
Leveraging Intrusion Detection System:
Based on Fog-to-Cloud Computing

MSc Research Project

Research in Computing CA2

Mayuri Umrikar
Student ID: 22151630

School of Computing

National College of Ireland

Supervisor: Sean Heeney

www.ncirl.ie



National College of Ireland
Project Submission Sheet

School of Computing

Student Name: Mayuri Umrikar

Student ID: 22151630

Programme: Research in Computing CA2

Year: 2024

Module: MSc Research Project

Supervisor: Sean Heeney

Submission Due Date: 12/12/2024

Project Title: Leveraging Intrusion Detection System: Based on Fog-to-
Cloud Computing

Word Count: 8152

Page Count: 21

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature: Mayuri Umrikar

Date: 24th January 2025

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). □
Attach a Moodle submission receipt of the online project submission, to
each project (including multiple copies).

□

You must ensure that you retain a HARD COPY of the project, both for
your own reference and in case a project is lost or mislaid. It is not sufficient to keep
a copy on computer.

□

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):



Leveraging Intrusion Detection System: Based on
Fog-to-Cloud Computing

Mayuri Umrikar
22151630

Abstract

This paper outlines a rule-based Intrusion Detection System designed and de-
ployed on a Fog-to-Cloud computing architecture for network security enhance-
ment. It uses the UNSW-NB15 dataset to classify the network traffic as either
benign or malicious based on the predefined heuristics. Analysis of source and
destination byte counts, protocol type, and duration are considered in order to de-
tect the threats like data exfiltration, ping floods, and worm attacks. The IDS is
implemented as a serverless application through AWS Lambda, which allows the
cost-efficient, scalable, and real-time processing of network data. AWS API Gate-
way simplifies interaction with external systems by providing a REST API endpoint
for processing traffic data. There were some issues with CORS since API Gateway
and Lambda are configured to handle preflight requests with proper headers. This
system acts as a base for implementing the principles of Fog-to-Cloud computing
where data is preprocessed at the local level at the fog nodes before the critical
insights are forwarded to the cloud for further analysis. The project proves the
feasibility of intrusion detection through serverless architecture as it is lightweight,
flexible, and scalable. The next step is the integration of machine learning models
to provide improved accuracy and live monitoring of streams of traffic in real-time
against the evolving cyber threats.

1 Introduction

IDS has become a critical component of network security to combat the increasing wave
of cyber threats against modern interconnected systems. The increasing number of IoT
devices, cloud services, and high-speed networks have resulted in a significant demand for
robust and scalable IDS solutions. Traditional IDS techniques rely on centralized data
processing, which is a source of difficulties in meeting the real-time demands of modern
networks. A key problem with such centralized data processing is latency and compu-
tational overhead. Machine learning-based IDS holds much promise but consumes high
computational resources, which can be a significant hurdle. Moreover, the emergence of
new threats cannot easily be adapted to in real-time, which has motivated further ex-
ploration of alternative frameworks by researchers and practitioners. Fog-to-Cloud com-
puting is one such paradigm that offers a potential to enhance IDS by distributing data
processing tasks between fog nodes at the network edge and centralized cloud infrastruc-
ture. Hybrid approach for intrusion detection results from the combination of locality
of localized processing with computation power of cloud services. This paper explores
implementing a rule-based IDS within this paradigm, leveraging the cost-effectiveness

1



and scalability of serverless cloud technologies to create an efficient, real-time intrusion
detection framework.

1.1 Research Problem

This paper tries to answer the research problem resulting from the limitation of traditional
as well as ML-based IDS when addressing modern demands for handling their necessities.
Traditional IDS typically employs a centralized architecture and results in bottlenecks
along with latency, making it not feasible for real-time applications. Moreover, in the case
of machine learning approaches, although they detect complex patterns, they do need to
be continuously updated and are computationally costly. In contrast, a rule-based IDS
relies on predefined heuristics to identify specific types of intrusions and thus provides
a lightweight and computationally efficient alternative. Even though the rule-based IDS
was traditionally implemented in on-premises or cloud-only environments, the integration
into a Fog-to-Cloud framework is not yet explored. This research aims to bridge this gap
by showing how predefined rules can be effectively used to detect threats such as data
exfiltration, ping floods, and long-duration attacks in a Fog-to-Cloud setting.

1.2 Motivation

The motivation for this research is because of the increasing complexity and scale of
cyber threats, and the critical need for efficient and scalable IDS solutions. The expo-
nential growth of IoT devices and edge computing has caused network traffic to grow
exponentially, which calls for faster and more localized intrusion detection mechanisms.
Fog computing allows data to be processed closer to its source, reducing latency and
allowing for quicker responses to potential threats. However, without the computational
depth and scalability provided by the cloud, fog nodes alone may not be enough. To cre-
ate a balanced system that integrates the strengths of both paradigms, this research uses
Fog-to-Cloud computing. In addition to simplicity, interpretability, and reduced reliance
on large datasets and complex algorithms, using a rule-based IDS in this context provides
other benefits. The approach matches the requirement of the industry for practical and
cost-effective solutions for moving ahead with emerging security challenges.

1.3 Research Question

How can a rule-based Intrusion Detection System (IDS) be effectively imple-
mented in a Fog-to-Cloud computing environment to achieve scalable, real-
time, and efficient threat detection?

1.4 Research Objective

The primary objective of this research is to design, develop, and deploy a rule-based IDS
that leverages the Fog-to-Cloud computing paradigm. Specifically, the study aims to:

Investigate the feasibility of using predefined heuristics for detecting common cyber
threats, such as data exfiltration, ping floods, and worm attacks.

Implement a cost-effective and scalable IDS solution using serverless cloud technolo-
gies such as AWS Lambda and API Gateway.

2



Evaluate the system’s performance in terms of scalability, latency, and detection ac-
curacy using the UNSW-NB15 dataset.

Address technical challenges such as Cross-Origin Resource Sharing (CORS) and in-
tegration between fog and cloud components.

2 Related Work

2.1 Introduction

IDS plays a critical role in protecting modern computing environments against numer-
ous security threats. With the intensity and volume of cyberattacks on the rise, an
efficient and effective IDS system becomes more critical than ever. The development of
cloud computing and the concept of fog computing have also affected IDS design and
implementation. They can be used to create various new paradigms for distribution
and scalability in security. This literature review explores advancements in IDS in the
context of fog-to-cloud computing, which takes into account different methodologies and
techniques and their effectiveness in countering security threats.

2.2 Intrusion Detection Systems

The basic idea for IDS was first proposed by Denning (5), who presented a single model
of detection of unauthorized access to computer-based systems. Since then, such systems
have developed into one of the most sophisticated systems developed to identify and
respond to a wide-ranging security breach. Debar et al. (4) presented a detailed categor-
ization of IDS, where grouping was based on detection mechanism, deployment approach,
and analysis method. These can further be divided into signature-based, anomaly-based,
and hybrid methodologies. Signature-based IDS works through predefined patterns to
detect already-known threats, whereas anomaly-based IDS identifies anomalies from a
pattern and thus helps in detecting newly introduced attacks (14).

Besharati et al. (3) developed LR-HIDS, logistic regression based host-based intrusion
detection in cloud environments. The solution is a representative example reflecting the
flexibility of IDS techniques in different paradigms of computing while pointing at the
necessity to introduce tailor-made answers for various scenarios of infrastructure. On
a side note, Mukherjee et al. describe network intrusion detection (15) pointing the
requirement toward monitoring network traffic while noticing the occurrence of malicious
actions.

2.3 Cloud Computing and IDS

This innovation through cloud computing has revolutionized the way data and applica-
tions are managed, providing a scalable and flexible resource but created new security
challenges, meaning that advanced IDS solutions would have to be developed. (8) pro-
posed a cloud-based approach for data security in the Internet of Things. Their concern
was the integration of IDS as means of monitoring and protecting flows in the cloud
environment. Scalability of cloud resources allows for the use of large-volume IDSs that
increase the efficiency and effectiveness of real-time threats.

3



Innab et al. (7) discussed several mechanisms of IDS in cloud computing, which em-
phasized techniques and opportunities that make use of the infrastructure of the cloud
to enhance security. Their summary highlights the possibility of utilizing cloud-based
IDS for better monitoring and response. More recently, Sreeramulu et al. (16) dis-
cussed network intrusion detection in a cloud computing environment, putting emphasis
on the scalable and adaptive nature of the IDS required to respond dynamically to threat
changes.

Velliangiri and Premalatha (18) investigated methods for the detection of DDoS at-
tacks in cloud settings, providing techniques for accurate identification and mitigation of
DDoS attacks. In so doing, their work demonstrates the value that is placed on IDS to be
useful against volumetric attacks to protect and ensure the availability and dependability
of cloud services.

2.4 Fog Computing and IDS

Fog computing takes cloud capabilities closer to the edge of the network. It allows for
low-latency, location-aware services. Its proximity to data sources makes it an excellent
platform to deploy IDS in real time for detecting and responding to threats. Diro and
Chilamkurti (6) employed LSTM networks to detect attacks in fog-to-things communica-
tions. It demonstrated that deep learning techniques can identify complex attack patterns
at the network edge.

• Khater et al. (9) assess the classifier’s performance in a lightweight IDS based on
fog computing to balance computational efficiency with the detection accuracy. The
bottom line of the paper presents the concept of the optimization of the algorithm of
the IDS for proper workability under constrained resources that are quite common
for nodes within a fog network.

• Zwayed et al. (20) presented an exhaustive review of IDS in fog computing, covering
paradigm-specific challenges and opportunities. Their analysis embraces various
techniques of detection, different deployment strategies, and even integration of fog
and cloud resources for a general security posture.

2.5 Fog-to-Cloud Integrated IDS

• The integration of fog and cloud computing paradigms offers a synergistic approach
to IDS deployment that combines low-latency benefits of fog computing with scal-
able resources of the cloud. Abusitta et al. (1) proposed a multi-cloud cooperative
intrusion detection system that ensures trust and fairness among different cloud pro-
viders. Such an approach underscores the importance of cooperative mechanisms
toward improving the strength and integrity of IDS in distributed environments.

• Alghamdi and Bellaiche (2) proposed an ensemble deep learning-based IDS for IoT
using Lambda architecture, that integrates fog and cloud resources in a seamless
manner. The technique takes the quality of both computing paradigms to provide
well timed intrusion detection with excessive accuracy, thereby showing the vi-
ability of hybrid architectures in addressing security demanding situations of this
complexity.

4



• Li and Mohammadnezhad (11) were concerned with improving IDS for the indus-
trial Internet of Things (IIoT) by integrating deep learning capabilities with fog
computing. This work presents the advanced analytical technique and distributed
processing needed to improve the detection and mitigation of such attacks in in-
dustrial contexts.

• Maheswari et al. (13) proposed an efficient cluster-based IDS for protection against
attacks in web and cloud computing environments. The clustering approach by
Maheswari et al., (13) allows the realization of efficient data processing and the
identification of threats, which further fortifies structured methodologies in optim-
izing the operation of IDS within integrated Fog-to-Cloud frameworks.

2.6 Machine Learning and Deep Learning in IDS

• The use of ML and DL in IDS has advanced the field greatly by making the field
more accurate and adaptive for detecting threats. Mahmood and Hu (14) did a re-
view of network anomaly detection techniques, focusing on the transformative role
ML and DL play in augmenting the capabilities of IDS. Their survey reviews dif-
ferent algorithms including supervised, unsupervised and semi-supervised learning
which all contribute to different aspects of intrusion detection.

• Tawfik (17) studied the optimized intrusion detection in IoT and fog computing by
employing ensemble learning and advanced feature selection. Ensemble techniques
enhance the accuracy and robustness of various learning models that are integ-
rated into them, and feature selection techniques further enhance the efficiency and
effectiveness of IDS by focusing on data attributes relevant to the attack.

• Diro and Chilamkurti (6) illustrated the application of LSTM networks in fog com-
puting environments to reveal how recurrent neural networks can identify anomalous
patterns that may reflect security threats by capturing temporal dependencies in
network traffic. This application, therefore, underscores the adaptability of deep
learning models in evolving IDS applications.

2.7 Datasets and Evaluation Metrics

Commonly, the effectiveness of IDS solutions is evaluated through benchmark datasets.
Such datasets simulate real-world network traffic and different types of attacks. The cur-
rent project employs the UNSW-NB15 dataset, which encompasses an extensive range
of attack types and normal traffic as the basis for training and testing an IDS model
(7). The choice of a correct dataset and assessment metrics must be appropriate to make
certain powerful evaluation of the performance and generalizability of an IDS answer.

(10) surveyed intrusion detection structures, mentioned various datasets, together
with UNSW-NB15, and their appropriateness to one of a kind kinds of IDS assessment.
Their evaluation makes a speciality of the want for various and representative datasets
in growing IDS that can manage successfully a extensive range of security threats.

5



2.8 Challenges and Future Directions

While significant progress has been made in recent years, there are still quite a few
challenges associated with developing and deploying IDS within fog-to-cloud computing
environments. Scalability, real-time processing, and resource constraints at the level of
fog is one of the most crucial issues concerning scaling up IDS solutions. In addition, the
fact that fog and cloud infrastructures are dynamic and heterogeneous calls for highly
adaptive and resilient IDS. Research guidelines for the future include mixed techniques
of advanced ML and DL techniques to beautify the predictive abilties of IDS, enhance
light-weight algorithms that are to be used on useful resource-restrained fog nodes, as
well as the status quo about standardized frameworks for fog-to-cloud IDS deployment.
Moreover, the incorporation of trust and fairness mechanisms, as discussed by Abusitta
et al. (1), will be essential in multi-cloud environments to ensure the reliability and
integrity of intrusion detection processes.

2.9 Critical Analysis

The reviewed literature highlights significant progress in the realm of IDS, particularly
within cloud and fog computing contexts. Rule-based systems, as implemented in the cur-
rent project, offer simplicity and interpretability, making them suitable for environments
where predefined attack signatures are prevalent

(5). However, their reliance on known patterns limits their ability to detect novel or
sophisticated attacks, a gap that anomaly-based and machine learning-driven IDS aim to
address (14).

• Cloud-based IDS, as explored by Kayode (8) and Innab et al. (7), leverage the
scalability and computational power of cloud infrastructures to handle large volumes
of data and complex analysis tasks. While effective in centralized settings, they may
face latency issues and single points of failure, which fog computing seeks to mitigate
by distributing processing closer to data sources (6).

• Fog computing-based IDS, discussed by Zwayed et al. (20) and Khater et al. (9),
offer real-time threat detection and reduced latency, crucial for time-sensitive applic-
ations. However, the resource limitations of fog nodes necessitate the development
of lightweight and efficient IDS algorithms, a challenge that ensemble learning and
advanced feature selection methods aim to address (17).

• The integration of fog and cloud paradigms presents a balanced approach, com-
bining the strengths of both to enhance IDS performance. Abusitta et al. (1)
and Alghamdi and Bellaiche (2) demonstrate that cooperative and ensemble-based
methodologies can significantly improve detection accuracy and system robustness.
However, the smooth interoperability and handling of complexity of distributed
systems pose huge challenges yet to be resolved.

• Another drawback of relying on a specific set of datasets in this context UNSW-
NB15 proves useful for evaluation but lacks diversity in actual real-world attacks
(10). These issues are an indication to continue to update the current datasets and
to include new diverse data sources to strengthen the models of IDS models.

6



Although tremendous progress has been achieved in developing efficient IDS for fog-
to-cloud computing environments, future research needs to be devoted to enhancing ad-
aptability, scalability, and efficiency. The integration of advanced machine learning tech-
niques along with sound evaluation frameworks will play a pivotal role in handling the
evolving nature of threats in the field of cybersecurity.

7



Table 1: Comparison of Related Studies and Our Research

Study Description Methodology Limitations Our Research
Contribution

Denning
(1987)

Introduced
a model for
detecting unau-
thorized access
to systems.

Rule-based de-
tection model.

Limited to pre-
defined patterns;
unable to detect
novel attacks.

Combines rule-
based and
dataset-driven
refinement for
better adaptab-
ility.

Debar et al.
(1999)

Proposed tax-
onomy for IDS
based on detec-
tion mechanism,
deployment, and
analysis.

Categorized IDS
into signature-
based, anomaly-
based, and
hybrid ap-
proaches.

Limited focus on
distributed or
scalable environ-
ments.

Implements a
hybrid approach
in a fog-to-cloud
architecture for
scalability.

Mukherjee et
al. (1994)

Network intru-
sion detection
emphasizing
monitoring
traffic.

Network-based
IDS focusing on
traffic anom-
alies.

Lack of adaptab-
ility to dynamic
network condi-
tions.

Real-time ana-
lysis leveraging
fog computing to
address dynamic
conditions.

Kayode (2020) Focused on
cloud-based IDS
for IoT environ-
ments.

Utilized cloud
infrastructure
for large-scale
threat detection.

High latency and
single point of
failure.

Integrates fog
computing to
reduce latency
and improve
scalability.

Diro and Chil-
amkurti (2018)

Explored LSTM
networks for IDS
in fog-to-things
communication.

Deep learn-
ing techniques
for detecting
complex attack
patterns.

High com-
putational
requirements
unsuitable for
resource-limited
fog nodes.

Lightweight
rule-based
model optim-
ized for fog
computing en-
vironments.

Zwayed et al.
(2021)

Reviewed IDS in
fog computing,
focusing on
challenges and
opportunities.

Comprehensive
analysis of fog-
specific IDS
techniques.

Did not provide
practical imple-
mentation or hy-
brid solutions.

Practical imple-
mentation of an
IDS combining
fog and cloud
paradigms.

Our Research Developed a
rule-based IDS
integrated into
a fog-to-cloud
architecture.

Combines pre-
defined rules
with dataset-
driven analysis
for real-time
threat detection.

Static rule set
limits adaptabil-
ity to emerging
threats.

Proposed a scal-
able framework
with potential
for machine
learning integra-
tion for adaptive
capabilities.

8



3 Methodology

Figure 1: Flowchart of the methodology for Intrusion Detection System based
on Fog-to-Cloud computing.

The methodology of this research outlines the systematic steps taken to design, develop,
and evaluate a rule-based Intrusion Detection System (IDS) implemented within a Fog-
to-Cloud computing paradigm. This section details the research method, dataset charac-
teristics, the rule-based detection approach, and the experimental framework employed
to validate the system.

3.1 Research Method

This research adopts a structured applied method aimed at addressing the challenges of
real-time intrusion detection in modern network environments. The research work fo-
cuses on developing the Fog-to-Cloud paradigm for distributed data processing, where it
integrates the speed localized fog nodes with the computational resources of the cloud.
This hybrid would overcome some of the known issues with traditional centralized IDSes,
such as high latency and scalabilities. The methodology is systematical, which includes
stages like: problem identification, dataset choice, rule-based detection implementation in
deployment using serverless cloud technologies, as well as performance evaluation. Each

9



stage is designed to prove the feasibility and efficiency of the proposed system in terms
of detecting cyber threats such as data exfiltration, ping flooding, and worm attacks.

It starts with defining the problem of research, where it highly emphasizes the need
for a scalable IDS solution that can support large-scale data from modern networks. Tra-
ditional IDS frameworks, whether signature-based or anomaly-based, fail to achieve real-
time threat detection because of their reliance on centralized architectures. Furthermore,
although promising, machine learning-based IDS come with a high computational over-
head and dependency on large datasets, making them less feasible in resource-constrained
environments. Integrating the principles of Fog-to-Cloud computing, this research will
create a practical solution that balances speed and computational requirements. The
systematic application of predefined rules ensures simplicity and interpretability while
maintaining high detection efficiency.

3.2 Dataset

The UNSW-NB15 dataset was chosen for this study due to its comprehensive representa-
tion of modern network traffic patterns and diverse attack types. This widely recognized
dataset in the IDS research community contains 2.54 million records generated by a hy-
brid simulation of real-world traffic and attack scenarios. It comprises 49 features of
different characteristics of the traffic, including source and destination byte counts, pro-
tocol type, duration, and attack category. All these features are important to identify
the malicious traffic by avoiding false positives.

The preprocessed dataset was used to ensure reliability of the IDS. This included
cleaning null values and irrelevant attributes of the feature selection to keep the most
informative metrics for the intrusion detection. The key features considered for the
analysis are sbytes (source byte count), dbytes (destination byte count), dur (connection
duration), and proto (protocol type). All of these metrics are of significant importance in
constructing rules that classify between good and bad traffic. In developing the detection
logic, it has split the dataset into a training subset and a testing subset for unbiased
performance evaluation. There are numerous categories of attacks in the dataset, like
data exfiltration, denial-of-service, and reconnaissance, allowing testing on all aspects of
the system.

3.3 Rule-Based Detection

The core of the proposed IDS is its rule-based detection mechanism, which depends
on predefined heuristics to classify network traffic into benign or malicious categories.
This approach is computationally efficient and interpretable, making it well-suited for
real-time applications in resource-constrained Fog-to-Cloud environments. Rule-based
detection emphasizes simplicity, as the rules are derived from known traffic patterns and
behaviors rather than requiring extensive computational resources for model training, as
seen in machine learning-based systems.

The rule-based system designed in this research has used a set of heuristics derived
from the dataset analysis. These rules include conditions and thresholds that flag suspi-
cious behavior for certain key metrics. A good example is the identification of potential

10



data exfiltration by such a combination of high source byte count (sbytes ¿ 25000), low
destination byte count (dbytes ¡ 3000), and short duration (dur ¡ 5). Ping flood attacks
get identified from the following signs: destination byte count or dbytes is less than 6000,
source byte count sbytes less than 1500, and proto equals ÏCMPf̈or ICMP protocols.
Just like this long-duration attacks get marked if there are durations over 20 for sessions;
dbytes and sbytes continue to remain lesser than or equal to 6000 and 1500 correspond-
ingly. Worm attacks are characterized by a low byte count (sbytes ¡ 1200, dbytes ¡ 500)
and a short duration (dur ¡ 1.5). Other protocol specific anomalies including OSPF or
SCTP with zero destination bytes (dbytes = 0) and an extended duration greater than
10 are also classified as possibly exploitable.

The advantage of the rule-based approach is in its simplicity and transparency; this is
why it is extremely beneficial to real-time IDS. Administrators easily understand and can
change the rules to keep pace with evolving threats. This also implies high computational
efficiency, such that a system based on this method would easily handle massive data
streams with minimal delays, thus very apt for the distributed Fog-to-Cloud framework.
In contrast, rule-based systems, unlike black boxes as most machine learning models tend
to be, clearly explain decisions, thereby increasing their credibility in security-related
applications.

3.4 Experimental Framework

The experimental design provided for validation of the intended IDS with regard to its
accuracy, scalability, and also about the real-time deploy-ability of the proposed IDS.
Overall, it involves the installation of a detection system, from design and implementa-
tion to deployment and even a conclusive assessment of its performance.

In terms of implementing the detection logics in Python and then testing, designing,
and implementing it on Amazon Lambda. AWS Lambda was chosen for its scalability
and cost-efficiency, allowing the system to process data on demand without requiring
dedicated infrastructure. The detection logic was encapsulated within a RESTful API
created using AWS API Gateway, providing a seamless interface for external applications
to interact with the system. This architecture follows the Fog-to-Cloud computing model
because it allows for distributed lightweight processing at the edge but uses the cloud to
achieve scalability and deeper analytics.

This deployment was done by configuring the API Gateway to handle POST requests
while ensuring compliance with Cross-Origin Resource Sharing (CORS). Issues related to
CORS are common in applications that run in the browser. The solution to this issue was
the addition of relevant headers, including Access-Control-Allow-Origin, Access-Control-
Allow-Methods, and Access-Control-Allow-Headers, in both the Lambda function and
the API Gateway configuration.

The evaluation phase tried to check the performance of the system in so many di-
mensions. Accuracy for the system refers to how percent instances of the given dataset
are classified correctly into either benign or malicious traffic. Scalability is checked by
simulating high loads of traffic so that a system designed for huge data streams does not
incur undue delays or failures. Latency was recorded as the time taken by a system to
classify incoming traffic, which reflected in its real-time capabilities. Detection rules of

11



the system underwent iterations based on the evaluations results to minimize false pos-
itives and false negatives for optimal functionality.

This further validates the practicality of the system. Using UNSW-NB15, the kinds
of different traffic scenarios were simulated on the system. Different results emerged from
benign traffic to mixed patterns of varied attacks tested the robustness of rule-based
detection logic. From evaluation results, how the system can detect intrusions in low
latency is described. Hence it proves feasible for real-world deployment.

4 Design Specification

The proposed Intrusion Detection System (IDS) is designed on the principles of Fog-to-
Cloud computing so that the detection can be done in real-time, scalable, and efficient
manner. The combined design of a rule-based detection mechanism and serverless ar-
chitecture meets the performance requirements of advanced network environments. It
offers a multi-component architecture that is, data preprocessing followed by rule-based
detection logic, and finally, it offers a cloud-based framework to deploy. All these com-
ponents put together support smooth data flow from collection to classification and result
dissemination.

4.1 System Architecture

Figure 2: System Architecture for Intrusion Detection System.

The architecture of the IDS is built on the Fog-to-Cloud paradigm, leveraging the com-
plementary strengths of fog and cloud computing. The system is designed to preprocess
and analyze data locally at fog nodes for quick decision-making while offloading com-
putationally intensive tasks to the cloud for scalability and centralized processing. This

12



hybrid model ensures low latency for time-sensitive detections and leverages the cloud’s
extensive resources for large-scale data analysis.

The IDS has some core components that include:
Data Source: This system feeds the system with network traffic data. In a struc-

tured format, such as JSON, the data would have key attributes such as source bytes,
destination bytes, protocol type, connection duration, and attack category. The data has
been sourced from the UNSW-NB15 dataset, which is a comprehensive benchmark for
the evaluation of intrusion detection mechanisms.

These would actually act as entry nodes or points for network traffic. Lightweight
processing is done on data before it is uploaded onto the cloud, filtering, pre-processing,
the lot. Fog nodes are strategically positioned closer to data sources in an effort to cut
down transmission latency and improve real-time response capabilities.

Cloud Layer: This is the layer that actually does the detection logic, handling the
overall IDS framework. The detection logic will be implemented using AWS Lambda to
deploy it in a serverless environment. This approach obliterates the need for dedicated
servers, reducing operational costs and providing dynamic scalability as per fluctuating
traffic volumes.

Detection Logic: It uses rule-based detection logic in the cloud layer. Predefined
heuristics analyze the incoming data and identify those patterns that might indicate
potential intrusion like data exfiltration, ping floods, or worm attacks. Rules are designed
based on the key features derived from the dataset, which balance high detection accuracy
with computational efficiency.

API Gateway: AWS API Gateway is an intermediary that stands between external
applications and cloud-based detection logic. This provides a RESTful API interface
through which users or any external system can send network traffic data and receive the
results of classification. The API is configured to handle the requirements of CORS for
ensuring compatibility with various client-side applications.

It features a real-time response system about threats that are detected, hence sending
each request through the API Gateway to invoke detection logic in AWS Lambda; such
responses are then fed back to the user or external system. These responses include the
classification of traffic as either benign or specific malicious activity.

4.2 Data flow and processing

The flow in the IDS starts from the network source and captures the traffic, depicting
it in the format it is required by the system. The first processing level is the fog nodes,
filtering raw data and transforming it to a structured format. Through secure transmis-
sion protocols, data is forwarded to the cloud layer.

In the cloud, the API Gateway receives data and routes it to an AWS Lambda func-
tion. The detection logic within the Lambda analyzes the data on the basis of the
predefined rules. For example, a large source byte count along with a short time and low
destination byte count may cause the system to classify it as ”Potential Data Exfiltra-
tion.” The detection is light-weight; it uses simple threshold-based comparisons rather
than computationally expensive models, so it’s suitable for real-time applications.

The result of this detection process is sent to the API Gateway, formatted and returned
back to the client. Users can have access in real time and respond with appropriate prompt

13



action in cases where the system has identified threats. Moreover, the log that resulted
from the process is retained in AWS CloudWatch for auditing purposes, debugging, and
performance.

4.3 Design Principles and Benefits

The design of the IDS follows several key principles. Scalability: the serverless architec-
ture ensures that the system can scale dynamically with the level of traffic. The AWS
Lambda scaling automatically means that the system can automatically handle both low
and high traffic volumes without any manual intervention.

Efficiency: Since the detection process is rule-based, the overall efficiency of the
system will have low computational overheads. This makes it highly effective in Fog-to-
Cloud deployments, since the fog nodes are usually resource-starved.

Low Latency: The fact that the fog nodes are proximal to the data source will ensure
lesser latency and therefore, quicker preprocessing and even real-time threat detection.

Interoperability: The model is also interoperable; the RESTful API ensures that
the IDS can be suitably integrated with other applications so far as they are a web
interface, mobile apps, or any other network management tool.

The compatibility between layers of fog and cloud is one major problem while deploy-
ing such Fog-to-Cloud IDS. To address this, data transmission along with preprocessing,
the developers provided an open interface for its successful functioning. This is an issue
related to CORS, which was handled by making appropriate configuration of API Gate-
way through suitable headers such as Access-Control-Allow-Origin. Finally, the task
of designing the efficient rules of intrusion-detection about different types of intrusions
also demands analyzing the given dataset appropriately so that false positives would be
minimal.

5 Implementation

The deployment of the Intrusion Detection System based on the Fog-to-Cloud paradigm
included several systematic steps in ensuring the system’s functionality, scalability, and
real-time threat detection capability. This section describes the comprehensive process
of translating the methodology into a working system-from developing the rule-based
detection logic to its deployment on a serverless architecture.

5.1 Dataset Preparation and Preprocessing

Preparation of the UNSW-NB15 dataset for intrusion detection was the first step of im-
plementing this system. Being rich in various traffic patterns and categories of attacks,
the UNSW-NB15 dataset is one of the best benchmarks for testing IDS performance.
Thereafter, two subsets namely train and test subsets were divided for working out the
development of detection logic. Key attributes such as sbytes (source byte count), dbytes
(destination byte count), dur (connection duration), and proto (protocol type) were se-
lected based on their relevance to intrusion detection.

Null or irrelevant values are removed to maintain consistency and accuracy through
data cleaning. This phase focused on finding the most indicative attributes for malicious
activity. This is an essential step in minimizing detection logic so that the computational

14



overhead is minimal. The preprocessed data was then transformed into JSON format
and used as input by the detection logic running on the cloud.

5.2 Development of Rule-Based Detection Logic

The crux of the IDS is the rule-based detection logic implemented in Python. It de-
termines, based on predefined heuristics, whether incoming network traffic is benign or
malicious. The rules used were patterns observed in the dataset. The main goal was to
detect, for example, data exfiltration, ping floods, and worm attacks.

Each rule used threshold-based comparisons of the selected features. For example:
Data Exfiltration Occurs when source byte count is over 25,000 while the destination

byte count is less than 3,000 and connection duration is less than 5 seconds: sbytes ¿
25000 and dbytes ¡ 3000 and dur ¡ 5.

Ping Flood Low source byte count and low destination byte count with
ICMP protocol: sbytes ¡ 1500 and dbytes ¡ 6000 and proto = ”ICMP”.

Long-Duration Attack: Outlier with connection duration more than 20 sec (dur ¿
20) and low source and destination byte counts (sbytes ¡ 4000, dbytes ¡ 2000).

Worm Attack: Indicated by very low byte counts (sbytes ¡ 1200, dbytes ¡ 500) and
short durations (dur ¡ 1.5).

Protocol-Specific Exploits: Identified in OSPF or SCTP traffic where the des-
tination byte count is zero (dbytes = 0) and the duration exceeds 10 seconds (dur ¿
10).

The logic was developed in the form of a Python function that takes in JSON input,
processes the information, and returns a classification outcome. A strong error-handling
mechanism was added to manage bad inputs, missing fields, or malformed JSON. There
were also debugging logs for tracing the processing flow, in case there were any problems
with it.

5.3 Deployment Using AWS Lambda and API Gateway

In order to ensure scalability and cost-effectiveness, the detection logic was deployed us-
ing the AWS Lambda serverless computing platform. By using Lambda, functions can
be executed on demand and avoid dedicated servers. This provides dynamic scalability
in exchange for lack of dedicated servers. The detection logic developed using Python
was packaged as a Lambda function, which formed the core processing unit of the IDS.

AWS API Gateway was set up as the external interface to the lambda function. The
API Gateway facilitates RESTful endpoint that allows users to POST network traffic
data to the detection system and get classification results back in real-time. The fol-
lowing was done to configure the API gateway. A new REST API was created in API
Gateway, and the resource path (/) was defined.

The POST method was set up to accept a JSON request body, and the gateway
was forwarding that information to the Lambda function for further processing. Under
CORS settings, which allows browser-based applications to communicate with the API,
specific headers such as Access-Control-Allow-Origin and Access-Control-Allow-Methods

15



had been added to ensure compatibility.

The Lambda function was added to the API Gateway, and the deployment stage was
created in order to produce a public endpoint. This endpoint served as the entry point
for the IDS, allowing external systems to feed their traffic data into it for analysis.

6 Evaluation

6.1 Case Study 1: Data Exfiltration Detection

The first case study evaluates the system’s capability for detecting exfiltration attacks,
with attackers trying to exfiltrate sensitive data by transfering it out of an organization
to some external address. The system used a rule specifically targeting traffic with high
source bytes but low destination bytes and shorter duration. Such a rule effectively
caught 87 percent of exfiltration attempts, with high precision and recall. However, it
incorrectly classified 10% benign traffic with similar byte patterns as exfiltration traffic
that had false positives. In this attack type, precision was 0.78 and recall was 0.81. This
clearly depicts how robust the system is for pattern recognition of exfiltration but gives
room for further threshold adjustments for the reduction of misclassification.

Source and destination byte distribution for false positives can be visualized that
exhibits a clustering effect near the threshold limits of 20,000 source bytes and 3,000 des-
tination bytes. Increasing the thresholds incrementally and testing the dataset dropped
false positive rates by 8% for better performance on this attack category.

6.2 Case Study 2: Eliminating Ping Floods

Ping floods are a type of Distributed Denial of Service (DDoS) attack characterized by
large numbers of ICMP packets with low source and destination bytes. Overall, the
system’s detection of such patterns performed fairly well, achieving a recall of 0.79 and a
precision of 0.74. Results such as these may therefore indicate that the system managed
to identify most of the ping flood instances whilst controlling the rate of false positives
quite well.

Analysis revealed that edge cases, which are normal ICMP traffic for benign network
testing, resulted in a small increase in false positives. For example, routine diagnostics
such as ping tests with low byte values sometimes triggered the alarm. The system
was then fine-tuned by incorporating a secondary condition to eliminate traffic that has
durations greater than five seconds, since legitimate ping traffic tends to have longer
durations. This fine-tuning reduced false positives by 5

6.3 Case Study 3: Long-Duration Attack Patterns

One of the most important usage cases was a long-duration attacks with fewer source and
destination bytes as in slow data exfiltration or resource exhaustion type of attacks. The
system identified those traffics based on a rule that had been created to look at durations
greater than 20 seconds combined with byte counts under a certain amount. Precision
here was 0.76 whereas recall was 0.81, therefore the above system was also effective.

However, false negatives occurred when traffic had durations near the threshold but
slightly exceeded the byte limits. Investigations revealed that increases in byte thresholds

16



marginally improved the detection rates of such attacks. Future versions of the system
could take adaptive thresholds based on the trends in traffic to better detect slight an-
omalies.

6.4 Case Study 4: Worm Detection

Another category of interest was worm attacks, characterized by low byte values and short
durations. The system effectively identified worms using rules targeting these unique
traffic patterns. The recall for this category was 0.82, while the precision was slightly
lower at 0.71 due to overlaps with benign traffic during specific short-duration activities.

The analysis of the dataset revealed that benign traffic with high packet rates but
low bytes often mimicked worm behavior. To mitigate this, additional attributes such as
packet inter-arrival times and protocol-specific markers were considered in future refine-
ments. By integrating such features, the system’s ability to distinguish between benign
and malicious traffic could improve.

6.5 Case Study 5: ICMP Worms and Specific Protocols

The system also focused on ICMP worms by using protocol-specific rules for low byte
values of durations and short traffic. A rule targeting these patterns yielded an accuracy
of 88% precision of 0.79, indicating that the system was capable of generalizing across
some specific protocol attacks well.

It solved the difficulties in differentiating ICMP worms from normal ICMP traffic that
includes diagnostic pings and traceroutes by incorporating protocol-specific conditions
within the rules that reduced the false positives by 12%. This fine-tuning allows the
system to adapt to real-world network environments with diverse ICMP traffic patterns.

False Positives and Negatives Across Categories

Although the system performed well with high precision and recall across a number of
categories of attacks, some false positives and false negatives were identified. For example,
there were 22,622 false positives that were identified, mainly in benign traffic where byte
patterns were near threshold limits. These misclassifications occurred most in the data
exfiltration and worm detection rules.

On the other hand, false negatives occurred in attacks with traffic patterns that did
not align with predefined thresholds. For instance, reconnaissance attacks with byte
values near the limits of normal traffic went undetected in 8% of cases. Such limitations
call for continuous refinement and adaptation of the rules to evolving attack patterns.

Visualization and Insights

The use of pie charts and bar graphs for better understanding of the system’s per-
formance also helps in visualizing the distribution of the dataset. For instance, from the
pie chart, one can clearly see that attacks constitute 68.1% of the samples, while benign
traffic makes up 31.9%. Such an imbalance highlights the necessity of strong rules to be
developed for a reliable detection of both classes.

The bar graph of precision, recall, and F1-scores for benign and attack samples was
found to be consistently better for the system with attack traffic. Precision and recall
for attack samples were found to be higher than that of benign traffic, suggesting the
system’s bias toward reducing false negatives in case of critical threats. This was a

17



Figure 3: Support Distribution for Benign and Attacks

Figure 4: Comparison of Precision, Recall, and F1-Score

guiding principle for the refinement of rules and for the prioritization of attack detection
over benign traffic classification.

Comparative Performance of Refined Rules

This refinement of rules iteratively improved performance metrics. For example, re-
duction in thresholds for source and destination bytes by 10% in false positives in data
exfiltration rule reduced false positives while maintaining the high level of recall, and en-
hancing detection accuracy by 12% is observed when protocol-specific markers are applied
to ICMP worms.

18



A comparative evaluation of the device’s performance earlier than and after refine-
ments confirmed a 5% boom in precision and a 7% reduction in fake positives throughout
all classes. These enhancements demonstrate the effectiveness of an iterative method in
enhancing the device’s accuracy and adaptability.

7 Conclusion and Future Work

In short, this research aimed at developing a rule-based intrusion detection system that
could efficiently identify threat-generating activities in a high technology context: mod-
ern network environments, providing an efficient analysis of nettraffic and the detection
of attacks. The system has taken advantage of predefined rules from attributes such
as source/destination byte count, duration, and even protocols to identify and classify
specific threats, including data exfiltration, ping floods, or worm attacks. The method
worked out to be workable and efficient in its outcome, balancing the outcome with pre-
cision of 0.72 and recall of 0.71. All these measures point to the ability of the system to
flag threats while keeping false positives and negatives at bay, therefore more applicable
in real-time security monitoring.

However, despite these strengths, the system still has some limitations that limit its
adaptability to emerging threats. The static nature of the rule-based detection restricts
its capability to discover new attack patterns that are not defined explicitly in the rules.
Furthermore, the system’s detection performance also depends upon the quality and rep-
resentativeness of the training dataset, which may fail to represent the complexity and
variation of the real-world network traffic accurately. Though these values were compet-
itive, precision and recall point out the potential for false positives and enhancing the
granularity of the system’s detection ability. For such an IDS to work well in dynamic
network environments, these limitations need to be overcome.

Future work includes augmenting this rule-based framework by integrating machine
learning techniques. Machine learning algorithms, especially deep learning models, provide
flexibility in learning new attack patterns and adapting them to improve system resili-
ence against emerging threats. Training these models on continuously updated datasets
could further enhance the capability of identification of attack vectors that are previously
unseen. Moreover, inclusion of advanced feature engineering methods may refine the ana-
lysis of network traffic characteristics, improving the accuracy and efficiency of detection.

Another area to explore in the future is to deploy the IDS within a hybrid cloud-fog
computing environment. This can be done by monitoring the traffic at the edge of the
fog layer, whereas more complex threat analysis may use cloud computing to overcome
latency issues and improve scalability. It is suitable for big applications, such as industrial
IoT systems and smart cities, in which real-time analysis and scalability are of utmost
importance. Moreover, ensemble learning techniques, integrating more than one detec-
tion technique, might provide a stronger robustness and lower false alarms probability.

This work demonstrates the viability of rule-based IDS frameworks in practical applic-
ations of network security. The results show the ability to use predefined rules to perform
real-time threat detection, though threats are constantly evolving and this would require

19



continuous improvement. Introducing adaptive technologies, system scalability improve-
ments, and refined accuracy in detection will lead to the creation of more complex and
robust intrusion detection systems. Future innovations in this domain will serve as crit-
ical milestones in ensuring the digital infrastructure against the exponentially increasing
sophistication of cyber threats.

References

•••[1] Abusitta, A., Bellaiche, M. and Dagenais, M., 2019. Multi-cloud cooperative intrusion
detection system: trust and fairness assurance. Annals of Telecommunications, 74,
pp.637-653.

[2] Alghamdi, R. and Bellaiche, M., 2023. An ensemble deep learning based IDS for IoT
using Lambda architecture. Cybersecurity, 6(1), p.5.

[3] Besharati, E., Naderan, M. and Namjoo, E., 2019. LR-HIDS: logistic regression host-
based intrusion detection system for cloud environments. Journal of Ambient Intelli-
gence and Humanized Computing, 10, pp.3669-3692.

[4] Debar, H., Dacier, M. and Wespi, A., 1999. Towards a taxonomy of intrusion-detection
systems. Computer Networks, 31(8), pp.805-822.

[5] Denning, D.E., 1987. An intrusion-detection model. IEEE Transactions on Software
Engineering, (2), pp.222-232.

[6] Diro, A. and Chilamkurti, N., 2018. Leveraging LSTM networks for attack detection
in fog-to-things communications. IEEE Communications Magazine, 56(9), pp.124-130.

[7] Innab, N., Atoum, I., Alghayadh, F., Abu-Zanona, M., Alrubayyi, N., Basudan, F.
and Alshehri, A., 2024, February. Intrusion Detection System Mechanisms in Cloud
Computing: Techniques and Opportunities. In 2024 2nd International Conference on
Cyber Resilience (ICCR) (pp. 1-5). IEEE.

[8] Kayode, O., 2020. A cloud based approach for data security in IoT. Comput. Eng.
Intel. Syst., 11, pp.16-23.

[9] Khater, B.S., Abdul Wahab, A.W., Idris, M.Y.I., Hussain, M.A., Ibrahim, A.A.,
Amin, M.A. and Shehadeh, H.A., 2021. Classifier performance evaluation for light-
weight IDS using fog computing in IoT security. Electronics, 10(14), p.1633.

[10] Khraisat, A., Gondal, I., Vamplew, P. and Kamruzzaman, J., 2019. Survey of in-
trusion detection systems: techniques, datasets and challenges. Cybersecurity, 2(1),
pp.1-22.

[11] Li, W. and Mohammadnezhad, N., 2024. Improvement of intrusion detection system
in industrial Internet of Things based on deep learning with fog computing capability.
Electronic Commerce Research, pp.1-37.

[12] Liao, H.J., Lin, C.H.R., Lin, Y.C. and Tung, K.Y., 2013. Intrusion detection system:
A comprehensive review. Journal of Network and Computer Applications, 36(1), pp.16-
24.

20



[13] Maheswari, K.G., Siva, C. and Priya, G.N., 2023. An optimal cluster based intrusion
detection system for defence against attack in web and cloud computing environments.
Wireless Personal Communications, 128(3), pp.2011-2037.

[14] Mahmood, A.N. and Hu, J., 2016. A survey of network anomaly detection techniques.
Journal of Network and Computer Applications, 60, pp.19-31.

[15] Mukherjee, B., Heberlein, L.T. and Levitt, K.N., 1994. Network intrusion detection.
IEEE Network, 8(3), pp.26-41.

[16] Sreeramulu, M.D., Suganyadevi, K., Neravetla, A.R. and Mohammed, A.S., 2024,
July. Network Intrusion Detection in Cloud Computing Environments. In 2024 IEEE
3rd World Conference on Applied Intelligence and Computing (AIC) (pp. 1431-1437).
IEEE.

[17] Tawfik, M., 2024. Optimized intrusion detection in IoT and fog computing using
ensemble learning and advanced feature selection. PLOS ONE, 19(8), p.e0304082.

[18] Velliangiri, S. and Premalatha, J., 2019. Intrusion detection of distributed denial of
service attack in cloud. Cluster Computing, 22(Suppl 5), pp.10615-10623.

[19] Xiang, Y., Zhou, W. and Bonti, A., 2011. Cloud security defence to protect cloud
computing against HTTP-DoS and XML-DoS attacks. Journal of Network and Com-
puter Applications, 34(4), pp.1097-1107.

[20] Zwayed, F.A., Anbar, M., Sanjalawe, Y. and Manickam, S., 2021. Intrusion De-
tection Systems in Fog Computing–A Review. In Advances in Cyber Security: Third
International Conference, ACeS 2021, Penang, Malaysia, August 24–25, 2021, Revised
Selected Papers 3 (pp. 481-504). Springer Singapore.

21


	Introduction
	Research Problem
	Motivation
	Research Question
	Research Objective

	Related Work
	Introduction
	Intrusion Detection Systems
	Cloud Computing and IDS
	Fog Computing and IDS
	Fog-to-Cloud Integrated IDS
	Machine Learning and Deep Learning in IDS
	Datasets and Evaluation Metrics
	Challenges and Future Directions
	Critical Analysis

	Methodology
	Research Method
	Dataset
	Rule-Based Detection
	Experimental Framework

	Design Specification
	System Architecture
	Data flow and processing
	Design Principles and Benefits

	Implementation
	Dataset Preparation and Preprocessing
	Development of Rule-Based Detection Logic
	Deployment Using AWS Lambda and API Gateway

	Evaluation
	Case Study 1: Data Exfiltration Detection
	Case Study 2: Eliminating Ping Floods
	Case Study 3: Long-Duration Attack Patterns
	Case Study 4: Worm Detection
	Case Study 5: ICMP Worms and Specific Protocols

	Conclusion and Future Work

