy (e.g. restricting CPU utilization
to 2 cores or memory utilization to 4 Gb)have been applied. These policies effectively
isolate the sensitive pods resulting in enhanced security, refer to img 6 and 7.

Figure 7: CI CD Pipeline Build Phase

21



5.3 Case Study 3 - CI CD Pipeline

The CI CD Pipeline completely automates the CI/CD pipeline along with the steps or
stages or jobs executed during the pipeline process. The key stages such as “Docker image
creation” where the pipeline builds and tags docker images. “Run Security Scan”, is where
the “Custom Security Scanning Agent” gets executed. “Enforce Adaptive Policies”, is
where the “Adaptive Policy Enforcement” gets executed and then there is the deployment
stage that deploys the application to the Kubernetes cluster. The time taken for the
execution of the complete pipeline is approximately 2 minutes and 30 seconds. Azure is
completely integrated as part of automation where as Google Cloud services are partial
part of this research. The logs provide a detailed understanding of the CI CD stages and
their successful implementation, refer to Img 8.

Figure 8: CI CD Pipeline

5.4 Case Study 4 - Monitoring

Prometheus and Grafana monitoring tools are integrated with Kubernetes to monitor
the health of the overall cluster. A few important observations provide insights such
as Cluster Memory Utilization which is marked 34.9 percent of total memory (i.e. 2.37
GB out of 6.77 GB), in addition to this the Cluster CPU usage is 0.10 percent of the 2
available cores. And, Pods Network I/O traffic range is monitored to be 0 to 50 KBs,
refer to Img 9 and refer to Table 1.

22



Figure 9: Monitoring using Grafana and Prometheus

Metric Description Values
Cluster Memory
Usage

Percentage of memory used by the cluster
34.9% (2.37 GiB out
of 6.77 GiB)

Cluster CPU Us-
age

CPU usage in cores. 0.10% (2 cores)

Cluster Filesys-
tem Usage

Percentage of filesystem space used
0.00% (36 KiB out of
13.68 GiB)

Pods CPU Usage CPU utilization per pod max ∼0.02 cores
System Services
CPU Usage

CPU Utilization for key system services Max ∼0.015 cores

Pods Memory Us-
age

Memory usage by individual pods in the
cluster.

Max ∼256 MiB per
pod

System Services
Memory Usage

Memory usage for system services operat-
ing in the cluster.

Max ∼236 MiB

Pods Network I/O Input/Output network traffic Range: ∼0–50 KiB/s
Containers CPU
Usage

CPU utilization per container Max ∼0.015 cores

Containers Net-
work I/O

Input/Output network traffic per con-
tainer

Max ∼40 KiB/s

All Processes
CPU Usage

CPU utilization across all processes Max ∼0.02 cores

All Processes
Memory Usage

Memory consumption across all processes Max ∼1 GiB

All Processes Net-
work I/O

Combined network traffic for all processes Max ∼60 KiB/s

Table 1: Important Monitoring Matrix

23



5.5 Discussion

The research has aligned with its objective of creating a sustainable, effective, and com-
pletely automated Kubernetes security framework. However, there are some key points
that were identified during this research.

• Strengths: The automation process through the CI CD pipeline has positively af-
fected the execution time of security scanning and policy enforcement. The monit-
oring provides every detail related to the cluster, and pods which can be beneficial
in scaling the framework and managing more complex workflows. In addition to
this, the scaling can also be done from an adaptability point of view where a wide
range of policies can be enforced with required customization.

• Challenges: Integrating multi-cloud in single automated work turned out to be a
difficult task, considering the cloud Kubernetes registry will have to be toggled
dynamically followed by logging into that specific cloud service while deployment
turned out to be a tricky part. In addition to this, the dependency on the external
API for vulnerability details might turn out a bit tedious when the response received
from the API is not perfect, it provides more accurate respons at night when traffic
over the APIs is low.

• Future improvements: The incorporation of multi-cloud functionality with the auto-
mation workflow will provide a complete customization ability as per the require-
ment. Another study would be to find an alternative to the external APIs or
enhancing the APIs to reduce any kind of dependency for the framework.

6 Conclusion and Future Work

This research is an attempt to address the security challenges and complications in the
Kubernetes environment by developing a completely automated framework that is hosted
by the CI CD pipeline and provides functionalities such as real-time vulnerability scan-
ning and adaptive policy enforcement. The framework is developed with the intention of
overcoming the limitations of existing tools, such as high false-positive rates and limita-
tions in customization for better adaptability. The two crucial components were created
in this research “Custom security scanning agent” that integrates with the National Vul-
nerability Data (NVD) database and “Adaptive Policy Enforcement” for a multi-cloud
Kubernetes structure.

The results obtained have demonstrated the abilities of the proposed framework such
as real-time vulnerability analysis, automated end-to-end flow, and the ability to custom-
ize based on requirements. It effectively answered the research question “How Kubernetes
clusters can be secured through automated solutions?” by providing a completely auto-
mated framework with a dynamic nature. However, in addition to these merits, there are
a few limitations for this framework, those are dependency on external (NVD) API for
real-time vulnerability data and implementing policies in large-scale deployments.

Future scope for this research could aim to extend the capabilities of this framework
to create an advanced threat detection framework. The possible areas to explore could be
the integration of behavioral anomaly analysis, and can also work towards commercial-
ization of the framework as a security platform for Kubernetes that provides end-to-end

24



automated security to Kubernetes. This research could be considered a process of creating
an ecosystem of self-healing Kubernetes clusters.

References

Blomqvist, M., Koivunen, L. and Mäkilä, T. (2021). Secrets management in a multi-cloud
kubernetes environment.

Boroufar, A. (2020). Software Delivery in Multi-Cloud Architecture, PhD thesis, Politec-
nico di Torino.

Bose, D. B., Rahman, A. and Shamim, S. I. (2021). ‘under-reported’security defects in
kubernetes manifests, 2021 IEEE/ACM 2nd International Workshop on Engineering
and Cybersecurity of Critical Systems (EnCyCriS), IEEE, pp. 9–12.

Budigiri, G., Baumann, C., Mühlberg, J. T., Truyen, E. and Joosen, W. (2021). Net-
work policies in kubernetes: Performance evaluation and security analysis, 2021 Joint
European Conference on Networks and Communications & 6G Summit (EuCNC/6G
Summit), IEEE, pp. 407–412.

Ganne, A. (2022). Cloud data security methods: Kubernetes vs docker swarm, Interna-
tional Research Journal of Modernization in Engineering Technology 4(11): 1–6.

Giandonato, F. (2021). Enabling Service Mesh in a Multi-Cloud Environment, PhD thesis,
Master’s Thesis. Politecnico di Torino.

Giangiulio, F. and Malmberg, S. (2022). Testing the security of a kubernetes cluster in a
production environment.

Kamieniarz, K. and Mazurczyk, W. (2024). A comparative study on the security of kuber-
netes deployments, 2024 International Wireless Communications and Mobile Comput-
ing (IWCMC), IEEE, pp. 0718–0723.

Kermabon-Bobinnec, H., Gholipourchoubeh, M., Bagheri, S., Majumdar, S., Jarraya, Y.,
Pourzandi, M. and Wang, L. (2022). Prospec: Proactive security policy enforcement
for containers, Proceedings of the Twelfth ACM Conference on Data and Application
Security and Privacy, pp. 155–166.

Lee, S. and Nam, J. (2023). Kunerva: Automated network policy discovery framework
for containers, IEEE Access .

Mustyala, A. and Tatineni, S. (2021). Advanced security mechanisms in kubernetes:
Isolation and access control strategies, ESP Journal of Engineering & Technology Ad-
vancements (ESP JETA) 1(2): 57–68.

Oluyede, M. S., Mart, J., Olusola, A. and Olatuja, G. (2024). Container security in cloud
environments, ScienceOpen Preprints .

Osmani, L., Kauppinen, T., Komu, M. and Tarkoma, S. (2021). Multi-cloud connectivity
for kubernetes in 5g networks, IEEE Communications Magazine 59(10): 42–47.

25



Raghunathan, S. (n.d.). Strengthening kubernetes: Strategies and tools for enhanced
devsecops integration.

Rahman, A., Shamim, S. I., Bose, D. B. and Pandita, R. (2023). Security misconfigura-
tions in open source kubernetes manifests: An empirical study, ACM Transactions on
Software Engineering and Methodology 32(4): 1–36.

Voievodin, Y. and Rozlomii, I. (2024). Application security optimization in container
orchestration systems through strategic scheduler decisions.

Waseem, M., Ahmad, A., Liang, P., Akbar, M. A., Khan, A. A., Ahmad, I., Setälä, M. and
Mikkonen, T. (2024). Containerization in multi-cloud environment: Roles, strategies,
challenges, and solutions for effective implementation, arXiv preprint arXiv:2403.12980
.

Wende, F. (2024). Automated vulnerability scanning of Kubernetes during the CI/CD
Process, PhD thesis, University of Applied Sciences Technikum Wien.

26


	Introduction
	Related Work
	Vulnerability Detection and Management
	Multi-Cloud and Network Policy Integration
	DevSecOps and Automation in Kubernetes

	Methodology
	Architecture Design
	Architecture Overview
	Key Components:


	Implementation
	Development Environment Setup
	Kubernetes Security Framework Setup
	Custom Security Scanning Agent
	Adaptive Policy Enforcement

	CI CD Pipeline
	Multi-Cloud Deployment
	Monitoring and Validation

	Evaluation
	Case Study 1 - Custom Security Scanning Agent
	Case Study 2 - Adaptive Policy Enforcement
	Case Study 3 - CI CD Pipeline
	Case Study 4 - Monitoring
	Discussion

	Conclusion and Future Work

