~

"'—-
\ National
College

Ireland

Configuration Manual

MSc Research Project
Cloud Computing

Sanket Wakalkar
Student ID: 23159391

School of Computing
National College of Ireland

Supervisor: Aqeel Kazmi

National College of Ireland National

Project Submission Sheet Col]ege of
School of Computing Ireland
Student Name: Sanket Wakalkar
Student ID: 23159391
Programme: Cloud Computing
Year: 2024
Module: MSc Research Project
Supervisor: Aqeel Kazmi
Submission Due Date: 12/12/2024
Project Title: Securing Cloud Data: Developing a File Storage System on
AWS S3 for Enhanced Security
Word Count: 2898
Page Count: [14]

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature: Sanket Wakalkar

Date: 12/12/2024

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). O
Attach a Moodle submission receipt of the online project submission, to | [J
each project (including multiple copies).
You must ensure that you retain a HARD COPY of the project, both for | [J
your own reference and in case a project is lost or mislaid. It is not sufficient to keep

a copy on computer.

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only
Signature:

Date:
Penalty Applied (if applicable):

Configuration Manual

Sanket Wakalkar
Student 1D:23159391

1 Introduction

Cloud computing fundamentally transformed the management of data as scalable, cost-
effective, and reliable storage solutions became possible. This, however means there is
the critical challenge in the securement of sensitive information kept in the cloud. Data
security should always be guaranteed, mainly in confidential or regulated data. This
project, entitled “Securing Cloud Data: Developing a File Storage System on
AWS S3 for Enhanced Security,” addresses these challenges by bringing together
robust AWS services and Python automation in creating a secure and efficient file storage
system.

This is a guide that gives full step-by-step instructions to configure and deploy the
system. Specifically geared for developers and IT people planning to use AWS and
Python in implementing secure cloud-based data storage, this guide outlines creating
a secure environment. By means of using AWS S3 for storage, the set up uses AWS
KMS for encryption, IAM is accessed only and selectively allowed, and is accessed over
VPC network segregation-which is orchestrated as automated and easier management is
executed by Python scripts themselves.

2 Prerequisites

Before commencing the configuration process, ensure that all the following prerequisites
are met to facilitate a smooth setup and deployment:

2.1 AWS Account

An active AWS account is essential for creating and managing the necessary cloud ser-
vices. If you do not already have an AWS account, you can create one by visiting the
AWS website and following the sign-up process. Ensure that your account has the es-
sential permissions to create and manage AWS offerings inclusive of S3, KMS, IAM, and
EC2.

2.1.1 Configuration Using AWS Management Console

1. Log In: Access the AWS Management Console using your credentials.
2. Set Up Access:

e Navigate to the IAM (Identity and Access Management) service.

e Create a new IAM role named fileEncryption2024.

1

https://aws.amazon.com/
https://aws.amazon.com/console/

e Attach the following policies to the role:

— AmazonS3FullAccess: Grants full access to Amazon S3.

— AWSKeyManagementServicePowerUser: Provides permissions to manage and
use KMS keys.

e Assign this role to the EC2 instance during launch.
3. Choose Default Region:
e In the AWS Console, click on the region selector in the top-right corner.

e Choose us-east-1 (N. Virginia) as the default region for creating resources such
as 53, KMS, and EC2.

4. Verify Permissions:
e Ensure the IAM role fileEncryption2024 has access to the following services:

— Amazon S3: To create and manage buckets for file storage.
— AWS KMS: To encrypt and decrypt files using the generated KMS key.

— Amazon EC2: To launch and manage the instance hosting the Python ap-
plication.

5. Create KMS Key:
e Navigate to the Key Management Service (KMS) in the AWS Console.
e Create a symmetric key named sanketfilestoragekms2024.

e Under Key Policies, allow the [AM role fileEncryption2024 to use kms: Encrypt
and kms:Decrypt.

e Save the Key ARN for integration into the Python script.

6. Configure S3 Bucket:

e Navigate to the S3 service and create a new bucket named sanketfilestoragebucket2024.
e Enable Versioning to store multiple file versions.

e Enable Server-Side Encryption and choose AWS KMS as the encryption method.

7. Verify Resources:

e Confirm that the S3 bucket, KMS key, and IAM role are configured correctly.

e Test access permissions using the AWS Console or CLI, ensuring the IAM role has

sufficient access to the resources.

2.2 Python Environment

Python is the programming language used for automating interactions with AWS services
in this project.

2.2.1 Installation
1. Verify Python Installation:

Listing 1: Verify Python Installation

$ python3 —version
Python 3.X

2. Ensure pip is Installed:
Listing 2: Verify pip Installation

$ pip —version
pip 22.0.1 from /usr/local/lib/python3.9/site—packages/pip (python x)

2.3 Boto3 Library

Boto3 is the AWS SDK for Python, allowing Python developers to write software that
makes use of services like Amazon S3 and Amazon EC2.

2.3.1 Installation

Install Boto3 using pip:

Listing 3: Install Boto3
$ pip install boto3

This library is crucial for programmatically interacting with AWS services within your
Python scripts.

2.4 SSH Client

An SSH client is required to securely connect to your EC2 instances. Popular SSH clients
include:

e OpenSSH: A suite of secure networking utilities based on the SSH protocol, avail-
able on most Unix-like systems.

Ensure that your SSH client is properly installed and configured to establish connec-
tions to your EC2 instances.

2.5 Text Editor

A reliable text editor is necessary for writing and editing Python scripts. Recommended
editors include:

e Visual Studio Code: A free, open-source code editor with extensive plugin sup-
port.

3 Setting Up AWS Resources

This phase outlines the steps to configure the necessary AWS sources, such as S3, KMS,
IAM roles, VPC, and EC2 times.

3.1 Creating the S3 Bucket

Amazon S3 (Simple Storage Service) is used for storing and retrieving any quantity of
records at any time.

3.1.1 Steps to Create an S3 Bucket
1. Log in to the AWS Management Console.

2. Then navigate to the S3 service.

3. Click on Create Bucket.

4. Enter the bucket name: sanketfilestoragebucket2024.
5. Select the appropriate AWS Region.

6. Under Bucket Settings, enable the following:

e Versioning: Allows storing multiple versions of the same file, enabling recov-
ery from unintended overwrites or deletions.

e Server-Side Encryption: Choose AWS Key Management Service (KMS)
to encrypt the data at rest.

7. Click Create Bucket and confirm its creation.

Figure 1: S3 Bucket Creation

3.2 Configuring KMS for Encryption

AWS Key Management Service (KMS) is used to create and manage cryptographic keys
for data encryption.

3.2.1 Steps to Configure KMS

1. Navigate to the Key Management Service (KMS) in the AWS Management
Console.

2. Click on Create Key.
3. Choose Symmetric key type and proceed.

4. Enter the key alias: sanketfilestoragekms2024.

4

5. Configure key policies to define who can use and manage the key:

e Allow the IAM role fileEncryption2024 to perform kms: Encrypt and kms :Decrypt
actions.

e Restrict access to other IAM users to enhance security.
6. Complete the key creation process.

7. Save the KMS key ARN (Amazon Resource Name) for future reference in the con-
figuration.

ssssss

Description

Key policy

Figure 2: KMS Key Creation

3.3 Creating the IAM Role

IAM (Identity and Access Management) roles are used to grant permissions to AWS
services and resources.

3.3.1 Steps to Create an IAM Role
1. Open the IAM service in the AWS Management Console.

2. Click on Roles and then Create Role.
3. Select AWS Service and choose EC2 as the use case.
4. Attach the following policies:

o AmazonS3FullAccess: Grants full access to all S3 buckets.

e Custom KMS Policy: Grants permissions to use the specific KMS key
created earlier.

5. Custom KMS Policy JSON:
Listing 4: Custom KMS Policy

{
"Version”: 72012—10—17",
”Statement”: |

{
"Effect”: ”Allow”

7 Action”: |

"kms: Encrypt”,
"kms: Decrypt”

I

”Resource”: ”arn:aws:kms:us—east —l:<account—id >:key/<key—id >"

}
]
}

6. Name the role fileEncryption2024.

7. Complete the role creation process and attach it to the EC2 instance.

© 1 > Roles > filekncryption2024 o ¢

Identity and Access
Management (1AM)

Maximum session duration

© | Attached entities

Figure 3: IAM Role Creation

3.4 Setting Up the VPC

A Virtual Private Cloud (VPC) provides a logically isolated section of the AWS Cloud
where you can launch AWS resources in a virtual network.

3.4.1 Steps to Set Up the VPC
1. Navigate to the VPC service in the AWS Management Console.

2. Click on Create VPC and name it fileencryptionvpc.
3. Create a subnet within the VPC:

e Name the subnet fileencryptionvpcsubnet.

e Associate it with the VPC created above.
4. Set up an Internet Gateway:

e Name it fileencryptiongateway.

e Attach it to the VPC.
5. Create a Route Table:

e Name it fileencryptionroutetable.

e Add a route that directs all internet traffic (0.0.0.0/0) to the Internet Gate-
way.

e Associate the Route Table with the subnet.
6. Configure a Security Group:

e Name it fileencryptionsecuritygroup.
e Inbound Rules:

— Allow SSH (port 22) access from your specific IP address for secure con-
nections.

e Outbound Rules:

— Allow all outbound traffic to enable system updates and other necessary
communications.

VPC dashboard X H VPC > YourVPCs > vpc-0a9d2843d23d9ba71
vpc-0a9d2843d23d9ba71 / fileencryptionvpc

g Details 1o

VPC show gt s Subnets (1) Route tables (2) Netv

Figure 4: VPC Configuration

3.5 Launching the EC2 Instance

Amazon EC2 (Elastic Compute Cloud) provides resizable compute capacity in the cloud.

3.5.1 Steps to Launch an EC2 Instance
1. Navigate to the EC2 service in the AWS Management Console.

2. Click on Launch Instance.
3. Configure the instance with the following settings:

e AMI: Select Amazon Linux 3.
e Instance Type: Choose t2.micro (eligible for the free tier).

e Key Pair: Select FileEncryptionKeyPair for SSH access. If you do not have
an existing key pair, create a new one and download the ‘.pem‘ file.

e Network Settings:

— Attach the instance to fileencryptionvpc.

— Assign the Security Group fileencryptionsecuritygroup.

e IAM Role: Assign the IAM role fileEncryption2024 to the instance.
4. Name the instance File Encryption Server.

5. Review and launch the instance.

Figure 5: EC2 Instance Launch

4 Python Application Configuration

This section details the steps to configure the Python application that interacts with the
AWS resources to manage file storage and encryption.

4.1 Connecting to the EC2 Instance

To manage the EC2 instance, you need to establish an SSH connection.

4.1.1 Steps to Connect via SSH
1. Download the private key file FileEncryptionKeyPair.pem if not already done.
2. Open your terminal.
3. Modify the permissions of the ‘.pem‘ file to ensure it’s not publicly viewable:
Listing 5: Set Permissions for PEM File

$ chmod 400 FileEncryptionKeyPair .pem

4. Connect to the EC2 instance using SSH:
Listing 6: SSH Connection to EC2 Instance
$ ssh —i FileEncryptionKeyPair.pem ec2—user@Q<EC2_PUBLIC_IP>

5. Replace <EC2_PUBLIC_IP> with the public IP address of your EC2 instance, which
can be found in the AWS Management Console under the EC2 dashboard.

Figure 6: EC2 SSH Connection

4.2 Installing Dependencies
Once connected to the EC2 instance, install the necessary software packages and depend-
encies required for the Python application.
4.2.1 Steps to Install Dependencies
1. Update the Instance: Ensure all packages are up to date.

Listing 7: Update EC2 Instance
$ sudo yum update —y

2. Install Python 3 and pip:

Listing 8: Install Python and pip
$ sudo yum install python3 —y

$ sudo yum install python3—pip —y
3. Install Boto3 Library:

Listing 9: Install Boto3
$ pip3 install boto3

Verify the installations by checking the versions:

Listing 10: Verify Python and pip Versions

$ python3 —version
Python 3.9.14

$ pip3 —version
pip 21.0.1 from /usr/local/lib/python3.9/site—packages/pip (python 3.9)

4.3 Configuring the Python Script

Create and configure the Python script that will handle file uploads, downloads, and
encryption/decryption processes.

4.3.1 Steps to Configure the Python Script

1. Create the Python Script:

Listing 11: Create Python Script
$ nano app.py

2. Paste the Python Code: Insert the provided Python script into the ‘app.py* file.
Ensure to replace placeholders such as <account-id> and <key-id> with your
actual AWS account ID and KMS key ID.

41:17 2026 from
~1$ Ls

ient.decrypt(

_NAME, BUCKET_NAME)

data

Figure 8: Python Script Creation

4.4 Running the Application

Execute the Python script to perform file upload and download operations with encryp-
tion and decryption.

4.4.1 Steps to Run the Application

1. Ensure the Python Script is Correct: Verify that all placeholders have been correctly
replaced with actual values.

2. Run the Script:
Listing 12: Run Python Script
$ python3 app.py
3. Verify Operations:

e Upload Verification: Check the S3 bucket to ensure that the file encrypted_example.txt
has been uploaded.

e Download Verification: Confirm that the file decrypted_example.txt has
been successfully downloaded and decrypted.

4. Sample Output:

10

Listing 13: Sample Script Execution Output

File example.txt uploaded and encrypted as encrypted_example.txt.
File encrypted_example.txt downloaded and decrypted to
decrypted_example . txt .

Siiccess Rate (%) ‘Average Response Time (ms]

A/ =N

nnnnnnnnnnnnnnnnnn

100 =
/»\\.\ﬁ/,/\/
o7
025
000
3 3 s 5 o
ncryption Consistenc

nstances stances

Figure 9: Python Script Execution

5 Performance Evaluation

Performance analysis of the system ensures its reliability, efficiency, and cost-effectiveness.
Various metrics were used to assess the system’s performance so as to provide a compre-
hensive overview of its performance.

5.1 Metrics and Results

e Upload/Download Success Rate: Achieved a achievement rate of 98%, indic-
ating that nearly all file operations were completed efficiently without mistakes.

e Response Time: The common response time in line with operation became
200(ms), making sure brief get entry to and switch of documents.

e Cost per Operation: The estimated cost per upload/download operation is
around $0.005, which makes it an economical solution for large-scale deployments.

e Data Integrity: Data integrity was maintained at 100%, with no discrepancies
between uploaded files and downloaded files.

e System Uptime: The system recorded an uptime of 99.86% during the testing
period, showing high reliability.

e Access Control Violations: No attempts of unauthorized access were found, thus
verifying the effectiveness of the implemented IAM policies and security groups.

e Throughput: The system handled a throughput of 2 operations per second.
Good for moderately loaded usage scenarios.

11

5.2 Analysis

High achievement rate with facts integrity, consequently declaring that the device accur-
ately handles record operations even as maintaining the proper encryption and decryption
for the documents. Response time is reasonable for most applications and makes sure
that data access is virtually latency-free. Low cost per operation makes it feasible for a
massive scale of operation that can be adopted without significant investment in costs.

The system’s uptime shows the presence of sturdy infrastructure as well as good
resource utilization, while no access violations signify strong security configurations. It is
more than adequate for medium traffic applications and may be scaled upward further in
case the traffic is anticipated to rise if necessary by updating the EC2 instance or further
optimization of Python scripts.

6 Troubleshooting

Despite careful configuration, issues may arise during setup or operation. This section
addresses common problems and their solutions to help you resolve them efficiently.

6.1 Common Issues and Solutions

6.1.1 Cannot Access EC2 Instance

Symptom: Unable to establish an SSH connection to the EC2 instance.
Possible Causes:

e Incorrect SSH key pair.

e Security group not allowing SSH access.

e Incorrect public IP address.

Solutions:

1. Verify that you are using the correct ‘.pem‘ file associated with the EC2 instance.

2. Ensure that the security group attached to the EC2 instance allows inbound SSH
(port 22) traffic from your IP address.

3. Confirm that you are using the correct public IP address of the EC2 instance.

4. Check that the EC2 instance is in the running state.

6.1.2 AWS CLI Errors

Symptom: Errors encountered when executing AWS CLI commands.
Possible Causes:

e Misconfigured AWS CLI credentials.
e Insufficient IAM permissions.

e Incorrect AWS region settings.

12

Solutions:

1. Reconfigure the AWS CLI using:
Listing 14: Reconfigure AWS CLI

$ aws configure
Ensure that the Access Key ID and Secret Access Key are correct.

2. Verify that the IAM user has the necessary permissions to perform the desired
actions.

3. Check that the default region is correctly set in the AWS CLI configuration.

6.1.3 Permission Errors

Symptom: Unauthorized access or permission denied errors when accessing AWS re-
sources.
Possible Causes:

e Incorrect IAM role attached to the EC2 instance.

e Missing permissions in the IAM policies.

e Incorrect KMS key policies.

Solutions:

1. Ensure that the EC2 instance is attached to the IAM role fileEncryption2024.

2. Review the IAM policies attached to the role to confirm that they grant the neces-
sary permissions.

3. Verify the KMS key policies to ensure that the IAM role has kms:Encrypt and

kms :Decrypt permissions.

6.2 Additional Troubleshooting Tips

e Check Logs: Review system and application logs to identify specific error messages
or patterns.

e AWS Support: Utilize AWS support resources and forums for assistance with per-
sistent issues.

e Documentation: Refer to AWS and Boto3 documentation for detailed guidance on
configuration and usage.

13

7 Conclusion

The design guides manual detailing the configuration and deployment process on the use
of AWS service and Python for a secure cloud-based storage system consists of Amazon
S3 and storing, AWS KMS on encrypting, IAM on using in terms of access control while
incorporating VPC for network isolates for good data security coupled with efficient man-
agement. Similarly, automation scripts in the deployment stage enable smooth interaction
with these AWS services for the involved file upload, download processes, and encryption.

This will testify that the system is reliable, efficient and cost-effective, that different
applications require safe solutions in data storage. This troubleshooting section also
provides an opportunity for users to solve common problems, so guaranteeing that the
system will operate and remain in good condition.

Future Improvements:

e Multi-Cloud Support: The future development can be the extension of the sys-
tem for the integration of other cloud providers with greater redundancy and flex-
ibility.

e Advanced Monitoring: Integrating monitoring tools such as AWS CloudWatch
for real-time performance tracking and alerting.

e Enhanced Security Measures: Incorporating additional security layers like Multi-
Factor Authentication (MFA) and advanced threat detection.

Using this guide, users will create a secure, automated, and scalable cloud storage solution
that meets their exact requirements in order to ensure safe data protection and integrity
over the cloud.

14

	Introduction
	Prerequisites
	AWS Account
	Configuration Using AWS Management Console

	Python Environment
	Installation

	Boto3 Library
	Installation

	SSH Client
	Text Editor

	Setting Up AWS Resources
	Creating the S3 Bucket
	Steps to Create an S3 Bucket

	Configuring KMS for Encryption
	Steps to Configure KMS

	Creating the IAM Role
	Steps to Create an IAM Role

	Setting Up the VPC
	Steps to Set Up the VPC

	Launching the EC2 Instance
	Steps to Launch an EC2 Instance

	Python Application Configuration
	Connecting to the EC2 Instance
	Steps to Connect via SSH

	Installing Dependencies
	Steps to Install Dependencies

	Configuring the Python Script
	Steps to Configure the Python Script

	Running the Application
	Steps to Run the Application

	Performance Evaluation
	Metrics and Results
	Analysis

	Troubleshooting
	Common Issues and Solutions
	Cannot Access EC2 Instance
	AWS CLI Errors
	Permission Errors

	Additional Troubleshooting Tips

	Conclusion

