~

"'—-
\ National
College

Ireland

Configuration Manual

MSc Research Project
Msc in Cloud Computing

Praneeth Raghava Vadrevu
Student ID: 23211946

School of Computing
National College of Ireland

Supervisor: Aqeel Kazmi

National College of Ireland National

Project Submission Sheet Col]ege of
School of Computing Ireland
Student Name: Praneeth Raghava Vadrevu
Student ID: 23211946
Programme: Msc in Cloud Computing
Year: 2024
Module: MSc Research Project
Supervisor: Aqeel Kazmi
Submission Due Date: 12/12/2024
Project Title: Configuration Manual
Word Count: XXX
Page Count: B

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature:

Date: 12th December 2024

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). O

Attach a Moodle submission receipt of the online project submission, to | [J
each project (including multiple copies).
You must ensure that you retain a HARD COPY of the project, both for | O
your own reference and in case a project is lost or mislaid. It is not sufficient to keep
a copy on computer.

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only
Signature:

Date:
Penalty Applied (if applicable):

Configuration Manual

Praneeth Raghava Vadrevu
23211946

1 Introduction

This document elaborates the tools, technologies and frameworks used for the imple-
mentation of the project. It also describes the steps carried out in the implementation
of the research project, “A Scalable Blockchain Framework for Access Control in Cloud
Environments”.

2 System Configuration

2.1 Software Specification

e Visual Studio Code installed on a systems operating on MacOS.

e Installed node to further install Vite(React), Express and Hardhat frameworks for
interface design, smart contracts and server development and testing. Aws

e Additionally k6 a load testing tool along with PostMan an API testing software
were installed.

e Added MetaMask as a browser extension which is a Web 3.0 wallet for handling
tokens.

2.2 Hardware Specification
e MacBook Air M2, 256GB SSD, 8GB Ram

2.3 Steps to run the framework
2.3.1 Rpc Provider

Need to setup a project on Alchemy which is an Rpc Provider to get the API key as
depcited on [I} [Alchemy] (n.d.)

2.3.2 Local Network

e Deploying the Smart Contract: Open the file”WhisperNet” from code artefacts
on VSC similar to 2| . Navigate to hardhat using ”cd hardhat” command. [Solidity
(n.d.)

Run "npx hardhat compile” to compile the smart contract, refer to

WhisperNet VDEs-KA3VkxppSyQsTaeYs .. (@ Copy

setup

Integrate your app

Chain Network URL

© Folygen zievm . galchemy.comv2/VD TaY8SmKTORWLY @ copy
NNNNNN

© wai
Method

eth_getBlockByNumber - g

guage

Js Javascript

der .getBlock (blockNunber) ;
ethersjs . console. log(block) ;
P

Figure 1: Alchemy.

To run the node server "npx hardhat node” and open a new terminal as depicted
in [4

Now run "npx hardhat run —network localhost scripts/deploy.cjs” to deploy the
smart contract on local (Bl

"npx hardhat test” runs the test files, refer to [6] and

e Express Server: To use the express server, the smart contract has to be deployed
to a blockchain, in this case polygonZKEVM. [Express| (n.d.|)
Run "npm install” to install all the dependencies.

First step is to add the private address of your web 3.0 wallet to the .env file next
to PRIVATE_ADDRESS = 7”. MetaMask] (n.d.)

Then run "npx hardhat run —network polygonZk scripts/deploy.cjs” which will de-
ploy the smart contract, make sure there are enough tokens on the polygonZKEvm
network like in [0l

A successful deployment will print the contract address in the terminal, which needs
to be used in the .env next to CONTRACT_ADDRESS="".

Now run "node index.cjs” command to start the express/node server.
The API end points can be tested using PostMan ex:login, register. Refer to
and [Postman (n.d.|)
e React: Navigate to client folder using terminal ”cd client”.
Run "npm install” to install all the dependencies. Vite (n.d.)

In the .env file of client, change the END_POINT to the ideal port where express
server is up and running. The client will make API calls using this.

With everything ready run the vite server using command "npm run dev” and upon
running the url you will see something like
3 Running Tests

To perform the required tasks, first of all, install k6 from its official website — k6. io
k6| (n.d.) and create a JavaScript test. The script in this case uses the “http” module

client
~ hardhat

~ contracts

|_ock.sol

StringUtils.sol

UserRegistry.sol

> ignition

v SCripts
J5 deploy.cjs

> test

gitignore
J5 hardhat.config.cjs
J5 index.cjs
{} package-lock.json
{} package.json
README.md

Figure 2: Folder Structure.

praneethraghav@Praneeths-MacBook-Air hardhat % npx hardhat compile

Compiled 1 Solidity file successfully (evm target: paris).

Figure 3: Hardhat Compile.

to issue HTTP requests and the “check” function to verify the responses. Virtual users
or VUs can be configured with load test options, which include defining the stages of
loading, ramping up, sustaining and ramping down of the VUs. For instance, you can
mimic that the users are growing over 30 seconds, remain the same for one minute and

praneethraghav@Pran ths—HacBook—Alr ha dhat % npx ha hat node
Started HTTP and We <et JSON-RPC s http: 27

Accounts

WARNING: These accounts, and their private keys, are publicly known.
Any funds sent to them on Mainnet or any other live network WILL BE LOST.

Account #0: 0xf39Fd6e5laad88F6F4ce6aBB827279cffFb92266 (10000 ETH)
Private Key: BxacB974bec39al7e3bbadabbdd238TT944bacb478cbedSefcae784d7bf4f21 180

Account #1: @x70997970C51812dc3AR10C7d01b50e0d17dc79C8 (10000 ETH)
Private Key: 0x59c6995e998797a5a0044966T0945389dc9e86dac88c7aB412T4603b6b78690d

Account #2: @x3C44CdDdB6a900fa2b585dd299e03d12FA4293BC (10000 ETH)
Private Key: @x5ded4lllafaladb94908183103eblf1706367c2eb8ca87dfc3th9a8ddcdab3b5a

Account #3: Bx90F79bf6EB2c4f870365E785982E11101E93b906 (106008 ETH)
Private Key: Bx7c852118294e51e653712a81e058001419141751be581605c371e15141bBO7ab

Account #4: @x15d34AAf54267DB7D7c367839AAT71A00a2C6A65 (10000 ETH)
Private Key: 0x47el79ec197488593b187180a00ebfda91f1b9dObl378733639119c30a34926a

Account #5: Bx9965507D1a55bcC2695C58bal6FB37d819B0A4dc (10000 ETH)
Private Key: 0x8b3a358cf5c34c9194ca85829a2dfBec3153bed318b5e2d3348e872092edfba

Figure 4: Hardhat Node.

praneethraghav@Praneeths-MacBook-Air hardhat % npx hardhat run scripts/deploy.cjs ——network localhost

Current Gas Price: 1.875 gwei
Deployment began..
UserRegistry deployed to: Bx5FbDB2315678afecb3671032d93F642164180aa3

Figure 5: Hardhat Deploy.

then reduce. Performance goals can be established in the form of thresholds to ensure
that certain performance standards are met regarding such factors as response time for
instance, response time for 95% of the requests should not be more than 2 seconds. To
start the test, execute the command k6 run in the terminal and monitor the performance
of the the system production-ready in configurations real-time include and the get ability
the to results tear for down request resources duration during and teardown failure such
rate as among the others. use Some of of teardown() or integrating with tools like Grafana
for monitoring.

References

Alchemy (n.d.). Alchemy - Blockchain Development Platform, https://www.alchemy.
com/l Accessed: 2024-12-12.

Express (n.d.). Express - Fast, unopinionated, minimalist web framework for Node.js,
https://expressjs.com/. Accessed: 2024-12-12.

k6 (n.d.). k6 Load Testing Tool, https://k6.1i0/. Accessed: 2024-12-12.
MetaMask (n.d.). MetaMask, https://metamask.io/. Accessed: 2024-12-12.

Postman (n.d.). Postman - The Collaboration Platform for API Development, https:
//www.postman.com/. Accessed: 2024-12-12.

https://www.alchemy.com/
https://www.alchemy.com/
https://expressjs.com/
https://k6.io/
https://metamask.io/
https://www.postman.com/
https://www.postman.com/

it("should log in the user with correct credentials and listen for events", async function () {

const emailHash = ethers.keccak256(ethers.tolUtf8Bytes (" raghav@gmail.com"));
const passwordHash = ethers.keccak256(ethers.tolUtf8Bytes("12345"));

const nonce = await contract.getNonce(emailHash);
console.log("Retrieved nonce:", nonce.toString());

let eventEmitted = f

contract.on("UserLoggedIn" loggedEmailHash, newNonce, loggedUserIdHash
console.log("UserLog event triggered:", {
emailHash: loggedEmailHash
newNonce: newNonce.toString
userIdHash: loggedUserIdHash
B

expect({loggedEmailHash). to.equal (emailHash);
expect{newNonce.toString()}.to.equal((BigInt(nonce) + BigInt(1)).toString(});
expect(loggedUserIdHash).to.equal (userIdHash);

eventEmitted = tru

awalt contract.connect(userl).login{emailHash, passwordHash, nonce);

await new Promise((resolve) == setTimeout(resolve, 1@08));
expect(eventEmitted).to.be.true;

const userDetails = await contract.getUser(userIdHash);
console. log("Last login time:", userDetails.lastlLogin.toString());
expect(userDetails.lastLogin).to.be.gt(@);

Figure 6: Login test.

praneethraghav@Praneeths—-MacBook-Air hardhat % npx hardhat test

UserRegistryOptimized - Login

v

User Exists: Result(2) [true, true |
["1, '1']
Email to User IDs: Result

Figure 7: Test Result.

praneethraghav@Praneeths-MacBook-Air hardhat % npx hardhat run scripts/deploy.cjs ——network polygonZK

Current Gas Price: 0.257 gwei

Deployment began....
UserRegistry deployed to: 0x84B8207ef94794D126745%ech313bc5646840aAB

Figure 8: Deploying to Polygon.

{ monke_man

Ox58E2d..40447 g

0.0023ETH

$8.91USD

Portfolio

Tokens

Dec 11, 2024

Contract i... -0ETH
-$0.00 USD

Approve U...

Figure 9: MetaMask.

Solidity (n.d.). Solidity Documentation, https://soliditylang.org/. Accessed: 2024-
12-12.

Vite (n.d.). Vite - Next Generation Frontend Tooling, https://vitejs.dev/. Accessed:

6

https://soliditylang.org/
https://vitejs.dev/

none KWW - UK ed @ raw binary

Figure 10: PostMan.

WhisperNet

Figure 11: Login.

2024-12-12.

import http from 'k&/http';
import { check, sleep } from 'k6';
import { Counter } from 'k6/metrics';

export const options =
stages: |
duration: '3@s', target: 1@ },
duration: 'lm', target: 10 },
duration: '3@s', target: 0 },
] r
thresholds:
http_req_duration: ['p(95)<2000'],
'http_req_failed{scenario:default}': ['rate<@.@1'

const BASE URL = 'http://localhost:3000°';
const loginEndpoint = '/login';

const email = 'testuser@example.com';
const password = 'testpasswordl23';

const failureCount = new Counter('failed_requests');

®port default function {) {
const payload = JSUN.StringiTy[l
email: email
assword: password

const params = {
headers:
'Content-Type': 'application/json'

const res = http.post(${BASE_URL loginEndpoint}®, payload

checks = check(res
'is status 20@': (r) => r.status === 200
'is success true': (r) => JSON.parse(r.body).success
'response time < 1s': (r) => r.timings.duration < 1000

Figure 12: K6.

params) ;

	Introduction
	System Configuration
	Software Specification
	Hardware Specification
	Steps to run the framework
	Rpc Provider
	Local Network

	Running Tests

