
Cost optimization for I/O intensive workload
in FaaS

MSc Research Project

Cloud Computing

Utkarsh kumar singh
Student ID: x22229698

School of Computing

National College of Ireland

Supervisor: Dr. Shivani Jaswal

www.ncirl.ie



National College of Ireland
Project Submission Sheet

School of Computing

Student Name: Utkarsh kumar singh

Student ID: x22229698

Programme: Cloud Computing

Year: 2024

Module: MSc Research Project

Supervisor: Dr. Shivani Jaswal

Submission Due Date: 12/12/2024

Project Title: Cost optimization for I/O intensive workload in FaaS

Word Count: XXX

Page Count: 19

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature: Utkarsh kumar singh

Date: 29th January 2025

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). □
Attach a Moodle submission receipt of the online project submission, to
each project (including multiple copies).

□

You must ensure that you retain a HARD COPY of the project, both for
your own reference and in case a project is lost or mislaid. It is not sufficient to keep
a copy on computer.

□

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):



Cost optimization for I/O intensive workload in FaaS

Utkarsh kumar singh
x22229698

Abstract

FaaS is the most popular software paradigm in cloud computing world, and it’s
adoption is increasing day by day. FaaS provides a lucrative option for companies,
government and individual developers as it is based on pay as you go model instead
of traditional model where customers has to reserve the resource for specific period
irrespective of whether the resource is idle or in use. FaaS billing model is based
on function execution time, memory and CPU usage. This model works well for
CPU computation workload whereas it fails when workload is I/O intensive where
CPU and memory are not utilized fully thus leading to unfair charges to customer
for these underutilized resources. In this project an framework is proposed where
workload is divided into two parts, where first one is CPU intensive workload and
other is I/O intensive workload which are executed separately. Amazon Kinesis
is leveraged for its scalability, deduplication and high throughput for dynamically
adjusting resources of lambda function with the help of machine learning to predict
memory and timeout of lambda function. AWS Cloudwatch is used to monitor
timeout of lambda function if lambda function is timeout, alarm is triggered and
model is trained again. The proposed framework has saved cost by 16%-32% for
specific type of I/O intensive workload.

1 Introduction

In today’s world cloud computing is becoming mainstream platform for everyone where
companies are relocating resource from in-house to cloud due to several benefits offered
by it in terms of scalability, reliability, cost, security and ease of use. AWS EC2 (Elastic
Compute Cloud) is first cloud service offered by AWS which revolutionized the computing
world, with EC2 amazon has solved two problems one of which is additional infrastructure
for handling demand during peak season of Christmas, while in off season period rent
out the excess infrastructure to others. EC2 was introduced nearly two decades ago,
computing world has gone through many changes and the latest offering is serverless
computing. Serverless computing lets developer focus on coding part only where all
the infrastructure is managed by cloud service providers while also ensuring scalability ,
reliability and security. These benefits make it very lucrative options for everyone.

One of the most important factor is the cost of hosting on cloud and it is vastly
cheaper when compared to in-house due to economy of scale. One of the latest offering
from cloud service providers is serverless, where pay-as-you-go model is implemented in
which customer is charged only for duration of program (function) execution, thus leading
to larger cost saving due to not being charged for idle periods. Serverless function offload
the responsibility of managing infrastructure to cloud service providers, while also offering

1



to quickly launch product by reducing development time significantly but it can also raise
the development cost rapidly if serverless functions are not managed properly. If serverless
function is allocated large amount of memory it will drive up the cost if memory is not
utilized efficiently, whereas if too little memory is allocated it will slow down the execution
which will increase the total execution time of function thus increasing the cost. Hence,
there is need to find optimal configuration of serverless function to get most out of it.

Though most of cost optimization research is done in field is related to scheduling
algorithms, optimal resource allocations, reducing cold start time etc. which benefits
mainly CPU intensive workloads as the pricing model is based on CPU, memory and
function runtime. This research focuses on reducing cost of I/O intensive workloads in
serverless paradigm which is overlooked due to nature of serverless pricing model, thus
leading to unfair bill due to under utilization of CPU, memory which is primary factor in
current billing model. The aim is to reduce to the cost of I/O intensive workloads while
also providing an alternative billing model which is fair to both users and cloud service
providers.

In present most of research is focused on optimizing the cost on the basis of resource
utilization which are CPU usage, memory as these two resource are main deciding factors
in current billing model of cloud service providers. Various approaches are taken for
optimizing cost such as function fusion where authors have combined set of function into
one function thus reducing the total number of invocations. One of approaches is to use
combination of Infrastructure as a Service (IaaS) and FaaS to lower cost at reasonable
performance. Another study explore in area of hybrid cloud, by the help of public and
private clouds where cost is reduced by placement of function in private cloud from public
cloud while maintaining sufficient performance, it is achieved by greedy algorithm which
decides whether function will be placed in public or private cloud. Lastly some studies
have implemented optimal configuration with the help of machine learning to reduce cost.

In this research, a framework is proposed where workload is made up of CPU intensive
and I/O intensive tasks which will be executed by different lambda function with optimal
configuration. The workload has sample CPU intensive calculation and performing data
transformation. The execution time along with other parameters are pulled from server-
less function logs to form dataset on which machine learning model is trained which will
suggest optimal configuration on subsequent invocations. By providing insights gained
from this research, the goal is to maximize utilization of resources while keeping cost in
mind. This research aims to provide key findings in field of serverless computing which
can be valuable for both academic and practical works.

1.1 Research Question

What are the ways of cost optimization for I/O intensive workload in Function as a service
paradigm?

• Divide the complex workload into CPU intensive workload and I/O intensive work-
load.

• Dynamically adjust configuration of lambda function.

• Using Sagemaker to build,train and deploy Machine learning model which will pre-
dict optimal configuration.

2



• Using Elastic file system to share CPU intensive workload code between lambda
function.

• Evaluate the optimization strategies implemented and their effectiveness.

• Leveraging event driven architecture to coordinate between different AWS services.

1.2 Ethics Consideration

This study does not include human subjects or private/public datasets, as per Table 1.

Declaration of Ethics Consideration Table Yes / No
This project involves human participants No
The project makes use of secondary dataset(s) created by the researcher No
The project makes use of public secondary dataset(s) No
The project makes use of non-public secondary dataset(s) No
Approval letter from non-public secondary dataset(s) owner received No

Table 1: Declaration of Ethics Consideration Table

1.3 Document Structure

The document is structured as follows in this research paper, where section 1 does in
detail about background of cloud computing and evolution of from IaaS to FaaS. What
are the current problems in serverless computing? Gives overview of proposed solution.
Literature review is in Section 2 where various papers referenced each solving different
parts of research question, it serves as starting point of research as it provide summary of
research till date. It is important point of reference for different strategies implemented
by researcher, along with what approaches have been taken along with its finding and
gap in research. In Section 3 goes in detail about Methodology and Design Specification.
Design specification is discussed in Section 4. Implementation is discussed in Section 5.
In Section 6 experimentation results are discussed and lastly conclusion and future work
is mentioned in 7.

2 Literature Review

2.1 Resource and cost management

Following papers Dittakavi; 2021 and Spillner (2020) have worked on resources manage-
ment. In Spillner; 2020 paper author discussed on current problem faced by customers
where they can only choose from predefined configuration offered from cloud service pro-
viders. To reduce the wastage of unused memory authors have proposed a solution which
consist of three parts. First is to closely monitor the resource usage of function over period
of time which will be used to create trace profile. Second is auto tuning of memory alloc-
ation for docker based applications where container can free up memory in advance which
could be utilized by another container which result in increase of containers numbers thus
allowing vertical scaling. Third is cost comparison of optimization vs base FaaS.

3



In paper Dittakavi (2021) there are 3 strategies is discussed to reduce the cost and
managing resources effectively. First is cloud/VM based technique where various con-
figuration is explored for different use cases and based on these different models and
algorithm are proposed. Second is workflow techniques, where workflow is analysed also
known as pre-processing stage then it is continuously monitored where resource is al-
located/deallocated ensuring efficient execution depending on current workload. Lastly,
placement of task ensuring sufficient resources are allocated, i.e. memory, CPU etc. this
achieved by ILP technique and Multi-cost job routing and scheduling. In third strategy
two distinct approaches are discussed one focused on efficient consumption of energy and
other focuses on where scheduler focused on budget constraint and allocated resources
which is under user budget.

Management of cloud resources is necessary for reducing expense of cloud , in data
intensive workloads where most part of execution is read, write, create, delete and update
of large volume of files, heavy media files and operation in database.

2.2 Cloud storage

In data intensive I/O workloads storage is key component as data, files are being read
and written throughout the process. By optimizing the cost of storing of files and data
it will bring down the overall cost of data intensive I/O workloads. The following papers
(Borovica-Gajić et al.; 2016; Klimovic et al.; 2018) are in area of optimizing cost for data
analytics applications using multi tier storage system.

This paper (Borovica-Gajić et al.; 2016) discuss in detail about how multi tier storage
architecture could be used to bring down the cost when performing data analytics. In
paper author have proposed Skipper architecture where it scale and perform better than
traditional architecture when cold storage devices are used as primary storage. It takes
advantage of greedy heuristics algorithm for efficient caching, scheduling algorithm which
is based on rank and leveraging out of order execution for reducing switch latency. The
paper discusses in details about using cold storage devices for data analytics to reduce
the overall cost. Same could be implemented in FaaS using cold storage devices to lower
the overall cost.

Following study (Borovica-Gajić et al.; 2016) is about Pocket which provides high
throughput while using multi tier storage system for serverless platform with minimal
latency. Pocket is able to adjust its parameter dynamically based on current usage
pattern.

2.3 Caching

Caching is used to solve one of the biggest problem in serverless computing that is cold
start. In cold start whenever serverless function is called for first time, there is delay
because function instance need to be created first then boot it up to serve request. The
delay is commonly known as cold start. Cold start causes overhead in current system
which results in degraded performance of serverless function due to increase in latency.
Cold start problem is solved by various researcher, one of such studies (Fuerst and Sharma;
2021) uses greedy dual algorithm to achieve 3 times more reduction compare to other
approaches by introducing FaasCache. FaasCache can dynamically adjust its cache size
based on workload and its keep alive is based on greedy dual policy resulting in increase
in request capacity by two fold.

4



In (Wu et al.; 2020) study, a caching layer is introduced along with FaaS compute
layer. This caching layer is known as HydroCache. It is built upon Anna(Wu et al.; 2019),
a key-value store. Anna focuses on four things, one is sharding of key value store across
various nodes for data scaling, second is using multiple masters for workload scaling where
single key can be accessed to multiple threads, third is asynchronous message passing
where there is no locking to ensure no waiting period for execution and lastly support
for large number of system. In FaaSTCC(Lykhenko et al.; 2021), authors enhances on
HydroCache(Wu et al.; 2020) by storing multiple copies of cache in storage then picking
the most recent one to reduce execution latency of transaction, this is achieved by reducing
the size of metadata which is then passed between function through workers. Consistency
in FaaSTTC is achieved by using storage layer which ensures consistent value is returned.

2.4 Pricing models

Cost optimization is main objective of this research to understand how cloud service
providers implement it. This topic is researched by various researchers with different
objective but common point is pricing model. In one of paper (Mahajan et al.; 2019)
authors have explored the pricing of service offered by cloud service providers from per-
spective of customers and providers. By using Nash equilibrium theory(Chen; 2007) to
find optimal strategy for player while keeping others strategy in mind, so that it will be
win-win situation for every player involved. Authors objective is to find optimal price at
which it is affordable for customer while remains profitable for cloud service providers.
For comparison, authors have taken 3 categories first is serverless only, second is virtual
machine only and last is combination of both serverless and virtual machines.

In paper (Liu and Niu; 2023) authors have explored auctioning of serverless function
similar to auctioning of EC2 instances currently. An analytical model is for maximum
profit and utilization of resources which takes both users and cloud service providers
interest in account. It compares pricing scheme of all major cloud service providers.
Authors have compared IaaS (Infrastructure as a Service) and FaaS on various metrics
such as memory utilization and expense and came up with future function pricing.

2.5 Performance

One of best area to optimize cost is to do optimization in area of performance. In
paper(Suo et al.; 2021), HotC framework is proposed by authors to mitigate cold start
of serverless functions. HotC achieved this by wrapping all function in alpine container
which is light weight in nature. It uses translation lookaside buffer and hot cache taking
advantage of storage volume provided for each container. These container are kept in
memory by HotC framework.

Performance is indirectly related to cost, it is been observed that in cases of per-
formance optimization there is net positive in cost reduction in most cases. Authors in
paper(Suo et al.; 2021) used containers for serving request between client and backend
servers, where existing container with suitable configuration is searched if its not avail-
able new container with desired configuration is booted up. After executing request HotC
framework will cleanup the environment for future request, this container is maintained
in pool of containers. Even though there are number of containers are in active state in
pool, the overhead for running these resources is very less. By using same container to
server requests caching can be leverage to further improve resource utilization.

5



2.6 Big data

In serverless architecture it is very difficult to implement big data framework due to
timeout limitation which in case of AWS lambda is 15 minutes. Serverless functions
are stateless in nature which is another drawback as big data need to keep the context
and metadata. Both stateless nature and timeout issue are two major drawbacks when
performing big data task in serverless environment. In many studies, various researcher
have addressed this problem by proposing different frameworks. One of such study (Cai
et al.; 2024) have implemented SPSC framework to process data in real time. It breaks
down data into small parts, which are coming from AWS S3 in real time via streaming,
these small parts are called atoms. These atoms are then sent to AWS SQS (Simple Queue
Service) which is then forwarded to serverless function for further processing. In the end,
processed result is then saved into AWS Dynamo database. In paper (Werner et al.;
2018), using AWS step function as central component to perform matrix multiplication
using serverless functions.

2.7 Related works findings

Research Papers Problem Areas Potential Finding Gaps
Spillner (2020) Inefficient memory al-

location in serverless
Developed tools for
tracing memory, pro-
filing it, and auto tune
it.

Limited to Docker
based system.

Dittakavi (2021) Resource and cost
management in cloud
computing environ-
ments

Optimization
strategies for VM,
workflow-based.

Lack real time ad-
aptability and large
computation power
needed for model.

Ana Klimovic et al.
(2018)

Challenges in storage
for serverless analytics

Pocket framework for
data intensive work-
load using FaaS

For specific type of
workload only

Renata Borovica-
Gajic et al. (2016)

Cost effective and low
latency solution for
cold data

Skipper framework is
created for querying
over cold storage
device

Requires modification
in database system

Alexander Fuerst
and Prateek Sharma
(2021)

Cold-start problems in
FaaS

Tackled cold start
problem by using
caching layer and
keep alive policy for
serverless function

Only works on selec-
ted workload type

Chenggang Wu,
Vikram Sreekanti,
and Joseph M. Heller-
stein (2020)

Caching solution in
serverless paradigm.

HydroCache is pro-
posed where cache
layer is shared among
serverless functions.

Increase in overhead
in dynamic transac-
tion.

6



Taras Lykhenko, Ra-
fael Soares, and Luis
Rodrigues (2020)

Built upon Hy-
droCache for any type
of workload

FaaSTTC ensure
transactional causal
consistency in cache
layer for dynamic
workload

Complex setup and in-
tegration with exist-
ing cloud service pro-
viders.

Chenggang Wu, Jose
M. Faleiro, Yihan Lin,
and Joseph M. Heller-
stein (2019)

Key-value store in
cloud

Implemented Key-
Value store called
Anna which is con-
sistent and scalable

Due to coarse grained
replication and
manual deployment it
is inefficient.

Kunal Mahajan et al.
(2019)

Pricing models in
serverless comput-
ing for customers
and cloud service
providers

Using FaaS, VM and
FaaS -VM hybrid to
achieve best outcome
for both customers
and cloud service
providers

Lack of research in
case of hybrid cloud

Fangming Liu and
Yipei Niu (2023)

Pricing models in
serverless comput-
ing for customers
and cloud service
providers

Developed analytical
model for auctioning
serverless functions.

Complexity in imple-
menting dynamic pri-
cing models

Sebastian Werner et
al. (2018)

Matrix multiplication
in big data using FaaS

Cost optimization of
big data workload in
FaaS

Limited to specific
data type which
need to considered
beforehand.

Kun Suo et al. (2021) Cold start problem in
FaaS

HotC framework to
solve cold latency with
the help of containers

Unable to handle
complex workloads
and load balancing
between containers is
missing

Zinuo Cai et al.
(2024)

Big data stream pro-
cessing using server-
less computing

Using AWS S3, SQS,
Lambda and Dy-
namoDB to process
big data in real time.

SQS is limiting factor
in terms of latency.

Table 2: Related works findings

3 Methodology

3.1 Research approach

In this research various AWS service are used to investigate and evaluate whether op-
timizations is effective. The primary objective is to reduce the cost in lambda function
with the help of other AWS services while making sure there is no significant drop in
performance and reliability.

Static configuration of lambda function can either lead to high bills due to excessive
memory allocated or performance degradation if very little memory is allocated .First
to predict the configuration of lambda function based on file metadata such as size a

7



dataset is derived from previous run manually. This dataset is then used as input in
XGBoost with MultiOutputRegressor model to predict both memory and timeout. Next
step is preprocessing which make sure that data quality is good .After training the model
, it is deployed on Sagemaker endpoint using Sagemaker studio. Model make prediction
based on file metadata and configuration of lambda function is updated in real time.
Cloudwatch logs are continuously monitored and model is trained at regular interval.

In addition, for handling CPU intensive workload the code is extracted from main
lambda function saved into EFS then loaded from their to another lambda function
where it is finally executed. This separation of CPU intensive workload and I/O intensive
workload ensures that less resource are used for I/O intensive workload thus saving cost.

3.2 Services

Following AWS services are used in this research.

3.2.1 AWS Kinesis

AWS Kinesis is selected for its high throughput data streaming for message passing where
it ensure every message is processed exactly once and independently. AWS Kinesis offer
ultra low latency which is capable of handling large amount of data streamed from various
different sources. Due to mentioned feature it is used for create application which stream
data in real time for analyzing thus allowing for real time data analysis instead of batch
processing of data after some time.

3.2.2 AWS Lambda

AWS lambda is main component of this research, as objective of this research is to do
cost optimization in serverless computing. In AWS lambda developers can write and
execute code without worrying about managing infrastructure. In this user is only billed
for duration of function execution. It allows deployed function to automatically scale up
or down depending on demand. It is used to create event driven application.

3.2.3 AWS Cloudwatch

AWS Cloudwatch is monitoring service provides by AWS which is used to measure re-
sources or service performance in form of metrics and logs. In Cloudwatch, there are
alarms which can be used to notify through AWS SNS (Simple Notification Service),
email and trigger various services such as lambda function to based on condition set in
alarm. AWS Cloudwatch allow user to visualize data in form of graphs. It can be used for
live trailing of logs from resources such as lambda function. Cloudwatch allows developer
to automate operation based on logs, alarms, insights and network monitoring. Due to
these feature it allows top down view of whole system.

3.2.4 AWS Simple Notification Service

AWS SNS is publisher and subscriber messaging service offered by AWS. It is used to
send encrypted message across various subscriber at once, these subscribers can be other
application or person. With the help of Dead letter queue failed message can be processed
later along with analysis of why its failed. AWS SNS allow message retires if it failed

8



Figure 1: Architecture

9



once, saving it for future analysis or replaying it. SNS allow developer to set policies to
discover personal identifiable information in accordance with regulation and compliance.
SNS offer filter, using this only selected subscriber receive message based on filter criteria.
It works well with event driven architecture such as AWS Lambda.

3.2.5 AWS S3

AWS S3 (Simple Storage Service) is known for durability, scalability and availability. It
offer security in form of encryption and policies. S3 also allow to audit request made to
S3 and along with it is complaint with programs such as GDPR, HIPAA, PCI etc. S3
also offer archival service at minimal cost where objects can be attached with life cycle
policies for regulatory and compliance purpose. S3 allows minimum 3500 request per
second for write operations and 5500 request per second for read operation. AWS S3
works on read after write policy which ensure data consistency, where latest version of
object is provided for all request after write operation.

3.2.6 AWS Sagemaker

AWS Sagemaker is serviced offered by AWS for machine learning and AI (Artificial in-
telligence). It offer additional feature when compared to traditional machine learning
tools where everything is at one place such as model building, training and deployment.
It incorporates other service such as AWS Bedrock, AWS Athena, AWS Glue etc. It
offer various applications and IDE (Integrated Development Environment) such as Note-
books, RStudio, Profiler etc. It allows to monitor model performance, management of
model version etc.

3.2.7 AWS EFS

AWS EFS (Elastic File System) is storage service offered by AWS which is fully elastic
in nature and built on serverless paradigm. It provides data throughput of gigabytes per
second and allow to store petabytes of data. It gives 99.999999999 percent durability and
offer 99.9999 availability. Due to it serverless nature it also uses pay as you go model.
AWS EFS is fully managed service. It also offer three tier of storage classes depending
on frequency of access of data which are standard, archive and infrequent access. It offer
lifecycle management of data , where if data is not accessed recently it is moved to lower
tier of EFS i.e. EFS Infrequent Access and EFS Archive. It provide other feature such as
replication of data to another file system, backup service, security with the help of VPC
and encryption of data at rest and in flight data.

3.2.8 AWS VPC

AWS VPC (Virtual Private Cloud) is a service where various different resources are con-
tained in environment and separated logically. Due to its separation it provides improve
security and control over environment by allowing advance traffic management.

4 Design Specification

In figure Figure 1 the architecture of framework is shown.The following are design spe-
cification for optimizing cost of complex workload, especially for I/O part. It consist of

10



AWS services,machine learning model and feedback loop. At core AWS lambda as orches-
trator where it performs three task, first is using machine learning to make configuration
(memory and timeout) prediction of lambda function, second is periodic learning of ma-
chine learning model through logs saved in AWS S3 collected from AWS Cloudwatch and
lastly separation of CPU and I/O intensive workloads, where CPU intensive workload is
extracted and saved into EFS then load from EFS and execute it thus decoupling the
workload allows better scalability and efficiency.

AWS Cloudwatch is used for gathering metrics such as billed duration, maximum
memory usage, initialization duration and errors. Whenever timeout happens in lambda
function , an automated trigger will notify about failure via AWS SNS and this incident
will be added in dataset to further enhance machine learning model. This feedback
loop ensure that machine learning model is trained with new data at regular interval for
learning new workload patterns thus improving machine learning model accuracy.

AWS Sagemaker studio is used to build,train and deploy machine learning model to
predict optimal configuration of lambda function for I/O intensive workloads. It takes
file size and latency as input and predict memory and timeout parameters. Using AWS
Sagemaker, model is deployed at endpoint so that lambda function can query it for real-
time prediction. AWS S3 is used to store dataset and models artifact. By combining
machine learning, dynamic execution of workload and feedback loop ensures that system
is cost effective and scalable.

5 Implementation

The implementation of Cost optimization for I/O intensive workload in FaaS has been
described in this section.

5.1 Dataset Preparation

The first step is dataset preparation, which involves collecting logs from lambda function
using AWS Cloudwatch. Metrics such as file size, latency, memory usage, billed duration
and error are collected from log as shown in Table 3. For this research, dataset was cre-
ated by running lambda function which is handling I/O intensive workload by creating
dummy text files with small case characters. These files are of different sizes such as 50
MB, 100 MB, 150 MB, 200 MB, 250 MB etc. These files are processed against differ-
ent memory configuration ranging from 128 MB - 2034 MB. After execution of lambda
function there are some cases where lambda function timed out which are recorded in
error column. Latency column tell about latency between AWS S3 and lambda function.
Column max memory used record the maximum amount of memory used by lambda
function during execution. Column billed duration is used to calculate cost column for
each lambda request. The total cost of lambda is calculated using formula 1. Feature
scaling is done to ensure consistency and to avoid bias in model training with the help of
standardization and normalization.

Total Cost = billed duration×max memory used× 0.0000166667 + 0.0000002 (1)

where:

• billed duration: Execution time in seconds (rounded up).

11



• max memory used: Memory allocated during execution (in GB).

Table 3: Logs DataFrame

Column Dtype
request id object

function name object
memory size int64
duration float64

billed duration int64
max memory used int64

error bool
cost per request float64

latency ms float64
file size mb int64

init duration ms float64

5.2 Model Training and Deployment

Dataset is pulled from AWS S3 and it is trained using XGBoost because it can capture
non-linear relation between input and output feature as show in Table 4. MultiOutpu-
tRegressor is used as wrapper around XGBoost algorithm for predicting multiple value.
The data is then split into 80-20 ratio for training and testing. After training is completed
model, standard scaler and min max scaler are serialized using joblib library, then these
are packaged into tar.gz archive and uploaded to AWS S3. Later, this archive is pulled
from AWS S3 for deploying to Sagemaker endpoint.

Table 4: Features

Input Features Output Targets
file size mb max memory used
latency billed duration

5.3 Controller Lambda

Controller lambda function is main lambda function which is main orchestrator, where
CPU workload and I/O workload is identified. These workload are then forwarded to
different lambda function each specializes in handling respective workload. Controller
also calculate the I/O lambda configuration using AWS Sagemaker endpoint which is
mentioned in Table 4. Controller then forward the predicted configuration to AWS Kinesis
stream. For CPU intensive workload, a payload is sent to lambda function which contains
function name which need to be executed along with updating configuration same.

12



Figure 2: CPU intensive Workload

13



5.4 CPU intensive Workload

This workload is carried out by two lambda functions which have shared AWS EFS for
sharing code and variables. First lambda extract the workload code from controller with
the help of function name received from controller lambda in payload. It will extract
the code and save it to AWS EFS in python executable file along with json which will
contain variable information. At last, the First lambda will invoke second lambda by
sending AWS EFS file path of extract code and json in payload.

Second lambda will extract function and variable json file path from AWS EFS. Us-
ing Python importlib and used it to create module from specification and execute it.
Workflow is shown in Figure 2.

5.5 Kinesis consumer lambda

Consumer lambda is used to consume records from AWS Kinesis which contains the
configuration of I/O intensive workload lambda discussed in 5.6. It ensure that each
record is processed only once based on sequence number. Once the configuration of I/O
intensive workload lambda is updated successfully, it will invoke it.

Figure 3: I/O intensive workload

5.6 I/O intensive Workload

I/O intensive Workload lambda will then perform read and write operation on disk by
transforming data. Finally, logs will all metrics will be printed in AWS Cloudwatch for
further training the model. The workflow is shown in Figure 3

5.7 Feedback

Model needs to be trained regularly on updated dataset, if predicted configuration causes
timeout issue in I/O intensive Workload lambda function it need to be taken in account
for training the model next time to avoid making same mistake. Feedback mechanism is
implemented using AWS Cloudwatch. An alert is setup where it will go through logs of
I/O intensive Workload function and check if there is any timeout. If there is timeout
it will send alert using SNS which will send email and lambda function will be triggered

14



which will automatically update the AWS S3 dataset file with latest data. Using AWS
Sagemaker to retrain model by fetching latest dataset from AWS S3 and deploy endpoint
as shown in Figure 4.

Figure 4: Feedback Loop

6 Evaluation

This section list the important findings of research. It evaluate the effectiveness of frame-
work in coat saving for FaaS.

6.1 Cost Optimization

In this there is a complex workload which is executed both on vanilla serverless function
and on framework where it uses divide and conquer method. Framework divides the
workload in CPU and I/O intensive. Following was the result shown in Table 5. Billed
duration and Max memory usage will be considered and cost will be calculated formula
1.

Table 5: Cost comparison per million request

File size Vanilla CPU+I/O Framework CPU Framework I/O Saving%
50 MB $477.19 $384.62 $12.96 16.69%
100 MB $641.57 $392.48 $42.24 32.24%
150 MB $691.22 $392.20 $81.16 31.65%
200 MB $776.48 $404.37 $123.53 32.04%

15



As evident from Table 5 framework saves 16%-32% because of I/O workload memory
is dynamically adjusted as its not memory intensive. Figure 5 shows few observation
which are:

• Both Vanilla and Framework shows linear growth, though vanilla has steeper curve
thus indicating higher cost per MB.

• As the file size increase, saving% also increase till 32% where its constant.

Framework outperform Vanilla by large margin making it ideal for complex workload.

Figure 5: Vanilla vs Framework

6.2 Prediction Accuracy

The accuracy of XGBoost with MultiOutputRegressor is shown in Figure 6. The high
MSE scores tell that there are edge cases , which needs to be removed as these outliers are
affecting MSE score. The R2 score is 0.80 which tells model is able to capture relationship
between input and output, thus model’s prediction is reliable. Although R2 is high but
there is still work need to done for lowering MSE score in handling outlier scenarios.

6.3 System Scalability

In Figure7, Framework was invoked 10 times which is limit of concurrent execution in
AWS, blue line indicate concurrent invocation and orange line indicate errors. It is shown
that framework is able to handle 10 concurrent invocation , though further testing is need
for bigger payload.

16



Figure 6: Model Accuracy

Figure 7: System Scalability

6.4 Discussion

The experiment confirms that the proposed framework reduces the cost for complex
workload in FaaS, as in traditional serverless function resource utilization is very less in
I/O intensive workload. In FaaS configuration is fixed before execution of function, thus
sometime it leads to over allocation of resource which lead to wastage or under allocation
which will cause degradation in serverless performance. The proposed framework divides
the workloads into I/O and CPU which is allocated to different lambda function. Using
machine learning to configure the lambda function dynamically based on input parameters
while Cloudwatch is used for monitoring framework reliability. There is up to 32% cost
saving when lambda function configuration is predicated by machine learning model by
taking file size and latency in account for adjusting memory and timeout. The machine
learning model was able to accurately predict the configuration with high R2 but high
MSE score indicates there is noise in data and outliers are present. From scalability
perspective there is only 10 lambda function can be invoked at given time thus in research
there was limited scalability test.

Feedback loop is one of most important feature which run whenever lambda function
timeout. Loop will save the recent logs in S3 , from here model will train on latest data
from S3 thus allowing to further improve the model. One of the biggest limitation is lack
of variety of I/O operations in research , there is overhead of training machine learning
model every time and cold start problem where its takes some time for function to boot
up. While the framework produces the desired result, addressing the limitation would
vastly improved the framework which is applicable to different type of workloads.

7 Conclusion and Future Work

This research focuses on cost optimization of I/O intensive workload in FaaS, by imple-
menting dynamic workload classification, dynamic configuration of lambda function by
machine learning and feedback loop for continuously train machine learning to further
improve it.

In the Section 6 framework was evaluated for cost optimization , prediction accuracy

17



and system scalability. Though there was 16% -32% saving, it is for very specific type of
I/O workload and CPU workload which is common across all experiment which lead to
higher accuracy from machine learning model. There is need to include other metadata
of files such as file type and model need to be train with other features. The research
proved two point , first there is need of dynamic resource management in FaaS as the
framework has produced positive results. Second is that framework can be implemented
on other cloud service providers.

Limitations of research are Machine learning model needs continuous training, model
need to be able to handle new type of files and cold start problem of serverless function .

In summary, research is able to achieve the object of cost optimization in serverless
computing for I/O workload although with limitation to workload types.

For future works , there is need to include different combinations of I/O and CPU
workloads. Scalability also need to be tested for example 500 invocation. Other metadata
of files such as type need to be included as feature in machine learning model. Framework
needs to consider cold start problem for further cost optimization.

References

Borovica-Gajić, R., Appuswamy, R. and Ailamaki, A. (2016). Cheap data analytics using
cold storage devices, Proceedings of the VLDB Endowment 9(12): 1029–1040.

Cai, Z., Chen, Z., Chen, X., Ma, R., Guan, H. and Buyya, R. (2024). Spsc: Stream pro-
cessing framework atop serverless computing for industrial big data, IEEE Transactions
on Cybernetics .

Chen, J. (2007). Nash equilibrium: How it works in game theory, examples, plus prisoner’s
dilemma. [Accessed 04-08-2024].
URL: https://www.investopedia.com/terms/n/nash-equilibrium.asp

Dittakavi, R. S. S. (2021). An extensive exploration of techniques for resource and cost
management in contemporary cloud computing environments, Applied Research in Ar-
tificial Intelligence and Cloud Computing 4(1): 45–61.

Fuerst, A. and Sharma, P. (2021). Faascache: keeping serverless computing alive with
greedy-dual caching, Proceedings of the 26th ACM International Conference on Archi-
tectural Support for Programming Languages and Operating Systems, pp. 386–400.

Klimovic, A., Wang, Y., Stuedi, P., Trivedi, A., Pfefferle, J. and Kozyrakis, C. (2018).
Pocket: Elastic ephemeral storage for serverless analytics, 13th USENIX Symposium
on Operating Systems Design and Implementation (OSDI 18), pp. 427–444.

Liu, F. and Niu, Y. (2023). Demystifying the cost of serverless computing: Towards a
win-win deal, IEEE Transactions on Parallel and Distributed Systems .

Lykhenko, T., Soares, R. and Rodrigues, L. (2021). Faastcc: Efficient transactional causal
consistency for serverless computing, Proceedings of the 22nd International Middleware
Conference, pp. 159–171.

Mahajan, K., Figueiredo, D., Misra, V. and Rubenstein, D. (2019). Optimal pricing for
serverless computing, 2019 IEEE Global Communications Conference (GLOBECOM),
IEEE, pp. 1–6.

18



Spillner, J. (2020). Resource management for cloud functions with memory tracing,
profiling and autotuning, Proceedings of the 2020 Sixth International Workshop on
Serverless Computing, pp. 13–18.

Suo, K., Son, J., Cheng, D., Chen, W. and Baidya, S. (2021). Tackling cold start of
serverless applications by efficient and adaptive container runtime reusing, 2021 IEEE
International Conference on Cluster Computing (CLUSTER), IEEE, pp. 433–443.

Werner, S., Kuhlenkamp, J., Klems, M., Müller, J. and Tai, S. (2018). Serverless big data
processing using matrix multiplication as example, 2018 IEEE international conference
on big data (Big Data), IEEE, pp. 358–365.

Wu, C., Faleiro, J. M., Lin, Y. and Hellerstein, J. M. (2019). Anna: A kvs for any scale,
IEEE Transactions on Knowledge and Data Engineering 33(2): 344–358.

Wu, C., Sreekanti, V. and Hellerstein, J. M. (2020). Transactional causal consistency for
serverless computing, Proceedings of the 2020 ACM SIGMOD International Conference
on Management of Data, pp. 83–97.

19


	Introduction
	Research Question
	Ethics Consideration
	Document Structure

	Literature Review
	Resource and cost management
	Cloud storage
	Caching
	Pricing models
	Performance
	Big data
	Related works findings

	Methodology
	Research approach
	Services
	AWS Kinesis
	AWS Lambda
	AWS Cloudwatch
	AWS Simple Notification Service
	AWS S3
	AWS Sagemaker
	AWS EFS
	AWS VPC


	Design Specification
	Implementation
	Dataset Preparation
	Model Training and Deployment
	Controller Lambda
	CPU intensive Workload
	Kinesis consumer lambda
	I/O intensive Workload
	Feedback

	Evaluation
	Cost Optimization
	Prediction Accuracy
	System Scalability
	Discussion

	Conclusion and Future Work

