Configuration Manual For Research Project on Infrastructure as
Code Tools for Security of Serverless Deployments.

Hrishin Suresh
x23159596
Research in Computing
National College of Ireland

December 11, 2024

1 Introduction

This research focuses on the creation of a pipeline for securely deploying serverless applications using
Terraform which is an Infrastructure as Code tool developed by Hashicorp. The AWS services used are
Lambda, S3 bucket, API Gateway and DynamoDB for the serverless application. Along with this a
Jenkins pipeline has been used with a variety of security scanning tools which will be explored in the
following sections.

2 System Requirements

2.1 Hardware

The hardware used for this research is a Windows 10 laptop equipped with 16GB of dual-channel DDR4
RAM, configured as two 8GB sticks. The processor is an AMD Ryzen 7 4800H which is an 8 core CPU
running at 2.9GHz. An NVidia GeForce GTX 1650 is the graphics card used with 4GB of memory. Since
there is not much processing happening on the local machine, any decent computer with atleast 8GB of
RAM and storage to have Docker and Jenkins running in the background will work just as well.

2.2 Software

All the code for this research was done on VSCode with a local Jenkins server running on port 8080
for deployment of the pipeline. Docker Desktop is also running in the background to create a docker
image of the IaC files. A zip utility like 7zip is also required to zip the python files for uploading to
Lambda. There is no other software installed for this research. Everything else that was used is cloud
based like AWS services and Datadog and none of these require any additional downloads. Jenkins,
however, requires the installation of multiple plugins for integrating security tools into the pipeline.

2.3 Tools and Libraries

AWS cli - v2.18.3 or higher
Terraform - v1.9.7
Boto3 - v1.35.44 or higher

3 Configuration

The code can be written in any code editor, but VS code has been used due to its widespread support
for extensions and plugins. Once written, the code can be uploaded to Github.

Once the code has been successfully pushed to Git, we can check the output of the ”terraform plan”
command to see what services will be created, and whether there are any errors before deployment.

Edit Selection View Go Run Terminal Help bot

XPLORER terraform.tfstate M 35 scriptsjs
v ROBOT e =RoN=)

gitignore.

document . getElementByTd(
inputpata

Y id”: $
getstudentzip
indextml
insertstud X
insertstudentz 5 afax

url: APT_ENDPOINT,

. stringify(inputbat:

scriptsjs ication/jso

sonar-project properti () {
P ment . getElementayTd("stuc

terraform tistate.backup
terraform.ty

variablestf

document . getElementById(“get ts").onclick

(response) {
= JSON. parse(response.body) ;

TERMI

+
[l powershell
[powershell

> OUTLINE
> TIMELINE

Figure 1: Code written in VSCode

jenkins-pipeline- thesi

‘) Pull reque:

Files.

§ master

History

) gitignore
terraform.lock hd
trivyignore
Jenkinsfile
dockerfile
getStudent.py
getStudentzip

indexhtml

‘todo_table” {
main.tf

Y requirement

sariptsjs read_capacity
write_capacity
sonar-project properties

terraform.tistate

terraform.tfstate.backup

Figure 2: Code as seen on GitHub

aws lambda permission.apigw lambdaget will be created

resource "aws lambda permission” "apipw lambdaget™ {
action = "lambda: InvokeFunction™
function_name = "petStudent”
id (known after apply)
principal "apigateway . amazonaws . com”
source_arn (known after apply)
statement id "AllowExecutionFromAPIGatewayGET"
statement id prefix = (known after apply)

}

aws lambda permission.apipw lambdapost will be created
resource “aws_lambda permission” “apigw lambdapost™ {
action = "lambda: InvokeFunction™
function_name "insertStudent”
id (known after apply)
principal "apigateway.amazonaws .com”
source arn (known after apply)
statement id AllowExecutionFromAPIGatewayPOST"

statement id prefix = (known after apply)

1
J

aws_s3 bucket.frontend bucket will be created
resource “aws_s3_bucket” "frontend bucket” {
acceleration status = (known after apply)
acl = (known after apply)
arn = (known after apply)
bucket = "hrishin-test-111"
bucket_domain_name = (known after apply)
bucket_prefix (known after apply)
bucket_regional_domain_name = (known after apply)
force destroy = false
hosted zone id = (known after apply)
id = (known after apply)
= (known after apply)
= (known after apply)
region = (known after apply)
request_payer = (known after apply)
tags all = (known after apply)
website domain = (known after apply)
website endpoint = (known after apply)

Figure 3: TF plan output

f Jenkins Q @ 0 ® U@ @ HrishinSuresh~ 3 log out

Dashboard terraform-project #16
B sous (© Build #16 (Nov 18, 2024, 9:19:11 AM) Keep this buid forever
<[> Changes Started 15 days ago

/ Add description Took 2 min 29 sec

Console Output

Build Artifacts
1
(Edit Build Information @ @ trivy-main-tf-reporttt 0B & view
W Delete build ‘#16' N
Started by user Hrishin Suresh
== Parameters
o T @ This run spent:
imings

« 90 ms waiting;
Q> Gt Build Data + 2 min 29 sec build duration;
+ 2 min 29 sec total from scheduled to completion.
% Pipeline Overview
.. Revision: 817430199657adffaaad740246ee143820a4511b
Pipeline Console Ogit pository: hitps://g c ishin0/j pipeline-thesis.git

&> Replay « refs/remotes/origin/master
2 Pipeline Steps
B3 Workspaces

€ Previous Build

-> Next Build

Figure 4: Trivy report on Jenkins dashboard

& Jenkins\. jenkins' pace\terraform-project>trivy image --severity HIGH,CRITICAL --exit-code 1 --format table -o trivy-docker-image-report.txt iac-scanning:latest
2024-12-01T19:26:067 INFO
2024-12-01T19:26:067 INFO

vuln] Vulnerability scanning is enabled
secret] Secret scanning is enabled

2024-12-01T19:26:06Z INFO
2024-12-01T19:26:12Z INFO

secret] Please see also https://aquasecurity.github.io/trivy/v0.57/docs/scanner/secretére

8
[

2020-12-01T19:26:06Z INFO [secret] If your scanning is slow, please try '--scanners vuln' to disable secret scanning
[ation for faster secret detection
[

python] License acquired from METADATA classifiers may be subject to additional terms na " version="23.0.1"

2024-12-01T19:26:12Z INFO [python] License acquired from METADATA classifiers may be subject to additional terms name="setuptools” version="58.1.0"

2024-12-01T19:26:15Z INFO Detected 0S family="debian” version="12.8"
2024-12-01T19:26:15Z INFO [debian] Detecting vulnerabilities... os_version="12" pkg_num=105
2024-12-01T19:26:15Z INFO Number of language-specific files num=2

2024-12-01T19:26:152 INFO [gobinary] Detecting vulnerabilities. ..
2024-12-01T19:26:15Z INFO [python-pkg] Detecting vulnerabilities...
2024-12-01T19:26:15Z WARN Using severities from other vendors for some vulnerabilities. Read https://aquasecurity.github.io/trivy/v0.57/docs/scanner/vulnerability#severity

ion for details.

2024-12-01T19:26:152 INFO Table result includes only package filenames. Use ‘--format json' option to get the full path to the package file.

Figure 5: Trivy finding vulnerabilities

Next, we can create and run the pipeline on Jenkins which has been hosted on the localhost port
8080. The pipeline can be run with autoApprove enabled for convenience, but having it disabled is
recommended for security. Once run, if the Trivy stage has successfully executed, the report can be seen
from the Jenkins dashboard for that build. The pipeline will fail if any vulnerabilities are detected by
Trivy

The "terraform state list” command can be executed to show all the aws services that have been
created.

The pipeline will pass the sonarcloud analysis stage only if the sonarcloud quality gate has passed.
To see this, we can refer to the dashboard on the sonarcloud website.

Once the services have been deployed to AWS, go into the API gateway that was deployed, click
Stages in the left side bar and copy the invoke url for the /students tab. Once copied, paste this into
the scripts.js file under the APT ENDPOINT and upload this new scripts.js into the S3 bucket.

Next, go to API Gateway and configure method responses, as well as set the integration response on
POST route to normal. Default setting will be ” Lambda proxy integration”. Once this is done, enable
CORS for the /students route and deploy the API again and the application will work as expected. The
application can be accessed via the s3 bucket url which is also given as the output of the pipeline.

Datadog can be set up as per necessity by following the normal instructions on the datadog website

for AWS Lambda.

ERROR: script returned exit code 1
Finished: FAILURE

Figure 6: Pipeline failing when Trivy detects vulnerabilities

@ < Build #16 > D> Rebuild Console Configure

Pipeline 7 Details

& Manually run by Hrishin Suresh

Start Checkout SCM checkout Trivy Terraform S... SonarCloud Ana... Plan Approval Apply End

O ©r @ © 0} o © Started 16 days ago

& Queued35ms

© Took 2 min 29 sec

Figure 7: Pipeline overview on completion

PS C:\Users\Hrishin‘\Desktop\Robot> terraform state list
aws_api pateway deployment.deploy
aws_api gateway integration.cors integration
aws_apl gateway integration.getIntegration
aws_apl pgateway integration.postIntegration
aws_apl pgateway integration response.cors integration response
aws_apl gateway method.cors options
aws_apl gateway method.get student method
aws_apl gateway method.post student method
aws_api gateway method response.cors method response
aws_apl gateway resource.student_resource
aws_api_gateway rest api.student api
aws_api gateway rest api.student api
aws_api gateway stage.prod
aws_dynamodb table.todo table
aws_iam role.lambda role
aws_iam role policy.lambda policy
aws_lambda function.lambda func 1
aws_lambda function.lambda func 2
aws_lambda permission.apigw lambdaget
aws_lambda permission.apigw lambdapost
aws_s3 bucket.frontend bucket
bucket object.index himl

Figure 8: terraform state list command output

@sw}‘aroube MyProjects Mylssues Explore Q P o + w

Cloud

Hrishin0 > jenkins-pipeline-thesis > § master

A The last analysis has warnings. See details

Summary Issues Security Hotspots ~ Measures Code Activity

Main Branch Summary 404 Lines of Code @

Main Branch

" Struggling with too many issues? Discover ‘Clean as You Code'!
11 PullRequests

Quality Gate: Last analysis 15 hours ago - 7

Passed
New Code Overall Code

New code Since 16 days ago

New Issues Accepted Issues

@ Information e Valid issues that were not fixed

& Administration
[Duplications Security Hotspots

Th not enough li a 0.0%
& Collapse

Figure 9: SonarCloud analysis

C S Beanstalk @) Clouds] Codepipeline [Lambda @) CloudFront) Dynamobs [if] API Gateway
e APIGateway > APIs > StudentAPl (097g45kzia) > Stages ® °
API Gateway <

Stages =
APls
Custom domain names Updated Method overrides
L1 prod

Domain name access associations New

2/ By default, methods inherit stage-level settings. To customize settings for a method, configure method overrides.

VPClinks

[/students
@ This method inherits its settings from the ‘prod stage.
GET

¥ API: StudentAPI OPTIONS

Resources POST Invoke URL

(=} tte-api.eu-west-1 n:
Stages
Authorizers

Gateway responses
Models

Resource policy
Documentation
Dashboard

APl settings

Figure 10: Invoke Url on API Gateway

API_ENDPOINT

Figure 11: API Endpoint

e APl Gateway > APls > Resources - StudentAPI (097g45kzia)

API Gateway < @ successfully enabled CORS

» Details
APIs

Custom domain names Updated

Domain name access associations New Resources Deploy API

VPC links
Resource details (_update documentation) ((_enable coRs)
¥ APL: StudentAPI ay Path Resource ID
Resources T /students whgnia2
students
Stages

GET
Authorizers

Methods (3)
Gateway responses

poST

Models Method type 4 | Integration type v | Authorization v | APlkey v
Resource policy

O e Lambda None Not required
Documentation
Dashboard O OPTIONS Mock None Not required

Ll

APY settings O posT Lambda None Not required

Usage plans
APl keys
Client certificates

Settings

Figure 12: Enable CORS

Y¢ AWS Lambda ~
aws_account— region | function— _ resource | executedversion

- 1h Past 1 Hour

Invocations Errors.

Want real-time metrics on AWS Lambda errors, cold starts, memory usage, and
cost? Enable enhanced Lambda metrics and browse to the AWS Lambda
(Enhanced Metrics) default dashboard.

Actions

& share

g - «n» Q

Lambda Function Manager: Explore and re-run lambda functions using App B...

See Lambda integration documentation. And learn more about the resource (No data) {No data)

and executedVersion tags. This app is populated

@ with demo data. Add a
connection to use your
data,

Invocations

Top invoked functions Slowest functions Functions with most errors
No Data No Data No Data
Invocations by function P95 execution time by function Errors by function
150 150 150
100 100 100
s s0 50
2245 2500 2ns 230 2245 2500 25 250 2245 2300 25 250
Invoked functions per hour 24 Max execution time / timeout. Error logs by function
i o 9etstudent 150
100
05

o insertstudent

Figure 13: Datadog Dashboard

Learn More

	Introduction
	System Requirements
	Hardware
	Software
	Tools and Libraries

	Configuration

