

Configuration Manual

MSc Research Project

MSc in Cloud Computing

Thokala Poojitha

Student ID: x22230424

School of Computing

National College of Ireland

Supervisor: Vikas Sahni

National College of Ireland

MSc Project Submission Sheet

School of Computing

Student Name:

……. ………Thokala Poojitha …………………………………………………………

Student ID:

………………x22230424………………………………………………………………………..……

Programme:

………… MSc in Cloud Computing…………………

Year:

…………2024………..

Module:

………… MSc Research Project …………………………………………………….………

Lecturer:

…………… Vikas Sahni…………………………………………………………….………

Submission

Due Date:

………………12-12-2024……………………………………………………………….………

Project Title:

 Harnessing Deep Features and Machine Learning for Malware Image

Classification…………….………

Word Count:

………1462…………………… Page Count: …………16………….…….………

I hereby certify that the information contained in this (my submission) is information

pertaining to research I conducted for this project. All information other than my own

contribution will be fully referenced and listed in the relevant bibliography section at the

rear of the project.

ALL internet material must be referenced in the bibliography section. Students are

required to use the Referencing Standard specified in the report template. To use other

author's written or electronic work is illegal (plagiarism) and may result in disciplinary

action.

Signature:

………………Poojitha Thokala………………………………………………………

Date:

………………11-12-2024………………………………………………………………

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple

copies)

□

Attach a Moodle submission receipt of the online project

submission, to each project (including multiple copies).

□

You must ensure that you retain a HARD COPY of the project, both

for your own reference and in case a project is lost or mislaid. It is not

sufficient to keep a copy on computer.

□

Assignments that are submitted to the Programme Coordinator Office must be placed

into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

1

Configuration Manual

Thokala Poojitha

Student ID: x22230424

1 Introduction

This configuration manual provides the steps to replicate the research conducted for malware

detection and classification using a hybrid approach of Convolutional Neural Networks

(CNNs) for feature extraction and machine learning models, specifically Support Vector

Machines (SVM) and Random Forest (RF) for classification. It contains the software,

hardware, and implementation details required to replicate the results.

2 System Configuration

2.1 Software Configuration

Platform: Google Colab (preferred for GPU support)

Python: Version 3.10

Libraries: All the required libraries are shown in Table 1, Figure 1 and Figure 2

 Library Version

TensorFlow 2.17.0

NumPy 1.26.4
Pandas 2.1.4
Scikit-learn 1.3.2

Matplotlib 3.7.1
Seaborn 0.13.1

 Table 1: Library versions

2

 Figure 1: Libraries for CNN model

 Figure 2: Libraries for CNN model

3 Dataset Preparation

1. Dataset source: The Malimg Dataset1 is used in this project, which has grayscale

images of malware binaries classified into 25 malware families. All the malware

families are shown in the table 2.

 Table 2: 25 classes

Allaple.A Cme.B Fakealert

Allaple.L Citep.A Fizzer

Adialer.C Curlie Gamarue

Bagle Dialer.A Gri

Brontok Dubr.A Hupigon

Dumball.A Luder MyDoom.A

1 https://paperswithcode.com/dataset/malimg

https://paperswithcode.com/dataset/malimg

3

Rbot Redlof Rimecud

Sasser Simda Sobig

Zbot

2. Preprocessing steps: After downloading the dataset, several preprocessing steps

are taken to prepare the dataset for analysis and classification.

a. The malware binaries are first analysed to ensure proper labelling and

organization by their respective malware families as shown in figure 3 and

4.

b. The binary malware files are converted into grayscale images to enable

image-based analysis. This transformation allows the model to detect

spatial patterns that are unique to each malware family. This has been

already done in the dataset that has been selected.

c. Then to ensure classes would not have imbalances, the dataset is filtered

such that no malware family contains more than 200 images which is

shown in figure 5 and figure 6. This makes sure that training process

remains unbiased and prevents overfitting to dominant classes.

4

 Figure 3: Code for labelling and organization

 Figure 4: The images after labelling and organization

 Figure 5: code for image count to be less then 200

5

 Figure 6: The image count after preprocessing and class balancing

The preprocessing steps are now applied to grayscale images for effective analysis and

training. Each image is resized to 256*256 pixels to maintain uniformity across the dataset.

This ensures that all the images have same dimensions which is a requirement for input into

the CNN. Code is shown in figure 5.

6

 Figure 7: Resizing imges for CNN input

The pixel values are then normalized to the range [0,1], which helps pixel intensity values

that improves model convergence during training and reduces computational complexity.

Each malware class is then limited to maximum of 200 samples to address the class

imbalance. This ensures fair representation of classes in training process, that prevents model

from being biased towards over-presented classes. Shown in figure 8 and code in figure 7.

 Figure 8: Image count after preprocessing and class balancing

7

The pre-processed images are saved in an organized directory structure with folders labelled

by their respective malware families as shown in figure 9. This helps with easy access and

identification during feature extraction and training.

 Figure 9: Code for target balanced data extraction

4 Feature Extraction

4.1 Images preprocessing

Images are pre-processed for the CNN input according to the standards as mentioned in data

preprocessing in Section 3 (Data Preparation).

4.2 Model compilation

A CNN model is compiled, and the final classification layer of the model is removed to make

sure the output has meaningful vectors instead of class probabilities. Figure 10 shows the

removal of the final layer and all the other layers.

8

Figure 10: CNN architecture with the feature extraction layer highlighted

4.3 Features extraction

The pre-processed images are passed through the CNN to extract high-dimensional feature

vectors. The extracted features are saved in CSV format (CNN_features.csv), shown in

Figure 11.

9

 Figure 11: Saved feature vector CSV structure

5 Model Training

5.1 Support Vector Classifier (SVC)

The extracted feature vectors are stored in Dataset/balanced_dataset.csv as shown Figure 12.

These features represent spatial patterns of malware families.

Figure 12: Common libraries and feature extracted data

The dataset is split into training and testing sets using train_test_split function as shown in

figure 13. The SVC model is trained using default hyperparameters. Then the trained SVC

model is saved for future inference using the pickle library.

10

Figure 13: Code for SVC Model Training

5.2 Random Forest Classifier (RF)

The features then are loaded from CNN_features.csv. The dataset was split into training and

texting sets to validate the model’s performance. Then the RF was trained with 500

estimators as shown in Figure 14. Save the trained model as

RandomForestClassifier_model.pkl.

11

Figure 14: Code for RF Model Training

5.3 Ensemble Method

The ensemble method combines predictions from the SVC and RF models using an averaging

approach. This method uses the strengths of both classifiers to improve the overall accuracy

and robustness of malware classification and malware detection.

First the model is loaded, and the images are pre-processed as shown in Figure 15, each

image is then pre-processed and then the features are extracted as shown in Figure 16.

 Figure 15: Code for loading CNN feature extraction

12

Figure 16: Code for input image

Then the features extracted are stored in the CNN_features.csv file as shown in Figure 17.
This file will later be used for the following models.

Figure 17: Output of CNN feature extraction

Then the SVC and RF models previouly trained are loaded and the classed are defined as

shown in Figure 18. The output file produced by the CNN is now used as input for the
SVC and RF models as shown in Figure 19.

Figure 18: Code for loading model

13

Figure 19: Code for Both model Prediction

The combined predictions from SVC and RF using an averaging ensemble approach are

shown in figure 20 and the class with the ensemble score shown in figure 21.

 Figure 20: Code for ensemble model

 Figure 21: Code for ensemble prediction and output

14

References

1. Irving, G., Isard, M., Kudlur, M., Levenberg, J., Monga, R., Moore, S., Murray, D.

G., Steiner, B., Tucker, P., Vasudevan, V., Warden, P., Wicke, M., Yu, Y., and

Zheng, X. (2016) ‘TensorFlow: A system for large-scale machine learning’.

doi.org/10.48550/arXiv.1605.08695

2. Harris, C. R., Millman, K. J., van der Walt, S. J., Gommers, R., Virtanen, P.,

Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N. J., Kern, R., Picus, M.,

Hoyer, S., van Kerkwijk, M. H., Brett, M., Haldane, A., del Río, J. F., Wiebe, M.,

Peterson, P., Gérard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi,

H., Gohlke, C., and Oliphant, T. E. (2020) ‘Array programming with NumPy’, 357–

362. doi.org/10.1038/s41586-020-2649-2

3. Mckinney, W. (2011) ‘Pandas: a Foundational python library for data analysis and

statistics’. Python High Performance Science Computer.

4. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,

Blondel, M., Müller, A., Nothman, J., Louppe, G., Prettenhofer, P., Weiss, R.,

Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., and

Duchesnay, É. (2018) ‘Scikit learn: machine learning in python’.

doi.org/10.48550/arXiv.1201.0490

