
Securing Cloud Data: Developing a File
Storage System on AWS S3 for Enhanced

Security

MSc Research Project

Cloud Computing

Sanket Wakalkar
Student ID: 23159391

School of Computing

National College of Ireland

Supervisor: Aqeel Kazmi

www.ncirl.ie

National College of Ireland
Project Submission Sheet

School of Computing

Student Name: Sanket Wakalkar

Student ID: 23159391

Programme: Cloud Computing

Year: 2024

Module: MSc Research Project

Supervisor: Aqeel Kazmi

Submission Due Date: 29/01/2025

Project Title: Securing Cloud Data: Developing a File Storage System on
AWS S3 for Enhanced Security

Word Count: 7337

Page Count: 22

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature: Sanket Wakalkar

Date: 27/01/2025

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). □
Attach a Moodle submission receipt of the online project submission, to
each project (including multiple copies).

□

You must ensure that you retain a HARD COPY of the project, both for
your own reference and in case a project is lost or mislaid. It is not sufficient to keep
a copy on computer.

□

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

Securing Cloud Data: Developing a File Storage
System on AWS S3 for Enhanced Security

Sanket Wakalkar
Student ID:23159391

Abstract

Protecting sensitive information is one of the great challenges that an organiz-
ation and individuals face in this era of cloud computing. This project focuses on
designing and implementing a secure, scalable, and cost-effective file storage sys-
tem using AWS S3 along with its integrated services: KMS, IAM, and VPC. The
advanced encryption, network isolation, and strict access controls make the system
assure confidentiality, integrity, and accessibility of data. Important characterist-
ics involve server-side encryption by the help of AWS KMS, versioning in place,
and the least privileged approach adopted in IAM policies. Both functional and
security tests result in 98% of file operations with average 200 ms of response times
and 100% of data integrity. Leveraging the cloud infrastructure of AWS, as well as
automating key processes, the project demonstrated the possibility of using a mix
of cloud-native tools with custom development to address significant data security
challenges. It thus provides a blueprint for organizations looking to store sensitive
information securely in a cloud environment.

1 Introduction

The rapidity at which cloud computing is adopting has revolutionized how the organiz-
ations store, manage, and secure information. For instance, AWS S3 by Amazon Web
Services offers cost-efficient and scalable solutions for the processing of massive amounts
of data; however, with data breaches and cyber threats increasing lately, ensuring the
confidentiality, integrity, and access to cloud-stored data become critical issues. This pro-
ject attempts to answer these questions by designing a Python-based secure file storage
system on AWS S3 that makes use of encryption, access controls, and automation.

This research was motivated by the growing reliance on cloud platforms for the storage
of critical data and thus the need to protect sensitive information from unauthorized
access and loss. Integrating AWS Key Management Service, IAM, and Python-based
scripting will make sure data encryption is very robust, and only those authorized can
have access. Moreover, with a fully automated file system operation, it ensures ease and
security of the overall data storage in the cloud.

1.1 Background

Cloud storage is a change in data management due to flexible and scalable solutions that
reduce infrastructure cost. One of the cloud storage services that are mostly utilized is

1

AWS S3. The features of such service include versioning, server-side encryption, lifecycle
management, among others. The benefits come with associated problems, particularly on
issues about data security. The high-profile incidents of data breaches in cloud environ-
ments have brought vulnerabilities to the forefront, pointing out the need for encryption,
secure access controls, and continuous monitoring.
AWS offers solutions such as KMS and IAM that solve these issues. KMS supports
advanced encryption and key management so that data remains safe, even at rest and
during transmission. IAM enables enforcing the principle of least privilege through re-
source access limitation to the users according to their roles. But these solutions are used
efficiently only with knowledge and in conjunction with customized workflows. Python’s
boto3 library simplifies this integration, meaning that the automation of AWS services
allows one to construct customized, secure data storage solutions.
Research has indicated that automated cloud security solutions have minimized human
error, enhanced operational efficiency, and built robust defenses against cyber threats.
Studies also emphasize the importance of multi-level encryption and network isolation in
the protection of sensitive data. The project will be developed on these principles and
merge AWS’s cloud-native tools with Python automation in the creation of a secure file
storage system, which would fit modern security needs.

1.2 Research Question

How could a Python-powered solution more effectively enhance security, scalability, and
efficiency on AWS S3 when considering the storage of cloud data?

1.3 Research Objectives

To answer this research question, the following objectives is followed:

• Design and implement a safe and efficient file storage system on AWS S3: This will
involve harnessing AWS services such as KMS for encryption, IAM for access control
and S3 for scalable storage. The system must, therefore, ensure confidentiality,
integrity, and availability of stored data.

• To introduce Python into automating file operations: Through the use of Amazon
AWS-native tools, automated file upload/download, as well as encryption and de-
cryption shall be achieved by application using Python’s boto3. This will help
lessen intervention, hence allowing to improve efficiency.

• Being in strict security by means of utilizing AWS-native tools.: Isolated in the
network, and is using VPC whilst it uses the KMS on encryption use, using policies
of IAM for its access control with each considered under a minimum principle on
the privilege.

• Checking up on its performance, or security system: This includes testing the
functionality of the system, measuring the response times, verifying the integrity of
data, and testing the security measures against any potential threats.

• To demonstrate the scalability and feasibility of the solution: The project will
demonstrate a system that handles increased amounts of data in volumes such that
it will not necessarily affect security and performance capabilities.

2

2 Related Work

2.1 Cloud Data Security Challenges

Cloud computing has emerged to change the storage and handling of data for organ-
izations, offering scalable solutions that take less money than its counterparts. The
popularity in adopting cloud computing has provided huge security issues that must be
carefully monitored for sensitive information. Alqahtani (1) puts forward the issues in a
multi-cloud environment, wherein the security policies of the different platforms might
lead to inconsistencies and vulnerabilities. Cloud infrastructures, being dynamic, tend
to cause difficulties in enforcing uniform security measures because organizations find it
hard to stay at a robust security posture.

Data breaches and access remain among the top problems in cloud data security. Ben-
nett and Robertson (3) note that, despite advances in security technology, human error
and misconfigurations are major sources of security incidents. This research highlights
the importance of well-rounded security frameworks that not only incorporate advanced
technologies but also robust procedural safeguards to mitigate risk effectively. Chari et al.
(4) extends the discussion about the complexity of the hybrid cloud systems by creating
further layers of complexity through both public and private clouds. In such interde-
pendent cloud environments, smooth functionality requires strong security mechanisms
to preclude potential attack vectors that would compromise the system in whole.

Ekwonwune et al. (5) describe the details of secured cloud data storage models where
encryption, access control, and continuous monitoring are playing a vital role against
security threats. They found vulnerabilities in the existing solutions of cloud storage,
providing detailed strategies for handling such issues. Wanjohi (20) extends this dis-
cussion by explaining the larger information security issues in cloud environments and
pushes for proactive approaches that prevent and mitigate prospective vulnerabilities.
The study thus puts greater emphasis on the need for a holistic approach to cloud secur-
ity that integrates technological solutions with organizational policies and practices.

Furthermore, Mukherjee et al. (10) analyze the static analysis of AWS best practices
in Python code, exposing security pitfalls and providing suggestions on how to improve
the code’s security. According to their findings, the need for automated tools and rigid
code reviews is very necessary in identifying and addressing vulnerabilities early in the
development stage.

2.2 Techniques for Cloud Storage Encryptions

Encryption is a fundamental building block in protection against unauthorized access
and data leakage in cloud storage systems. Baviskar (2) demonstrated an automated
approach to encryption by using AWS Lambda for the prevention of leakage of the S3
bucket, showing the efficiency of serverless architectures in enhancing the security of data.
The scalability and flexibility of AWS Lambda are exploited in enforcing the policies of
encryption dynamically, ensuring data protection without incurring significant overhead
on system resources.

Sharma et al. (16) outline hybrid cryptographic schemes to protect file storage that use
both symmetric and asymmetric methods with the view to increase security concurrently
with optimized performance. This author contribution calls for a compromise between
computational efficacy and data security by encouraging strategically balancing hybrid
encryption based on competitive needs. Hybrid cryptography leverages the best of both

3

these worlds to yield a robust mechanism for secure data in transit and at rest while
taking care of the multi-faceted nature of the cloud data security challenges.

Patil et al. (12) explain how blockchain usage is part of ensuring data provenance
and integrity in cloud storage applications. This article provides a framework whereby an
immutable block chain ledger ensures the legitimacy and record of the information stored,
thereby fortifying users’ trust with cloud storage applications. Such an application not
only promotes data safety but also regulatory compliance with transparent and tamper-
free records of all data exchange.

Khuntia et al. (8) study secure attribute-based user access control over AWS Cloud,
where they propose a model combining attribute-based access control (ABAC) with en-
cryption mechanisms to restrict access of sensitive data by only allowing authorized users
to access such data. In this respect, their model improves security through fine-grained
access policies, decreasing the probability of unauthorized exposure of data. This fits well
with the general thrust towards greater automation of access control mechanisms with
cloud security, given how the permission should change based on the user’s attributes or
context.

Besides, Priyam (13) discussed cloud security automation. He emphasized the require-
ment to automate security-related activities such that human error and slower response
times can be minimised. The tools deployed for automation, for example, Python scripts
through SDKs of AWS, mainly play a very crucial role in enforcing encryption policies
to manage keys and monitoring of data access to further heighten the overall security
position of cloud storage systems.

Automated Cloud Security Solutions Automation of cloud security solution is an im-
portant approach as it makes data protection much more efficient and effective in practice.
Automated approaches greatly reduce the reliance on a human intervention, which re-
duces possible human error and enables timely responses to security incidents. Baviskar
(2) demonstrates the potential of AWS Lambda in automating encryption processes,
showing how serverless computing can be used to enforce security policies seamlessly and
scalably.

Saeed et al. (14) evaluate the security and privacy features of AWS S3 and Azure
Blob storage services as a basis for discussing advantages of security automation in cloud
computing. The authors recommend that besides the ease at which automation simplifies
management of security, it actually enhances the consistency and reliability of the security
implementations in different cloud platforms. This is particularly important in the multi-
cloud and hybrid cloud contexts, where it becomes difficult to ensure uniform standards
for security.

Sakinmaz (15) points that Python be used for automating automation solutions in
AWS Cloud, where the development of better and more powerful automation scripts
would be based on richness in library supports, that includes boto3. So the automation
aids proactive management of security wherein organizations do not lag in the advance
threats and lead in proper security posture.

Chari et al. (4) analyze the design and discovery of security in hybrid cloud systems,
while proposing that the automation of security tools is necessary for dealing with the
issues of hybrid cloud data protection. This research brings forth the issue of the neces-
sity of applying automation towards ensuring constant enforcement of policies related to
access controls as well as constant monitoring of data flow, thus enabling better security
framework for hybrid cloud systems.

Finally, Volotovskyi et al. (19) analyze the security evaluation of AWS accounts via

4

CIS Benchmarks and Python 3. The above research shows how automation is applied to
evaluate and consequently improve the security configuration for AWS environments in a
manner that detects and fixes issues before they can be maliciously exploited. Such a pro-
active approach to security management reflects the importance of automated processes
in maintaining data stored in the cloud with utmost integrity and confidentiality.

2.3 Best Practices for the Security of AWS S3

Securing AWS S3 is through a configuration setting, along with access control and mon-
itoring, to secure data from unwanted access or breaches. Gupta et al. (6) discuss the
use of the storage in the virtual private cloud (VPC) using AWS S3: how VPC must be
configured to isolate resources of the storage and should allow access to only authorized
users. Their work underscores the need for network segmentation and the use of private
subnets to secure S3 buckets.

Hassan 2021 offers a public cloud-based private Python package serving platform,
demonstrating how AWS S3 can be used to secure and manage private repositories.
This study illustrates that organizations can securely distribute private packages without
exposing them to unauthorized users by leveraging S3’s access control features and com-
bining them with IAM roles and policies. This highlights granular access controls and
strategic IAM policy use in enforcing security best practices.

Park et al. (11) introduced the design for the configuration of the security architecture
on AWS, with the cloud’s lifecycle. This lifecycle would emphasize sustainable social
networks. It was with this approach that the need for ongoing assessment of security and
integrating the best practice of security during deployment through to decommissioning
formed part of the lifecycle. Organizations, when adopting this lifecycle approach, can
guarantee that their configurations of AWS S3 remain safe and comply with changing
standards of security and regulatory requirements.

Malhotra et al. (9) discuss Amazon-backed file system with an enhanced storage fea-
ture where AWS S3 plays an important role as a scalable and secure place for storage.
Their paper discusses versioning, server-side encryption, and lifecycle policies of S3 which
enhance the data protection and save storage cost efficiently. These are the best prac-
tices to improve data safety and save storage resources hence contributing to the overall
effectiveness of the cloud storage.

Shields Shields2022 Provides an all-encompassing overview of AWS security and best
practices for safeguarding various AWS services, including but not limited to S3. The
paper highlights turning on server-side encryption on the bucket, using the bucket policy
to limit accesses, and enforcing the policy of least privilege using IAM roles. Shields
also emphasizes the deployment of AWS CloudTrail and AWS Config for monitoring and
auditing access attempts to S3: all unauthorized attempts should promptly be detected
and addressed.

In fact, Tiwari et al. (18) discusses developing secure cloud storage systems focusing
on the execution of robust security in AWS S3. In the paper, by integrating encryption,
access controls, and monitoring tools, critical elements of a comprehensive security frame-
work can be established. To make such best practices, firms can reduce the incidence of
data breaches by ensuring that sensitive information is safely stored in AWS S3.

Mukherjee et al. (10) also indicates that the Python code to be used with S3-based
storages should adhere to the best practices of AWS. These suggestions on their study in-
cluded reviews of the code, adherence to the best secure coding standards, and automated

5

checks for security that prevent the happening of vulnerabilities in Python applications
in dealing with AWS S3. All these are relevant and essential to ensure the integrity of the
security of any cloud storage solution and its uniform application throughout the whole
system.

2.4 Critical Evaluation

Various research works exist to date that focus on cloud storage security concerning the
framework and approach. For example, Alqahtani, 2019 focuses more on multi-cloud
security analysis while Baviskar, 2022 is concerned with serverless encryption but fails
to carry out scale testing or implement in practical aspects. Bennett and Robertson,
2019 underscored the importance of human factors in cloud security maintenance, but no
technical solutions. Similarly, Chari et al. (2021) and Ekwonwune et al. (2024) outline
strong security frameworks but have no testing in dynamic, real conditions. Propose
cryptographic methods, including Khuntia et al. (2021) and Sharma et al. (2021), that
provide fine-grained access control and hybrid encryption techniques but have increased
complexity and scalability issues. Blockchain-based solutions offer data integrity benefits
but come at the cost of high computational overhead, as Patil et al. (2020) mentioned.
Automation is the central theme in the works of Priyam (2018), Mukherjee et al. (2022),
and Volotovskyi et al. (2024) on Python security automation and proactive misconfig-
uration detection for AWS environments. However, those are limited to cross-platform
applicability. For the complete strategies of AWS, according to Tiwari et al. (2024) and
Shields (2022), it provides great guidelines, but scalability and innovation in usage is
generally missing. It thus displays the need for scalable, automated, and cross-platform
solutions in modern cloud security challenges.

3 Methodology

Figure 1: Project Methodology Diagram

There have been critical steps in development approaches while implementing a Python-
versed safe and stable AmazonWeb Services S3-file-storaged based system following strict,
methodical development cycles involving critical phases which address even more import-
ant aspects concerning strict adherence to security requirements to scalable as well as very
high-efficiency, highly relevant safeguarding features, while preserving cloud-stored data.

6

The next few sections explain the holistic process undertaken from the initiation of a
project setup to testing and validation. This section captures strategic decisions and
best practices for the project lifecycle.

3.1 Project Setup and Initial Planning

The initial configuration and planning on the project were well grounded for all further
activities. Picking up the AWS US East (N. Virginia) region was vital because of better
infrastructural facilities and service availability, scalability, and low latency in perform-
ance. This availed maximum availability and efficiency for a wide variety of workloads
through extensive utilization of AWS’s vast network.

An Amazon S3 bucket was identified and provisioned for durable and scalable storage
integrated with other AWS services, key resources were established. To enhance data se-
curity, AWS Key Management Service or KMS was used for encryption key management,
hence implementing strong encryption and decryption processes to secure data at rest.

An IAM role was created by using the least privilege principle and gave the neces-
sary permissions to resources like S3 and KMS; it reduced unauthorized access risks
while providing robust security. Networking security was further developed with a VPC,
thereby isolating all project resources. Segregation of application networking would be
done with subnets controlling data flows as well as the reduction of the attack surface.

An Internet Gateway was added to the VPC, enabling safe external communication
but still retaining control over data flow. Route tables ensured efficient routing of the
data packets. Security groups accurately controlled network access, allowing only traffic
through ports that were needed, such as SSH limited to trusted IPs.

The key pairs provided the ability to have secure SSH access to EC2 instances so that
only authorized personnel could manage the servers. For reliability and optimization
of Python, an Amazon Linux 2 AMI-based EC2 instance was provisioned. This was a
complete setup to provide a secure, scalable, and efficient environment for application
development and deployment.

3.2 AWS Environment Configuration

Configuring the AWS environment became a pivotal component of the method, specializ-
ing in organising a steady and isolated network infrastructure tailored to the undertaking’s
requirements.

3.2.1 Virtual Private Cloud (VPC) Configuration

All the project resources were configured in a VPC with precision so as to create a secure
and isolated network environment. Leverage on a dedicated VPC enables the project
to segregate its resources from other AWS customers, which enhances security through
resource isolation. To ensure the network segmentation controlling the flows of data
and reducing possible attack vectors, subnets are created in the VPC. This subsequently
minimizes the attack surface because of the restriction of access of the sensitive resources
to the minimal network paths.

To gain internet access for the instances of EC2, the Internet Gateway was attached
to the VPC. This was a configuration requirement to allow the external services to be
communicated and securely access SSH for remote management. The route table associ-
ated with the VPC was carefully configured to ensure that traffic from the subnets was

7

routed to the Internet Gateway efficiently, ensuring the best routing of data packets and
ensuring network reliability.

Security groups helped to enforce access controls inside the VPC. This is because
there were inbound and outbound rules strictly defined inside the security groups to
filter traffic to only the ports that are required and through trusted IP addresses. This
included a very limited SSH access from unique IP addresses that minimized any chances
of brute force attack and other forms of illegal access attempts. This particularly tight
security configuration secured the integrity and confidentiality of the EC2 instances and
other resources in the VPC.

3.2.2 S3 Bucket and KMS Integration

Integration with AWS KMS turned into critical in supplying facts security and integrity
whilst the use of Amazon S3. The S3 bucket used server-aspect encryption supplied by
way of KMS, thereby encrypting all objects that were uploaded into the S3 bucket. This
became an guarantee that no third celebration turned into capable of attain it and obtain
or breach such information without breaking the standards of stringently secured records.

Versioning is implemented on the S3 bucket so that the change track and multiple
versions of a file are maintained. Versioning was an essential element in data recovery and
audit, as it could track the previous states of the file in case of its unintended deletion
or modification. Through the maintenance of various versions of each file, it improved
data integrity and ensured reliability in data retrieval if the need arose for reversion to
its original state.

3.2.3 IAM Role Configuration

IAM roles, another important aspect of AWS environment configuration, had been cre-
ated with very careful crafting for the EC2 instance. IAM roles granted only the re-
quired permissions to access S3 and KMS resources. Some of these permissions included
s3:GetObject, s3:PutObject, kms:Encrypt, and kms:Decrypt, all applied in the spirit of
least privilege. This careful permission assignment minimized the risks of security by only
limiting access to the most basic operations, thus reducing the likelihood of unauthorized
actions.

The project assured that the operations performed on the S3 bucket and KMS by the
instance could be secure without requiring credentials to be embedded into the application
with the attaching of the IAM role onto the EC2 instance. This not only increases the
security of any credential leak but also has the ability to simplify managing permissions
with centralised IAM policies.

3.3 Deployment and Configuration of EC2 Instance

Launching and configuring the EC2 example was a crucial step in establishing the oper-
ational environment for the Python utility.

3.3.1 EC2 Instance Provisioning

The File Encryption Server was deployed on the Amazon Linux 2 AMI because of its
robustness, security features, and compatibility with Python-based applications. The
instance was set to use the previously created key pair for SSH access. Only those with

8

the appropriate private key would be allowed to connect securely to the server. This
configuration served as the best means through which unauthorized access was averted,
hence securing the server.

3.3.2 Security Group and Access Controls

An EC2 instance was attached with a security group that controlled the access stringently.
This effectively limited SSH traffic only from trusted, specified IP addresses. Therefore,
it had an effect of limiting unauthorized access attempts and subsequent exploitation
possibilities. The attack surface is thus significantly reduced since the only possible
source for SSH connection will be from a verified source.

3.3.3 Software Installation and Configuration

Once the EC2 instance was up, installed were the necessary software packages to help in
developing and deploying the Python application. Included in the listing were pip, which
is the Python package manager, and boto3, that’s the AWS SDK for Python. Boto3
became vital in permitting a unbroken interaction among the Python software and AWS
offerings, inclusive of S3 and KMS, streamlining improvement and integration tactics.

3.4 Python Application Development

The center functionality of the task was found out inside the improvement of a Python-
primarily based application that changed into to automate report operations while making
sure secure interplay with AWS services. Modularity, protection, and performance were
guiding standards at some point of the improvement procedure, building on the abilties
of Boto3 to make viable robust and stable operations.

3.4.1 Core Functionalities

Uploading Files to S3: The upload to s3 function was created to ensure secure up-
loading of files from the EC2 instance to the S3 bucket. The characteristic turned into
designed to automatically encrypt each report at upload using the KMS key that were
specified for encryption. This ensured that all data stored in S3 was encrypted at rest.
This direct encryption ensured that data was safe at every point in its lifecycle and could
not be accessed or breached.
Transfer Files from S3: Downloads files from an S3 bucket on the local EC2 instance.
It performs integrity checks so that the downloaded file is identical to the original; no
corruption of data occurs during transfer. The download function limits access from au-
thorized users and specifies the download procedures for secure operation, not allowing
data tampering as well as unauthorized access to data.
Data Encryption using KMS: The encrypt data function encrypted plaintext data
using the KMS key. This function translated sensitive data to ciphertext, which then
meant that it was safe before storing and transmitting it. As the application made use of
AWS KMS for encryption processes, it was in good practice in cryptography as encryp-
tion was strong and within industry standards for protection of data.
Decryption with KMS on Data: Similarly, the decrypt data function allowed for
the decryption of ciphertext back into plaintext with the same KMS key. The decrypt
data function was structured in such a way that only authorized users with the correct

9

permissions were allowed to decrypt and gain access to the original data. By employing
secure decryption practices, the application kept data confidential and ensured it was not
disclosed without authorization, thus upholding data privacy and security.
Utilizing Boto3 for AWS Integration: The use of the Boto3 library was very im-
portant for making it quite easy for the Python application to communicate with AWS
services smoothly. It offered a more abstract interface for managing resources on AWS
that made the most complex operation of encrypting, decrypting, and transferring data
not so cumbersome. Such integration has helped improve development efficiency, with
added benefits of the scalability and security aspects of the entire application built on
top of AWS services.

3.5 Testing and Validation

The final phase of the methodology is the thorough testing and validation of the system
to ensure that it meets all the functional, performance, and security requirements. This
final phase is essential in confirming that the solution is robust, reliable, and that it
achieves the project’s objectives.

3.5.1 Functional Testing

Functional testing included several experiments to test the core functionality of the sys-
tem. For the uploading and downloading tests in the S3 bucket, file operations were
successfully validated without data corruption or losses. Each transfer was properly com-
pared against the original file to confirm data integrity on the system, such that the
fidelity of data will be maintained throughout the operation.

In addition, encryption and decryption functions were tested under stress conditions
to ensure that the sensitive information was being dealt with securely. These tests were
positive as they ensured that data is encrypted in proper manners before storage and ac-
curately retrieved from the store upon retrieval, thus proving that encryption mechanisms
are working fine and the encryption keys are dealt with securely.

3.5.2 Performance Metrics

Performance testing was mainly focused on the efficiency and reliability of the system in
various conditions. Key performance metrics included.
Upload and Download Success Rates: The system had a 98% success rate for file
operations, which showed good support for file transfers and therefore high reliability.
Average Response Time: The system was able to respond in 200 milliseconds per
operation, which showed that the system was fast and efficient and capable of handling
file transfers.
Consistency of Encryption: It encrypted all files successfully. It meant that the
whole storage system enjoyed uniform data security, hence eliminating vulnerabilities
with incomplete encryption.
Data Integrity: The tests for data integrity were successful as well. This was because
all the data obtained from S3 had the same integrity as in the version that was uploaded.
Data integrity tests retrieved a 100% integrity level. This signified that the data was
right and reliable, and it showed that the system was secure to preserve its integrity for
the stored data.

10

4 Design Specification

Figure 2: Architecture Diagram

The AWS Secure File Storage System will offer a cloud-based scalable and secure repos-
itory for sensitive information. Key services in AWS- S3, KMS, EC2, IAM, and VPC-
would integrate to allow robust security with user-friendliness and scalability.

The system starts with users requesting to upload files or download through a Python
application that is deployed on an Amazon EC2 instance called ”File Encryption Server.
This server handles encryption, decryption, and file transfers using AWS services through
the Boto3 library. The IAM role fileEncryption2024 is created with minimal permissions
necessary for S3 and KMS access, which increases security while simplifying monitoring
and control.

At the heart of it is the S3 bucket that stores files secured with server-side encryption
with KMS in S3, a feature such as versioning gives data integrity by allowing recovery
for accidental deletion and overwrite. The associated key sanketfilestoragekms2024 can
be set for custom policies limiting permissions to trusted IAM users and roles.

The compute infrastructure is in a VPC named fileencryptionvpc. This gives it net-
work isolation. The EC2 instance is placed in a private subnet called fileencryption-
vpcsubnet, thus making it impossible to access it from the public internet. It has one
Internet Gateway fileencryptiongateway as well as Route Table for intra-traffic through
fileencryptionroutetable. Security is achieved through a security group called fileencryp-
tionsecuritygroup, which prevents traffic from IPs other than only a few particular ones
to achieve safety in networks.

Underlying the system is encryption, which ensures data confidentiality as well as
integrity. Files are encrypted with AWS KMS prior to being stored in S3, and auto-
mation reduces the potential for human error and enhances efficiency. Versioning tracks
modifications and supports recovery in case of changes accidentally made.

Access control is at the heart of its design, ensuring fine-grained IAM policies through
the least privilege principle. Access to operations may be restricted solely to authorized
users or applications based on role; AWS CloudTrail logs access patterns for compliance
and incident response purposes.

The reason is that it restricts exposure from external threats, such as keeping the
resources private in a VPC and allowing restricted public access. Using a balance of en-
cryption, network isolation, and strict access controls, AWS Secure File Storage System

11

provides a method of totally comprehensive and efficient protection of sensitive informa-
tion.

5 Implementation

The secure file storage system on AWS S3 was designed and integrated by developing and
adding various additives in order to guarantee the security of the data, scalability, and
cost-effectiveness. This section will elaborate on the technical structure, development
process, algorithms, and significant implementation techniques.

5.1 Development of Architecture Components

The key components of the system architecture are:

• Amazon S3 Bucket: This is used for the safe storage of encrypted files.

• AWS KMS (Key Management Service): Use for encryption and decryption
of sensitive data.

• IAM Roles and Policies: It is used to provide access to AWS resources in a
secure manner, which also enforces the principle of least privilege.

• Virtual Private Cloud (VPC):Provides an isolated network environment.

• EC2 Instance: It acts as the File Encryption Server, running Python scripts for
file operations.

5.1.1 Configuring AWS Resources

• S3 Bucket:

– Created with versioning and server-side encryption enabled using KMS.

– Access control restricted to authorized IAM roles.

• KMS Key:

– Configured with key policies to allow encryption and decryption by the IAM
role attached to the EC2 instance.

• IAM Role:

– Policies attached for S3 and KMS operations, such as s3:GetObject, s3:PutObject,
kms:Encrypt, and kms:Decrypt.

• VPC:

– Configured with subnets, security groups, route tables, and an Internet Gate-
way for secure communication.

• EC2 Instance:

– Launched with Amazon Linux 2 AMI and associated with the IAM role for
secure AWS resource access.

12

5.2 Algorithms and Processes

5.2.1 File Encryption and Upload Algorithm

Algorithm: File Encryption and Upload

1. Input: Local file path file path, destination object name object name.

2. Read the file content into memory.

3. Use the kms:Encrypt operation to encrypt the file content with the specified KMS
key.

4. Upload the encrypted data to the S3 bucket using s3:PutObject.

5. Output: Confirmation of file upload.

5.2.2 File Decryption and Download Algorithm

Algorithm: File Decryption and Download

1. Input: S3 object name object name, destination file path file path.

2. Retrieve the encrypted file content from the S3 bucket using s3:GetObject.

3. Decrypt the file content using kms:Decrypt.

4. Write the decrypted data to the local file system.

5. Output: Confirmation of file download.

5.3 Mathematical Definitions

5.3.1 Encryption Process

The encryption process uses AWS KMS, which applies symmetric encryption. Given a
plaintext file P and a key K managed by AWS KMS, the ciphertext C is generated as:

C = EK(P)

5.3.2 Decryption Process

To retrieve the original file, the decryption function DK is applied to the ciphertext C
using the same key K:

P = DK(C)

5.4 Python Application Implementation

The Python application, developed using the Boto3 library, automates the upload, down-
load, encryption, and decryption processes. Key features include:

• Error Handling: Handles exceptions such as NoCredentialsError and AccessDenied.

• Logging: Logs all operations for auditing and debugging purposes.

• Configuration: Reads AWS resource details from a configuration file.

13

5.5 Testing and Validation

The system was validated through functional and performance tests:

• Functional Tests: Verified encryption and decryption correctness.

• Performance Metrics: Evaluated response time, throughput, and cost per oper-
ation.

• Security Tests: Tested IAM policies and access controls.

5.6 AWS Infrastructure

Setup Amazon S3 bucket was the storage resource set up to enable scalable file storage
securely. The server-side encryption using a customer-managed KMS key encrypts all
files stored inside, thus keeping data at rest safe and inaccessible to users except the
owner of the bucket. Additionally, versioning on the bucket was enabled, and a history
of file versions kept so that added security and recoveries are available.

It has a key created and configured with its settings to execute encryption and de-
cryption operations. The policy allows certain privileges to specified users and roles,
making sure that all access to KMS was strict, as only selected entities would carry out
encryption or decryption. Hence, it didn’t let uncontrolled entry into any sensitive in-
formation. Integrate with S3 by which automatic encryption happens for uploading any
file to a bucket, with no further action taken for encryption processes.

IAM roles were created to gain secure access to AWS resources. The role was estab-
lished in accordance with the principle of least privilege, which grants only the minimum
permission needed for the system to run. For example, the role assigned to the EC2 in-
stance was allowed to communicate with the S3 bucket and KMS key, hence file operations
were carried out safely without exposing sensitive credentials.

This would then create a VPC to separate the system resources for the safe operation
of boundary with the external networks. It then created a subnet that divides the traffic
from the network into divisions within it. It also created an Internet Gateway to control
access over the internet. Finally, a route table was developed in order to allow flow
between the subnet and the gateway. To increase security, a security group was created
to limit inbound and outbound traffic to only necessary communication, such as SSH
access on port 22 from trusted IP addresses.

5.7 Configuration of the EC2 Instance

An Amazon EC2 instance in VPC was launched for serving the role of a computation
node to run the application made in Python. Such an instance was configured on Amazon
Linux 2 AMI supporting Python-based applications. Being stable in cloud environment
this would be the best AMI to choose. For securing the instance, so it can work with
other AWS resources, the previously prepared IAM role was attached.

An SSH key pair was used to set up secure access to the instance. The public key
was configured at the time of launching the instance, and a private key was kept securely
and used for authentication, which meant that only authorized people could connect to
the instance with a lesser chance of unauthorized access.

Once the instance was up, tools and libraries were installed to enable the development
and running of the Python application. These included pip for managing Python packages

14

and the boto3 library, which is the AWS SDK for Python. All these tools made working
with AWS services easy to implement.

5.8 Development of Python Application

The core system functionalities were executed within a Python script that ensured auto-
secure, file-wise use of resources for AWS resources for uploading from Amazon S3 down-
loads. Use would be given through AWS KMS for its role in securing such files on
availability, confidentiality, and integrity fronts.

The upload function automatically encrypted a file while transferring the same to S3
using the KMS, which prevented interference by humans with human error at its core to
further strengthen security of data, and integrity check was performed after downloading
files from S3 onto the EC2 instance.

The strong encryption and decryption functions ensured that sensitive information
was handled in a very secure manner. The encryption function used KMS keys to convert
plaintext into ciphertext, hence inaccessible to others. The decryption function operated
vice versa for authorized users, thereby ensuring confidentiality even if data is stored and
communicated.

The script was built to be as user-friendly as possible so that the user will easily be
taken through each step with prompt feedbacks and questions if there are operations. It
would also handle probable errors like wrongly given file path or access privileges so it
would, therefore, not only be safe but also secure, automated, and accessible to handle
sensitive data.

5.9 Security Measures

Security was part of the implementation process and involved multi-layered protection,
ensuring the safety of the system. Applying the principle of least privilege to all IAM
roles and policies ensured that the users and services could access only those resources
necessary to complete a specific task, which minimized the possibility of an unauthorized
access and the potential damage from a security breach.

The security group was designed to limit access to the EC2 instance; only specified
IP addresses were allowed for SSH. This reduced the likelihood of anyone other than
authorized people trying to connect to the instance. Hence, in general, this improved
the security situation. Furthermore, authentication was via a key pair; the keys were
managed such that they would only be available to people who were authorized.

The integration of KMS with S3 provided robust encryption for all data stored and
ensured sensitive information was safe from access by unauthorized people. A carefully
crafted key policy on the KMS was meant to enforce very strict controls over access;
hence only authorized users and roles would be allowed to encrypt or decrypt. Thus,
the security of data throughout its entire lifecycle, starting from storage, to retrieval was
ensured.

AWS CloudWatch was used to implement monitoring and auditing mechanisms that
would support real-time monitoring of system activities and access logs. Real-time mon-
itoring enhanced insights in system performance and security, therefore facilitating de-
tection and response to potential threats. Such systematic vigilance ensured running
security while abiding by the protocols set.

15

6 Evaluation

This section presents a detailed evaluation of the secure file storage system implemen-
ted on AWS S3. Various performance metrics, including success rates, response times,
cost efficiency, data integrity, access control, encryption consistency, system uptime, and
throughput, were assessed to ensure the system’s effectiveness. Figures are included to
visually illustrate the key findings, and each is accompanied by its source for clarity.

6.1 Upload/Download Success Rate

The upload and download success rate was measured to evaluate the reliability of file
transfer operations. As shown in Figure 3, the success rate remained consistently high
across test instances, with values ranging between 95% and 100%. Minor fluctuations
observed during specific instances were caused by stress testing scenarios designed to
evaluate the system under high network load conditions.

Figure 3: Upload/Download Success Rate (%)
Source: System log analysis of successful file transfers across test instances.

6.2 Average Response Time

The average response time reflects the system’s efficiency in processing file operations.
Figure 4 illustrates response times across instances, ranging from 180 ms to 220 ms.
Variations were influenced by file sizes and network conditions, with occasional spikes
observed during stress testing of larger files.

Figure 4: Average Response Time (ms)
Source: Automated testing scripts tracking operation times for file uploads and downloads.

16

6.3 Average Cost per Operation

The average cost per operation, as depicted in Figure 5, was calculated to evaluate
cost-efficiency. Costs ranged from $0.0045 to $0.006 per operation, reflecting the pay-as-
you-go model of AWS. Minor fluctuations were observed based on file size and duration
of resource utilization.

Figure 5: Average Cost per Operation ($)
Source: AWS billing and cost tracking during testing phases.

6.4 Data Integrity Check

Data integrity was assessed using hash-based verification methods. As illustrated in
Figure 6, the integrity check rate consistently exceeded 98%, demonstrating the system’s
reliability in maintaining data accuracy during storage and retrieval operations.

Figure 6: Data Integrity Check (%)
Source: Hash-based file comparison for verifying data accuracy across instances.

6.5 Access Control Violations

Access control violations were monitored to evaluate the effectiveness of implemented
security measures. Figure 7 depicts minimal violations, primarily occurring during the
initial configuration phase. These issues were resolved through policy adjustments.

17

Figure 7: Access Control Violations
Source: AWS CloudTrail logs monitoring unauthorized access attempts.

6.6 Encryption Consistency

Encryption consistency was measured to ensure uniform application of encryption policies.
As shown in Figure 8, the consistency rate was near-perfect at 100%, demonstrating the
reliability of AWS KMS in enforcing encryption standards.

Figure 8: Encryption Consistency (%)
Source: Logs verifying encryption status of files stored in AWS S3.

6.7 System Uptime

System uptime is a critical metric for assessing reliability. Figure 9 shows uptime con-
sistently above 99.84%, validating the stability and resilience of the implemented system
under varying workloads.

Figure 9: System Uptime (%)
Source: AWS CloudWatch monitoring system availability during testing.

18

6.8 Average Throughput

Throughput was measured to assess the system’s scalability under concurrent operations.
Figure 10 shows throughput ranging between 1.8 and 2.4 operations per second, high-
lighting the system’s ability to handle workloads efficiently.

Figure 10: Average Throughput
Source: Performance monitoring scripts measuring operational rates under various conditions.

6.9 Overall Performance Comparison

A comparative analysis of all metrics is presented in Figure 11. The normalized values
demonstrate consistent performance across cost efficiency, response time, security, and
scalability, reflecting the system’s robustness and balance across diverse requirements.

Figure 11: Comparison of Performance Metrics
Source: Aggregated data analysis from all test instances normalized for comparison.

7 Results Table

The table below summarizes the key performance metrics evaluated during the testing of
the secure file storage system.

19

7.1 Performance Metrics

Table 1: Performance Metrics

Metric Results (Range or Average)

Upload/Download Success Rate (%) 95% to 100%

Average Response Time (ms) 180 ms to 220 ms

Average Throughput (Ops/sec) 1.8 to 2.4

7.2 Security Metrics

Table 2: Security Metrics

Metric Results (Range or Average)

Data Integrity Check (%) 98% to 100%

Encryption Consistency (%) Near-perfect (99.8% to 100%)

Access Control Violations (Count) 3 to 7

7.3 Cost and Uptime Metrics

Table 3: Cost and Uptime Metrics

Metric Results (Range or Average)

Average Cost per Operation ($) $0.0045 to $0.006
System Uptime (%) 99.84% to 99.88%

The success of the proposed secure file storage system is shown in evaluation metrics. High
success rates, minimal access control violations, and consistent encryption all show a reli-
able and secure system. The slight differences in the response time and cost-effectiveness
were well within the acceptable limits and, to a great extent, had been determined by
factors such as network latency and file size. The system proved scalable and cost-effective
for use in real-world applications related to cloud storage.

A holistic approach involving performance, security, and cost metrics was followed
for the assessment of the secure file storage system. Testing scripts, which were auto-
mated, were utilized to simulate real-world conditions and stress tests with larger files
and concurrent operations. Results showed a very high success rate in upload/download
processes (95%–100%) and nearly perfect consistency in encryption (99.8%–100%). How-
ever, small differences in response time between 180 ms–220 ms and throughput between
1.8–2.4 ops/sec were observed under conditions of high network load or high file size
processing. The results indicate the possibility for further optimization of processing the
workload. Access control violations occurred only 3–7 times, but these also show poten-
tial for further IAM policy improvement and monitoring mechanisms. In addition, the
cost per operation of the system was 0.0045–0.006, which was cost-effective but could

20

increase with heavier workloads. Overall, although the system proved scalable and se-
cure for real-world cloud storage applications, improvements in performance tuning and
anomaly detection could further enhance its robustness and reliability.

8 Conclusion and Future Work

This secure file storage system on AWS S3 achieved the goals of having a safe, scalable,
and cost-effective method to handle sensitive data. It ensures that data is kept secure,
intact, and available because of the incorporation of services from AWS including S3,
KMS, IAM, and EC2. with Python automation. The evaluation metrics show strong
consistency in performance, indicating a success rate above 95% and near-perfect encryp-
tion consistency with minimal access control violations, thus showing reliability as well
as security best practice.

The solution is cost-effective due to pay-as-you-go pricing offered by AWS, and auto-
mated encryption, versioning, and real-time monitoring also ensured high levels of security
and performance. The system is scalable for small-scale as well as enterprise applications
and provides an adaptable framework to organizations of various storage requirements.

Even though the project is highly successful, improvement is necessary in some fields.
It is observed during stress testing that response time is fluctuating, thus showing a need
for further optimization toward larger files and higher concurrency. With additional IAM
policies, there may be the requirement of including machine learning for anomaly-based
detection to enhance access security even further.

Future work will be on the optimization of performance for more significant workloads,
which includes advanced caching techniques and edge computing via AWS CloudFront
to improve response times. Predictive analytics using tools like Amazon SageMaker can
further enhance system scalability by pre-positioning resources based on usage patterns.

The others are improvements in integrating AWS GuardDuty and AWS Security Hub
for advanced threat detection and centralized security management. Research into block-
chain technology for immutable records of file operations will further enhance data integ-
rity.

References

[1] Alqahtani, H.S., 2019. A novel approach to providing secure data storage using multi
cloud computing.

[2] Baviskar, C.R., 2022. Cloud based automated encryption approach to prevent S3
bucket leakage using AWS Lambda (Doctoral dissertation, Dublin, National College of
Ireland).

[3] Bennett, K.W. and Robertson, J., 2019, May. Security in the Cloud: Understanding
your responsibility. In Cyber Sensing 2019 (Vol. 11011, p. 1101106). SPIE.

[4] Chari, S., Umesh, H., Sandosh, A., Suganthi, S. and Honnavalli, P.B., 2021, October.
Setting Up and Exploration of Security in a Hybrid Cloud. In 2021 IEEE Mysore Sub
Section International Conference (MysuruCon) (pp. 1-7). IEEE.

21

[5] Ekwonwune, E.N., Chigozie, U.C., Ekekwe, D.A. and Nwankwo, G.C., 2024. Analysis
of Secured Cloud Data Storage Model for Information. Journal of Software Engineering
and Applications, 17(5), pp.297-320.

[6] Gupta, A., Mehta, A., Daver, L. and Banga, P., 2020, March. Implementation of
storage in virtual private cloud using simple storage service on AWS. In 2020 2nd
international conference on innovative mechanisms for industry applications (ICIMIA)
(pp. 213-217). IEEE.

[7] Hassan, M., 2021. Public Cloud-Based Private Python Package Serving Platform.

[8] Khuntia, S., Krishna, D. and Sahay, S., 2021. Secure Attribute-based User Access
Control over AWS Cloud. IJRASET, 9(2), pp.7-33.

[9] Malhotra, S., Arora, M.S. and Singh, M.S., Amazon Backed File system with En-
hanced Storage Feature.

[10] Mukherjee, R., Tripp, O., Liblit, B. and Wilson, M., 2022. Static analysis for AWS
best practices in Python code. arXiv preprint arXiv:2205.04432.

[11] Park, S.J., Lee, Y.J. and Park, W.H., 2022. Configuration method Of AWS security
architecture that is applicable to the cloud lifecycle for sustainable social network.
Security and Communication Networks, 2022(1), p.3686423.

[12] Patil, A., Jha, A., Mulla, M.M., Narayan, D.G. and Kengond, S., 2020, August.
Data provenance assurance for cloud storage using blockchain. In 2020 International
Conference on Advances in Computing, Communication & Materials (ICACCM) (pp.
443-448). IEEE.

[13] Priyam, P., 2018. Cloud Security Automation: Get to grips with automating your
cloud security on AWS and OpenStack. Packt Publishing Ltd.

[14] Saeed, I., Baras, S. and Hajjdiab, H., 2019, February. Security and privacy of AWS
S3 and Azure Blob storage services. In 2019 IEEE 4th International Conference on
Computer and Communication Systems (ICCCS) (pp. 388-394). IEEE.

[15] Sakinmaz, S., 2023. Python Essentials for AWS Cloud Developers: Run and deploy
cloud-based Python applications using AWS. Packt Publishing Ltd.

[16] Sharma, V., Chauhan, A., Saxena, H., Mishra, S. and Bansal, S., 2021, October.
Secure file storage on cloud using hybrid cryptography. In 2021 5th International Con-
ference on Information Systems and Computer Networks (ISCON) (pp. 1-6). IEEE.

[17] Shields, D., 2022. AWS security. Simon and Schuster.

[18] Tiwari, S., Shukla, S. and Modi, P., 2024. Secure Cloud Storage System.

[19] Volotovskyi, O., Banakh, R., Piskozub, A. and Brzhevska, Z., 2024. Automated se-
curity assessment of Amazon Web Services accounts using CIS Benchmark and Python
3.

[20] Wanjohi, D.M., 2019. Information Security Research Project.

22

	Introduction
	Background
	Research Question
	Research Objectives

	Related Work
	Cloud Data Security Challenges
	Techniques for Cloud Storage Encryptions
	Best Practices for the Security of AWS S3
	Critical Evaluation

	Methodology
	Project Setup and Initial Planning
	AWS Environment Configuration
	Virtual Private Cloud (VPC) Configuration
	S3 Bucket and KMS Integration
	IAM Role Configuration

	Deployment and Configuration of EC2 Instance
	EC2 Instance Provisioning
	Security Group and Access Controls
	Software Installation and Configuration

	Python Application Development
	Core Functionalities

	Testing and Validation
	Functional Testing
	Performance Metrics

	Design Specification
	Implementation
	Development of Architecture Components
	Configuring AWS Resources

	Algorithms and Processes
	File Encryption and Upload Algorithm
	File Decryption and Download Algorithm

	Mathematical Definitions
	Encryption Process
	Decryption Process

	Python Application Implementation
	Testing and Validation
	AWS Infrastructure
	Configuration of the EC2 Instance
	Development of Python Application
	Security Measures

	Evaluation
	Upload/Download Success Rate
	Average Response Time
	Average Cost per Operation
	Data Integrity Check
	Access Control Violations
	Encryption Consistency
	System Uptime
	Average Throughput
	Overall Performance Comparison

	Results Table
	Performance Metrics
	Security Metrics
	Cost and Uptime Metrics

	Conclusion and Future Work

