
Configuration Manual

MSc Research Project

Msc in Cloud Computing

Praneeth Raghava Vadrevu
Student ID: 23211946

School of Computing

National College of Ireland

Supervisor: Aqeel Kazmi

www.ncirl.ie



National College of Ireland
Project Submission Sheet

School of Computing

Student Name: Praneeth Raghava Vadrevu

Student ID: 23211946

Programme: Msc in Cloud Computing

Year: 2024

Module: MSc Research Project

Supervisor: Aqeel Kazmi

Submission Due Date: 12/12/2024

Project Title: Configuration Manual

Word Count: XXX

Page Count: 8

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature:

Date: 12th December 2024

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). □
Attach a Moodle submission receipt of the online project submission, to
each project (including multiple copies).

□

You must ensure that you retain a HARD COPY of the project, both for
your own reference and in case a project is lost or mislaid. It is not sufficient to keep
a copy on computer.

□

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):



Configuration Manual

Praneeth Raghava Vadrevu
23211946

1 Introduction

This document elaborates the tools, technologies and frameworks used for the imple-
mentation of the project. It also describes the steps carried out in the implementation
of the research project, “A Scalable Blockchain Framework for Access Control in Cloud
Environments”.

2 System Configuration

2.1 Software Specification

• Visual Studio Code installed on a systems operating on MacOS.

• Installed node to further install Vite(React), Express and Hardhat frameworks for
interface design, smart contracts and server development and testing. Aws

• Additionally k6 a load testing tool along with PostMan an API testing software
were installed.

• Added MetaMask as a browser extension which is a Web 3.0 wallet for handling
tokens.

2.2 Hardware Specification

• MacBook Air M2, 256GB SSD, 8GB Ram

2.3 Steps to run the framework

2.3.1 Rpc Provider

Need to setup a project on Alchemy which is an Rpc Provider to get the API key as
depcited on 1. Alchemy (n.d.)

2.3.2 Local Network

• Deploying the Smart Contract: Open the file ”WhisperNet” from code artefacts
on VSC similar to 2 . Navigate to hardhat using ”cd hardhat” command. Solidity
(n.d.)

Run ”npx hardhat compile” to compile the smart contract, refer to 3.

1



Figure 1: Alchemy.

To run the node server ”npx hardhat node” and open a new terminal as depicted
in 4.

Now run ”npx hardhat run –network localhost scripts/deploy.cjs” to deploy the
smart contract on local 5.

”npx hardhat test” runs the test files, refer to 6 and 7.

• Express Server: To use the express server, the smart contract has to be deployed
to a blockchain, in this case polygonZKEVM. Express (n.d.)

Run ”npm install” to install all the dependencies.

First step is to add the private address of your web 3.0 wallet to the .env file next
to PRIVATE ADDRESS = ””. MetaMask (n.d.)

Then run ”npx hardhat run –network polygonZk scripts/deploy.cjs” which will de-
ploy the smart contract, make sure there are enough tokens on the polygonZKEvm
network like in 9.

A successful deployment will print the contract address in the terminal, which needs
to be used in the .env next to CONTRACT ADDRESS=””.

Now run ”node index.cjs” command to start the express/node server.

The API end points can be tested using PostMan ex:login, register. Refer to 10
and Postman (n.d.)

• React: Navigate to client folder using terminal ”cd client”.

Run ”npm install” to install all the dependencies. Vite (n.d.)

In the .env file of client, change the END POINT to the ideal port where express
server is up and running. The client will make API calls using this.

With everything ready run the vite server using command ”npm run dev” and upon
running the url you will see something like 11.

3 Running Tests

To perform the required tasks, first of all, install k6 from its official website – k6. io
k6 (n.d.) and create a JavaScript test. The script in this case uses the “http” module

2



Figure 2: Folder Structure.

Figure 3: Hardhat Compile.

to issue HTTP requests and the “check” function to verify the responses. Virtual users
or VUs can be configured with load test options, which include defining the stages of
loading, ramping up, sustaining and ramping down of the VUs. For instance, you can
mimic that the users are growing over 30 seconds, remain the same for one minute and

3



Figure 4: Hardhat Node.

Figure 5: Hardhat Deploy.

then reduce. Performance goals can be established in the form of thresholds to ensure
that certain performance standards are met regarding such factors as response time for
instance, response time for 95% of the requests should not be more than 2 seconds. To
start the test, execute the command k6 run in the terminal and monitor the performance
of the the system production-ready in configurations real-time include and the get ability
the to results tear for down request resources duration during and teardown failure such
rate as among the others. use Some of of teardown() or integrating with tools like Grafana
for monitoring.

References

Alchemy (n.d.). Alchemy - Blockchain Development Platform, https://www.alchemy.
com/. Accessed: 2024-12-12.

Express (n.d.). Express - Fast, unopinionated, minimalist web framework for Node.js,
https://expressjs.com/. Accessed: 2024-12-12.

k6 (n.d.). k6 Load Testing Tool, https://k6.io/. Accessed: 2024-12-12.

MetaMask (n.d.). MetaMask, https://metamask.io/. Accessed: 2024-12-12.

Postman (n.d.). Postman - The Collaboration Platform for API Development, https:
//www.postman.com/. Accessed: 2024-12-12.

4

https://www.alchemy.com/
https://www.alchemy.com/
https://expressjs.com/
https://k6.io/
https://metamask.io/
https://www.postman.com/
https://www.postman.com/


Figure 6: Login test.

Figure 7: Test Result.

Figure 8: Deploying to Polygon.

5



Figure 9: MetaMask.

Solidity (n.d.). Solidity Documentation, https://soliditylang.org/. Accessed: 2024-
12-12.

Vite (n.d.). Vite - Next Generation Frontend Tooling, https://vitejs.dev/. Accessed:

6

https://soliditylang.org/
https://vitejs.dev/


Figure 10: PostMan.

Figure 11: Login.

2024-12-12.

7



Figure 12: K6.

8


	Introduction
	System Configuration
	Software Specification
	Hardware Specification
	Steps to run the framework
	Rpc Provider
	Local Network


	Running Tests

