
Configuration Manual For Research Project on Infrastructure as

Code Tools for Security of Serverless Deployments.

Hrishin Suresh
x23159596

Research in Computing
National College of Ireland

December 11, 2024

1 Introduction

This research focuses on the creation of a pipeline for securely deploying serverless applications using
Terraform which is an Infrastructure as Code tool developed by Hashicorp. The AWS services used are
Lambda, S3 bucket, API Gateway and DynamoDB for the serverless application. Along with this a
Jenkins pipeline has been used with a variety of security scanning tools which will be explored in the
following sections.

2 System Requirements

2.1 Hardware

The hardware used for this research is a Windows 10 laptop equipped with 16GB of dual-channel DDR4
RAM, configured as two 8GB sticks. The processor is an AMD Ryzen 7 4800H which is an 8 core CPU
running at 2.9GHz. An NVidia GeForce GTX 1650 is the graphics card used with 4GB of memory. Since
there is not much processing happening on the local machine, any decent computer with atleast 8GB of
RAM and storage to have Docker and Jenkins running in the background will work just as well.

2.2 Software

All the code for this research was done on VSCode with a local Jenkins server running on port 8080
for deployment of the pipeline. Docker Desktop is also running in the background to create a docker
image of the IaC files. A zip utility like 7zip is also required to zip the python files for uploading to
Lambda. There is no other software installed for this research. Everything else that was used is cloud
based like AWS services and Datadog and none of these require any additional downloads. Jenkins,
however, requires the installation of multiple plugins for integrating security tools into the pipeline.

2.3 Tools and Libraries

AWS cli - v2.18.3 or higher
Terraform - v1.9.7
Boto3 - v1.35.44 or higher

3 Configuration

The code can be written in any code editor, but VS code has been used due to its widespread support
for extensions and plugins. Once written, the code can be uploaded to Github.

Once the code has been successfully pushed to Git, we can check the output of the ”terraform plan”
command to see what services will be created, and whether there are any errors before deployment.

1



Figure 1: Code written in VSCode

Figure 2: Code as seen on GitHub

2



Figure 3: TF plan output

3



Figure 4: Trivy report on Jenkins dashboard

Figure 5: Trivy finding vulnerabilities

Next, we can create and run the pipeline on Jenkins which has been hosted on the localhost port
8080. The pipeline can be run with autoApprove enabled for convenience, but having it disabled is
recommended for security. Once run, if the Trivy stage has successfully executed, the report can be seen
from the Jenkins dashboard for that build. The pipeline will fail if any vulnerabilities are detected by
Trivy

The ”terraform state list” command can be executed to show all the aws services that have been
created.

The pipeline will pass the sonarcloud analysis stage only if the sonarcloud quality gate has passed.
To see this, we can refer to the dashboard on the sonarcloud website.

Once the services have been deployed to AWS, go into the API gateway that was deployed, click
Stages in the left side bar and copy the invoke url for the /students tab. Once copied, paste this into
the scripts.js file under the API ENDPOINT and upload this new scripts.js into the S3 bucket.

Next, go to API Gateway and configure method responses, as well as set the integration response on
POST route to normal. Default setting will be ”Lambda proxy integration”. Once this is done, enable
CORS for the /students route and deploy the API again and the application will work as expected. The
application can be accessed via the s3 bucket url which is also given as the output of the pipeline.

Datadog can be set up as per necessity by following the normal instructions on the datadog website
for AWS Lambda.

Figure 6: Pipeline failing when Trivy detects vulnerabilities

4



Figure 7: Pipeline overview on completion

Figure 8: terraform state list command output

5



Figure 9: SonarCloud analysis

Figure 10: Invoke Url on API Gateway

Figure 11: API Endpoint

Figure 12: Enable CORS

6



Figure 13: Datadog Dashboard

7


	Introduction
	System Requirements
	Hardware
	Software
	Tools and Libraries

	Configuration

