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Benchmarking AWS Bedrock Generative AI Models
with RAG for Analyzing Fraudulent Transactions

Hunaid Vekariya
X23235951

Abstract

The proliferation of Al and Large Language Models (LLMs) are continuously
evolving, with new models developed and tuned at high rate. However, they still
facing limitations in providing domain-specific responses, particularly when deal-
ing with fraudulent transactional data and financial knowledge. This challenge can
be addressed through retrieval-augmented generation (RAG) systems deployed on
serverless opensearch platform, which integrate vector databases to enhance model
performance. This research benchmarks two advanced models from aws bedrock
viz, Titan G1 premier and Mistral Al large. Comparing their performance based on
execution time, token generation efficiency, comprehensiveness, and their compat-
ibility with serverless event-driven architecture as these models are note evaluated
on analyzing fraud activities. By analyzing how AI models can detect and mitigate
fraudulent transactions, this study highlights the potential of combining LLMs with
RAG systems to improve fraud detection and prevention. The evaluation findings
are presented where Titan model provides more accurate and faster results, offering
valuable insights and paving the way for further research opportunities.

Keywords— Prompt Engineering, AWS Bedrock, GenAl, Amazon
Titan, Mistral AI, Credit Card Transaction, Opensearch Serverless

1 Introduction

Financial institutions are constantly evolving paving new ways to look at data and learn
from it constantly. Artificial intelligence has been powerful in consuming a lot of data
publicly available which starts making limitation for the models. The influx of ChatGPT
by OpenAl | Claude by Anthropic and Gemini from Google are thriving the user market
Prabhune and Berndt| (2024)).

Improving LLMs to retrieve information better can be achieved by pre-training ap-
proaches such as p-tuning Hu et al. (2021)), prefix tuning Liu et al. (2021), prompt
tuning Lester et al| (2021) talked about in paper . which can be challenging for an
organization as it takes high resources with high mathematical neural calculation which
can be achieved by GPUs only.

The other way to improve data generation and leveraging genai models is efficiently
using vector database in form of RAG NVIDIA| (2024)) where the dataset is added into
a centralized data lake in chunked manner which further provides context to the query
requested by the prompt to provide generated responses in context with the data points.
Building on these capabilities, our research delves into the use of Retrieval-Augmented
Generation (RAG) implementations, which provide specific contexts for analysis and
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remediation strategies. This approach strengthens security systems to better prevent
fraudulent transactions.

1.1 Motivation and Hypothesis

The lag between pre-tuning and fine-tuning can be optimized by using RAG while com-
paring embedded models like Titan and Mistral ultimately bridging the gap and need
to further improve on whole model with huge dataset. The author of this article |Gen-
erative Artificial Intelligence: Prospects for Banking Industry (n.d.) faces challenged as
the financial banking data is critical and secured and cannot be used to train models for
overall security risk. Our research can bridge this gap while keeping the data secured
and encrypted in data lake and only indexing is deployed for vector database to retreive
relevant information with sources. GenAl models are provided by all cloud vendors like
GCP and Azure but AWS provides open source models directly available with unified
API using boto3 sdk. This makes it advantageous over others as the comparison between
open sources and proprietary models will be key highlight to our study.

This research deployed RAG with event-driven architecture using Bedrock-managed
models to evaluate benchmarking between two models analyzing a payload of fraudu-
lent transactions. The evaluation includes

e Metrics such as execution times
e Response comprehensiveness

e Tokens generated

e Cost-efficiency.

Despite their comparable strengths, this study aims to identify subtle performance dif-
ferences under realistic workloads.
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Research Question

How effective are AWS Bedrock Generative AI models, such as Amazon Titan and Mis-
tral, in analyzing fraudulent transactions through prompt engineering with RAG, and
which model performs best in terms of execution time, tokens, and cost-efficiency?

The paper is structured into multiple sections. Section II reviews scientific literature,
emphasizing benchmarking approaches and surveys highlighting areas where RAG can
improve. Section III details the methodology, focusing on techniques and algorithms
employed to build the experimental infrastructure. Section IV outlines the design spe-
cifications and describes the experimental setup for conducting the test cases. Finally,
Section V presents the evaluation metrics, discusses the outcomes, and proposes directions
for future research.

2 Related Work

Artificial intelligence has got immense support from the open-source community and tech
giants such as Google, Meta, and Amazon. The work by |Prabhune and Berndt| (2024)
explores the challenges insights of using Retrieval Augmented Generation(RAG) with
large language models(LLMs ), emphasizing efforts that enhance research into prompt
engineering and fine-tuning. This |Prabhune and Berndt| (2024 paper discuses various
methodologies for data retrieval in multi-NLP environments as implemented by |Li et al.
(2022). However, these methods are often not centralized as different data types requiere
different models to create the vector store. This limitation is mitigated through the use
of the AWS Bedrock knowledge base, which automates chunking and parsing processes.



2.1 Why RAG is Important?

RAG as highlighted by ?, functions by combining traditional data retrieval methods
with advanced generative model whcih utlizes architectures such as GPT-3 and BERT.
When an API request is initiated, the GenAl model retrieves relevant information from
the vector database before generating a response. This two-step approach ensures that
outputs are not only accurate but also enriched with contextual and current information.

There are various RAG models and challenges associated with processing unstructured
data, as discussed in |Li et al.| (2022)), Zhao et al. (2024), and |Yu et al.| (2024)). These
challenges often arise due to the diverse nature of data types and the lack of uniformity in
vector store creation. AWS Bedrock knowledge base addresses these issues by automating
the chunking and parsing of data, which in return helps in improving efficiency and
accuracy.

In the domain of fraud detection, GenAl uses RAG capabilities to deliver deeper
insight. By cross examin transactional data with huge datasets, it identifies patterns,
anomalies, and connections that might be missed by traditional models. This integration
enhances the robustness of fraud detection systems, providing actionable insights and
enabling more effective preventive measure

The article Singh! (2024) highlights challenges in implementing RAG due to data se-
curity concerns. However, adopting robust approaches, such as storing data in encrypted
storage systems, can mitigate these issues. This research addresses these concerns by
proposing methods to enhance data protection without compromising functionality.

Enhanced Data Security and Integrity: Sensitive data remains confined within the
controlled environment of the knowledge base, significantly reducing the risk of exposure
or misuse.

Regulatory Compliance: Adhering to regulations like GDPR and other data protection
laws becomes more manageable as sensitive information does not directly interact with
external Al systems.

Improved Accuracy and Contextual Relevance: The RAG system ensures that GenAl
models generate responses enriched with organizational context, leading to more precise
and actionable insights.

This literature review underscores the importance of innovative frameworks that pro-
mote the ethical, secure, and efficient deployment of GenAl in financial systems. It
emphasizes the critical role of RAG systems in addressing some of the industry’s most
pressing challenges, such as fraud detection, risk management, and compliance.

Enhancing RAG with Advanced Retrieval Techniques: The quality of responses gener-
ated by RAG systems can be significantly improved through advanced retrieval methods,
such as:

Interactive Retrieval: |Borgeaud et al. (2022) and Arora et al| (2023)) proposes sys-
tems that refine queries interactively for better contextual relevance. Recursive Retrieval:
Trivedi et al. (2023) and Kim et al.| (2023) highlight the benefits of recursive approaches,
which involve scanning documents and indexing data chunks to optimize external data-
set re-ranking. Adaptive Retrieval: |Jiang et al. (2023)) introduces adaptive retrieval
mechanisms, enabling systems to dynamically adjust retrieval strategies based on query
context. This research incorporates recursive techniques for document scanning and in-
dexing, which improve re-ranking of external datasets. These approaches also increase
the output token limit for LLMs, resulting in more comprehensive and detailed responses.



2.2 The Role of GenAl in Fraud Detection, Risk Management,
and Compliance in Financial Systems

Generative Al (GenAl) has begun transforming the finance and banking sectors by en-
abling advancements in fraud detection, risk management, and document summarization.
According to a journal article published by the State Bank of India 7, GenAl is being
utilized to detect and prevent fraudulent activities, summarize extensive documents, and
enhance risk assessment processes within financial institutions. These applications high-
light GenAl’s potential to optimize operations and decision-making in an industry that
requires precision and reliability.

Enhanced Data Security and Integrity: Sensitive data remains within the con-
trolled environment of the knowledge base, reducing the risk of exposure or misuse.

Regulatory Compliance: Adherence to GDPR 7 and other data protection laws
becomes more manageable as sensitive information does not directly interact with external
AT systems Hacker et al.| (2023).

Improved Accuracy and Contextual Relevance: The RAG system ensures that
the GenAl model’s responses are informed by organizational context, leading to more
precise and actionable insights.

2.3 Comparing GenAlI Models

Comparing open-source models such as Mistral Al Large with proprietary ones like
Amazon Titan Premier is essential to identify differences in analyzing prompts for fraud
detection. For instance, one study [Sallam et al. (2024) compared various LLM mod-
els, including Mistral Al Large, LLaMA, Meta, GPT-4, Gemini, and AWS Titan, in
a Tic-Tac-Toe game simulation. GPT-4 achieved the highest success rate, while Titan
was excluded due to the unavailability of JSON-formatted outputs—a limitation now
addressed in the Titan Premier model.

2.4 The Role of Recursive and Adaptive Retrieval in RAG

The quality of RAG responses can be further improved through advanced retrieval tech-
niques, such as interactive retrieval Borgeaud et al.| (2022)), retrieval on recursion Trivedi
et al.| (2023), and adaptive retrieval |Jiang et al. (2023)). Incorporating recursive ap-
proaches, such as document scanning and indexing data chunks, enhances the re-ranking
of external datasets. These methods also increase output token limits for LLMs, allowing
for more detailed and accurate responses.

2.5 Benchmarking GenAlI Models

The volume and quality of data processed in GenAl models directly impact response
accuracy and introduce potential biases, as highlighted by |Bian et al.| (2024)) and |Sallam
et al| (2024). These biases can be mitigated by using private datasets specific to an
organization, ensuring source reliability. Regular benchmarking of models in terms of
response generation, response time, and compatibility with vector databases is critical
for fully evaluating their efficiency and robustness.
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2.6 Conclusion

Despite extensive research into integrating RAG, services like AWS Bedrock and OpenSearch
Serverless present promising solutions to the challenges of running RAG with heterogen-
eous, unstructured data from diverse sources. Knowledge bases address many challenges
by automating data chunking and parsing while ensuring compatibility with GenAl mod-
els. This capability makes them ideal for scenarios involving complex and varied data
types, paving the way for more robust and scalable Al-driven systems.

3 Methodology

The hypothesis focuses on how good the genAl can analyze transactions and explore the
the mitigation strategies using the data source we provided. The proposed system uses
a cloud based architecture deployed on AWS to process the data streams in real-time
in an event driven manner. Transactional payloads are simulated following the default
schema from Stripe transactions payload but with synthetic data is taken from Kaggle
and converted into json schema provided in artifactd]

The study employs a data-driven approach leveraging serverless technologies, includ-
ing AWS Lambda, API Gateway, Serverless OpenSearch indexing, and AWS Bedrock.
The architecture ensures scalability, efficiency, and seamless integration of real-time data
pipelines.

'https://www.kaggle.com/datasets/ealaxi/paysiml


https://www.kaggle.com/datasets/ealaxi/paysim1

3.1 Quantitative Analysis:

This methodology uses synthetic transaction data sourced from Kaggle, containing flagged
indicators which are further modified for failed transactions. The sourced data from 10s
of location and urls provides the context and is stored in block storage with indexing
provided by Apache Lucene running Opensearch indexing.

3.2 Serverless Models

Serverless triggers and rest api are used to stream payload from one function to an-
other function. These methods solve the issue of unreliability and packet drops. Further
serverless functions like lambda handles failure and process it again. The API endpoint
is publicly accessible, allowing transaction payloads to be sent as webhooks. A request
validator ensures the integrity and compliance of incoming payloads in the method re-
quest stage.

3.3 Functions and Text Summarization

Compute layer is used to run the logic before sending the prompt to bedrock agents like
titan and mistral for text summarization and analysis. Validated payloads are sent to an
AWS Lambda function. The function processes the data and stores the JSON response in
a DynamoDB table, facilitating structured storage and retrieval for subsequent analysis.
Models are pre-trained to provide text-summarization for the payload processed.

3.3.1 Prompt Engineering and AI models

Prompt engineering is relatively a new disclipline in the Al age. It not just about giving
instructions to genai model to generate responses but needs engineering on top of it to
provide precise elaborated prompts. Big prompts involve more tokens and every model
provides a capacity for tokens to be consumed. It is very important to understand
prompts in order to interact with the LLMs. Amazon Titan Text G1 - Premier is one
genAl model which provides the context window of 32k tokens and inference parameters
for temperature and Top P as 0.7 and 0.9 respectively. Titan is propreitary to Amazon
and cannot be self-deployed On the other hand, Mistral Al large provides 32k tokens
for context window and is available to be self deployed which makes it open source.

3.4 Retrieval Augmented Generation

Pre-trained LLMs may not perform out of the box for every particular case so pretraining
of the model is required. RAG is retrieval augmented Generation system can conceptu-
alize the data provided and provide the responses based on that. The dimensions of data
must be high about 1000 for it to work properly. Data chunking and parsing is further
explained in the implementation part of this paper. RAG is composed of three compon-
ents, retrieval, augmentation and generation. Upon the user query for the transaction,
relevant content on transactional data is retrieve from external knowledge bases or other
data sources based on the prompt query. In our case we retrieving the RAG from AWS
Opensearch and 7 external URL sites in order to increase the dimensions of data. The re-
trieved information from Knowledge base is then appended to original user query creating



an augmented query to serve as the input to the foundational model. The foundational
model then generated the response based on the augmented query. With this high-level
flow, the use of rule based and semantic search is used where our RAG model is used.
Rule based fetches the unstructured data like documents, emails etc. Semantic search
fetches relevant documents based on their text embeddings.

3.4.1 Embedding

Embedding refers to transforming data like text, audio, images into numerical represent-
ation high dimensional vector space using machine learning algorithm which has been
performed by AWS Knowledge base in bedrock service. For embedding models, factors
such as max input size, latency, output embedding size, accuracy are crucial considera-
tions. AWS provides two models for embedding Titan embedding and Mistral AI Large
embedding models which have been used in this research to compare and contrast for
further use. Two datasets points are used in this research, the one is synthetic data
which is used for the prompt and is in json format. It includes the unique transactional
id, location, flags, amounts, created date, updated date and other parameters. The other
dataset is the data sourced into aws knowledge base which is taken from many renowned
websites like Stripe radar, credit card frauds, fin tech etc. No machine learning training
has been performed in this research. This research explores the capabilities of two Gen-
erative Al models, Amazon Titan Premier and Mistral Al Large, accessed through AWS
Bedrock. AWS Bedrock provides a unified API for interaction, which is implemented
using the boto3 SDK to ensure consistent and efficient communication with the models.
The choice of these models was driven by their relevance to tasks requiring contextual
understanding, summarization, and code generation.

3.4.2 Amazon Titan Premier

Amazon Titan Premier is a proprietary model developed by AWS. Known for its advanced
text-generation capabilities, it is particularly adept at handling open-ended tasks, con-
textual understanding, and summarization. The model is exclusively hosted on AWS
Bedrock, providing high availability and scalability but limited to the AWS ecosystem.

3.4.3 Mistral AI Large

Mistral Al Large, on the other hand, is an open-source model introduced by Mistral Al.
It is optimized for high-performance tasks such as mathematical reasoning, text summar-
ization, and long-context applications. With 123 billion parameters, the model supports
single-node inference and offers the flexibility of deployment both within AWS Bedrock
and on custom infrastructure, making it a versatile tool for experimentation. The experi-
mental setup involved sending a series of predefined prompts to both models via the AWS
Bedrock API. Responses were collected programmatically using Python scripts integrated
with the boto3 SDK. Tasks were carefully designed to reflect real-world use cases, such
as open-ended problem-solving, summarization, and code generation. The consistent use
of AWS Bedrock as a hosting platform ensured uniformity in model deployment, minim-
izing infrastructure-related variations that could influence outcomes. The data generated
through these interactions was prepared for analysis by standardizing response formats
and ensuring comparability across models. This methodology provides a robust frame-
work for evaluating the strengths and limitations of these models in subsequent sections.



3.5 Services Used in the Research Infrastructure

This research leverages a combination of AWS services to build an efficient, automated
infrastructure for comparing Generative Al (GenAlI) models. The automation of prompt
handling accelerates the interaction and evaluation of these models, providing actionable
insights. Below is a detailed description of the services utilized:

3.5.1 API Gateway

API Gateway acts as the entry point for processing payloads sent via HT'TP POST re-
quests. It forwards these requests to a designated Lambda function for further processing.
Once the Lambda function processes the payload, it returns an HTTP 200 status code
to confirm successful handling.

3.5.2 AWS Lambda

Lambda functions play a pivotal role in the automation pipeline. Three Lambda functions
are deployed to:

e Pre-process incoming transaction data.
e Convert the processed data into structured prompts.

e Invoke the AWS SDK for Bedrock to generate responses from the knowledge base
or models.

These serverless functions enable dynamic data handling and orchestration across the
infrastructure.

3.5.3 Amazon DynamoDB

DynamoDB is employed as the primary storage layer for JSON-formatted key-value pairs.
It supports DynamoDB Streams, which automatically trigger additional Lambda func-
tions to handle new or updated data, ensuring real-time processing and integration with
downstream services.

3.5.4 IAM (Identity and Access Management)

Properly defined TAM roles and policies are crucial for ensuring seamless communication
between services. These roles provide the necessary permissions to avoid ” Access Denied”
errors while maintaining security best practices.

3.5.5 AWS Bedrock

AWS Bedrock serves as the core platform for interacting with GenAl models. It provides a
unified API for model invocation, allowing prompts and instructions to be sent to models
or Bedrock Agents. Additionally, Bedrock enables knowledge base integration, which can
be further enriched using third-party datasets for improved contextual understanding.



3.5.6 OpenSearch Serverless

OpenSearch is used to index data points and manage a vector database. This facilitates
Retrieval-Augmented Generation (RAG) by enabling the prompts to query the vector
database for additional context. OpenSearch acts as a middleware, enhancing the accur-
acy and relevance of model outputs.

3.5.7 Amazon S3

S3 offers cost-efficient block storage for financial documents and other research artifacts.
Its scalability ensures secure and reliable data storage throughout the study.

3.5.8 Amazon CloudWatch

CloudWatch logs are utilized to capture all responses generated by the infrastructure.
This logging mechanism aids in debugging, performance monitoring, and comparative
analysis of model outputs.

The methodology is most suitable here because it follows the best practice for server-
less architecture and manages the resources very well. Running models on physical servers
and creating a prompt engineering instructable program is out of scope for the scope

3.6 Evaluation Methedology

The research evaluates metrics and key performance indicators to find the effectiveness of
RAG and compare the models responses with respect to compprehensiveness, execution
time and tokens generated.

The techniques used experimental studies with observation on the responses gener-
ated. Simulations numbers are discussed in evaluation part.

4 Design Specification

4.1 Infrastructure Design

The infrastructure diagram in Fig. 2 illustrates an event-driven architecture designed
to ensure resiliency, redundancy, and reliability across the system. Each service is
seamlessly integrated with others through triggers and data streams, enabling efficient
and scalable communication. This design leverages event-driven principles to optimize
the flow of information while minimizing latency and bottlenecks.

4.2 Knowledge Base and Vector Storage

To support the vast amounts of data required for building and improving the know-
ledge base, an OpenSearch Serverless cluster is employed alongside an S3 bucket.
This combination offers a cost-effective solution for managing terabytes of data, ensuring
scalability and flexibility as the dataset dimensions grow over time. The serverless nature
of both services accommodates dynamic scaling demands, providing a robust foundation
for maintaining and querying the vector store.

10



4.3 Compute Power and Logic Execution

The computational logic is distributed across multiple AWS Lambda functions, which
handle the processing tasks and execute SDKs to connect with the AWS Bedrock
service. These Lambda functions are optimized to dynamically allocate compute power,
ensuring efficient execution of tasks while maintaining low operational costs. The modular
design of Lambda functions also facilitates easier maintenance and upgrades as the system
evolves.

4.4 Data Flow and Response Management

The flowchart outlines the end-to-end flow of data and responses at each stage of the
architecture. This includes data ingestion, processing, retrieval, and response genera-
tion, highlighting the interactions between various services and components. The design
ensures that responses are both accurate and contextually relevant, leveraging the know-
ledge base for enhanced insights.

4.5 Key Features

e Event-Driven Integration: Services are interconnected via triggers and data
streams, promoting real-time communication and adaptability to system changes.

e Cost-Effective Scaling: The combination of OpenSearch Serverless and S3 en-
sures scalability without incurring significant operational costs.

e Modular Compute Power: AWS Lambda functions provide a flexible and effi-
cient mechanism to execute logic, making the system resilient and easily extensible.

e Enhanced Knowledge Base: The vector store grows dynamically, improving
response accuracy over time through scalable and efficient data storage.

5 Implementation

Deployment of the event-driven architecture is carried out into multiple stages, from
webhook hitting api gateway to processing it, converting it to prompt. The archiecture
was based on the best practices scenarios from AWS, to ensure the systems remain reliable
and resilient.

5.1 Core Architecture

AWS provides integrated services to connect api gateway, lambda function and dynan-
modb. The architecture utilizes dynanomdb streams to trigger subsequent lambda func-
tiin, enabling a fully event-driven workflow. The integration of bedrock using the boto3
software development kit completes the flow allowing intereations with genai models and
knowledge base. The events dominate the triggering of the lambda functions and its
fully automated. Webhook hits the api gateway which is directly integrated with lambda
function which uses json body to upload the item to dynamodb as put_item operation in
python. Dynamodb streams passes the inserted item to another lambda function which

11
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Figure 4: Infrastructure Design: Built on event driven architectural design to trigger
function on new event, the cycle ends at logging the results into cloudwatch logs

pre-processes the data removes unwanted fields and returns the f strings into a prompt to
different dynamodb table. Similar dynamodb table cannot be used as it would introduce
infinite loop of events.

5.2 Implementing Knowledge Base - Retreive and Generate
APIs

Knowledege base is created via aws bedrock console allowing multiple data sources from
web crawler with default urlstrings and s3 bucket. Adding the s3 bucket ensures that all
the data added further to the s3 bucket will be chunked and parsed using the knowledge
base built in.

5.2.1 Standard Chunking

We have used default chunking which chunks the text in 300 tokens. Chunking provides
the feature to view the sources once the resposne is recorded. Other chunking procedures
are hierarchical and semantic but they are out of scope of this research.

5.3 RetrieveQuery

To query the knowledge base using the GenAl model, specific fields must be included in
the request to ensure proper functionality. These fields include the input, which contains
the query or data to be processed, and the sessionld, which helps maintain the sessions
continuity for consistent interactions.

A retrievalQuery is sent in the request body as part of the query to the knowledge
base along with the knowledgebaselD, which is included as a request parameter. The
knowledgebaselD is critical as it ensure the query is directed to the correct knowledge

12
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base.These components are required and must accompany the promt when interacting
with the knowledge base.

This process occurs through the retrieve API which communicates with the knowledge
base to fetch relevant information. Fig 4 descrives how this interaction works, showing
how the API processes the request and retrieves the necessary data. This setup allows
the GenAl model to leverage the knowledge base effectively, providing accurate and
contextually relevant responses.

5.4 API Gateway Configuration

API Gateway receives webhooks and forwards them to a Lambda function. A resource
must be created with a POST method to integrate Lambda. We are not using any key
based authentication for the api gateway and the api developed is in REST API which
provides better control on validating the body. The body should be validating with the
schema provided in the artifacts with code.

The first lambda function to store the payload to dynamodb requires a put_item
function inbuilt to python library. The second lambda function which pre-processes the
payload and convert it to prompt requires more memory and execution time as many
fields were dropped and only important fields like transactionld, flags, amount, location,
merchantCategory and fraudscore were taken to create the prompt with intstructions to
provide remidiation so these transactions can be further stopped from happening.

The third final lambda function implments the retrieve api to the bedrock knowledge base
and bedrock gen ai models which does all the heavy lifting to udnerstand the prompt and
retreive the context based responses from the provided knowledge base in the opensearch
serverless

5.5 NoSQL and DynamoDB streams

The events are stored in a key:value pair in AWS dynamodb tables which allows fast
nosql queries on the data.

1. The dynamodb uses the put_item operation to receive the json. The database
consisted of three items

2. Tables - Multiple tables were created to keep the events new on every new insert

13



3. Items - The update to the table on every new payload and prompt added by lambda.

4. Atributes - The data inside every item is attributed as attribute. The data consisted
of key:value pairs

5.5.1 DynamoDB Streams

Dynamodb streams play an important role in passing the new event further to another
service like lammbda in our case. The view type should be ”New and Old Image”
which will make sure that the lambda function is trigger with new and old images.

5.6 GenAl Models

The genAl models are developed by the vendors and are added in AWS bedrock which
provides a single API to run the prompt. The models are not generally available with
the access to the IAM yet they need to explicitly enabley Bedrock console. Titan Text
G1 - Premier and Mistral Large (24.02). The models are configured with Randomness,
diversity and length with below configuration and I have kept it default to the bedrock
model configuration only.

e Temperature - 0.7

e Top P - 0.9 ( top p chooses the smallest set of word which is used in nucleus
sampling.

e Response length - 512 ( Maximum no of character )

5.7 IAM and Logging

IAM permissions for Lambda to access Dynamodb table is an important consideration
in implementing the solution. Lambda must be given get_item list_item and put_item
permission on the lambda role to manage the operations.

The responses are recorded in Cloudwatch form both the models. Multiple lambda
functions with alias and version were used with a single log group to centralize the log
collection of the responses from the genAl model.

6 Evaluation

The test evaluation is divided into three major parts, focusing on critical metrics and
qualitative aspects to compare the generative AI model responses. The evaluation frame-
work is designed to provide a comprehensive assessment of the models’ performance under
different scenarios:

6.1 Experimental Setup

The evaluation involved conducting 100 iterations to generate responses, with 48 itera-
tions recorded for detailed analysis. The breakdown of iterations is as follows:
Model Distribution:

1. 24 Iterations for Mistral Al
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Figure 6: Titan Indentical Vs Different Prompt Execution Time
2. 24 Iterations for Amazon Titan

Prompt Variations:

3. 12 Identical Prompts: Half of the iterations used the Identical prompt with con-
sistent flags and transaction details. This setup ensures a controlled environment
to evaluate response consistency and quality for identical scenarios.

4. 12 Unique Prompts: The remaining iterations used entirely distinct prompts, vary-
ing in transaction location, amount, and fraud flags. This tests the models’ adapt-
ability and ability to handle diverse scenarios.

6.2 Execution Time

This aspect measures the efficiency of each generative Al model by recording the time
taken to receive a response after sending a prompt. Execution time is a crucial metric
for determining the practicality of using these models in real-time applications. The test
focuses on:

Average Latency: Time taken from prompt submission to receiving the response.
Variability Across Iterations: Consistency in response times, particularly for high-complexity
prompts. Model Comparison: Direct comparison of execution times between Amazon Ti-
tan and Mistral Al under identical conditions.

6.3 Cost Analysis

This aspect evaluates the cost-effectiveness of the models, considering the pricing struc-
ture based on input and output tokens. The evaluation excludes the knowledge base, as it
utilizes a vector database that charges uniformly for all requests. Specific considerations
include:

e Token Costs: Analysis of input (prompt) and output (response) tokens to calcu-
late the cost per request.

e Cost Efficiency: Comparison of the cost incurred for similar tasks on both models.

e Cost-Performance Tradeoff: Balancing execution costs against response quality
and comprehensiveness.
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Figure 7: Titan Vs Mistral - Overlapped bar graph demonstrating the token generated
on Titan and Mistral with Identical and Different prompts for 12 iterations each case

6.4 Response Differentiation

This aspect focuses on the models’ ability to differentiate and provide comprehensive
analyses of fraudulent transactions. Key criteria for evaluation include:

Number of Flags Identified: The extent to which each model identifies fraud
indicators, such as mismatched billing and shipping addresses, high-risk categories, or
suspicious IP addresses. Preventive Measures: The quality and relevance of the sug-
gested strategies for mitigating similar fraud in the future. Cosine Similarity: Se-
mantic similarity between responses when addressing similar prompts, providing insight
into consistency. Suggestions for Future: The clarity and actionable nature of forward-
looking recommendations. Readability Score: Assessing the ease of understanding the
response, using standard readability metrics.

6.5 Token Generation

Tokens are an important part of evaluation as these models are capable to consume 32k
tokens in a single prompt but the output can vary depending upon the prompt and the
context from the knowledge base. The more tokens it generates with more information
from the knowledge base, can be used further to mitigate and anlyse the fraud transcations
better

6.6 Experiment 1 / Similar prompt to GenAl

e Titan Model: The similar prompts when ran through titan model showed very
stable results keeping the average to 8121.86 ms for all the 12 prompts ran.
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Aspect

Titan Response

Mistral Response

Number of Flags

Lists 6 flags with detailed
explanations.

Lists 6 flags, but provides
less detail for each.

Preventive Measures

Offers 6 detailed meas-
ures with actionable steps
(e.g., monitoring systems,
address verification).

Provides 5 preventive meas-
ures, summarized (e.g.,
mentions “xFraud” tools
without detailed specifics).

Cosine Similarity of

RAG

0.85 (shared context)

0.85 (shared context)

Suggestions for Future

Specific and actionable re-
commendations tailored to
the transaction scenario.

General suggestions,
without tailoring to the
specific transaction context.

Readability Score

“50 (Moderate)

“70 (Easier)

Table 1: Comparison of Titan and Mistral Responses based on Flags, cosine similarity.
The responses are generated from multiple public LLM models like Chatgpt, Gemini and
Azure Copilot
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Figure 8: Experiment 1: Comparison of execution times for the Identical prompt across
Titan and Mistral models. The results indicate greater stability in Titan’s performance,
while Mistral exhibits notable variability in execution times.

e Mistral Model: For the mistral Al an average of 7570.68 ms was seen which makes
mistral model more efficient but but the amount of variations in the response were
not stable

6.7 Experiment 2 / Different prompt to GenAl

The second iteration as seen in Fig 5 and Fig 8 of tests were performed 12 times for
each models with different prompts provided with variable flags, amount, location and
customer information. The results indicate dynamic responses from Titan and very stable
responses from Mistral. This shows clearly that Titan model learns overtime and get new
information from knowledge base while Mistral runs the similar algorithm of NLP and
BERT to gather responses.

6.8 Experiment 3 / Analyzing Responses using LLM

The evaluation metrics/aspects for the response generated from both the models were
compared on multiple LLM models which is ChatGPT 4, Gemini and Azure Copilot.
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Figure 9: Experiment 2: Comparison of execution times for the different prompt across
Titan and Mistral models. The results indicate variable results in Titan which is good
but stability in Mistral’s performance. Thus, mistral gave similar responses for most of
the prompts.

Each genai model were given 20 different prompt’s responses to find out the number
of flags which came as an average of 6 flags for both the models.

1. For Preventive measures, titan responded with more actionable steps as compared
with Mistral AI. Measures like monitoring systems and address verification were
clearly visible while in Mistral the context from RAG was not scene

2. Cosine similarity which is an overlap of words came nearly similar for both the
models.

3. Readability score for titan was moderate with 50 and for mistral it was 70 with an
ease of reading and understanding the analyses.

6.9 Discussion

Upon looking into the results of execution time, Titan models are more quicker to provide
the responses with context to the retrievals from vector database as in comparison with
the Mistral AI. For Identical and different prompts provided to Titan, the results varied
over prompts, this provides insights that the model is continuously improving with the
vector database and trying to give more details.

On the other hand, mistral Al execution time for different prompts coming very similar
but the Identical prompts are its varying heavily thus uncertainty in the model is seen.

The findings from the experiments highlight several important insights into the per-
formance and usability of the Amazon Titan and Mistral AI models in analyzing fraudu-
lent transactions using Retrieval-Augmented Generation (RAG). While the experiments
provide a strong foundation for comparing these models, there are areas of improvement
and limitations in the design that warrant further discussion.

Strengths of the Study Comprehensive Metrics Evaluation: The experiments evalu-
ated the models on critical metrics such as execution time, token generation, comprehens-
iveness of responses, and cost. This multidimensional analysis provided a well-rounded
understanding of their performance.

Integration with RAG: By leveraging RAG, the study demonstrated how integrating
a knowledge base can enhance the contextual accuracy of model outputs, particularly for
domain-specific tasks like fraud analysis and text summarization. Titan’s superior ability
to retrieve and incorporate relevant information validated the efficacy of this approach.

18



Cost Analysis: The cost evaluation highlighted the practical implications of deploying
these models at scale. The findings clearly showed that Titan is more cost-efficient,
especially for input and output token generation, making it a preferred choice for user
and systems applications.

7 Conclusion and Future Work

Generative Al (GenAl) models have proven effective, yet they often struggle with domain-
specific knowledge. The research is implmenting Retrieval Augmented Generation ( RAG)
has significantly enhanced these models by enabling them to retrieve relevant context from
a knowledge base, improving their accuracy and utility in specialized applications.

In this study, we compared Amazon Titan and Mistral Al across several critical
factors, including execution time, token efficiency, cost, and the comprehensiveness of
their responses. Amazon Titan consistently outperformed Mistral Al, delivering more
accurate and contextually relevant responses at a lower cost. Its ability to provide de-
tailed and actionable insights makes it particularly suited for fraud mitigation and other
high-stakes applications.

The scope of this analysis can be expanded to include additional domains and indus-
tries. While these models are pre-trained, future work could explore fine-tuning them
further using AWS Bedrock’s fine-tuning tools and larger datasets. While this would
increase research costs, the potential improvements in performance and accuracy would
make it a worthwhile endeavor.

Moreover, as AWS Bedrock continues to recognize and integrate new models monthly,
future comparisons could include these emerging options. Introducing advanced evalu-
ation metrics, particularly focused on the integration and performance with knowledge
bases, would provide a more robust framework for assessing these models.
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