
Configuration Manual

MSc Research Project

Master of Science in Cloud Computing

Anurag Singh
Student ID: x23180013

School of Computing

National College of Ireland

Supervisor: Aqeel Kazmi

www.ncirl.ie



National College of Ireland
Project Submission Sheet

School of Computing

Student Name: Anurag Singh

Student ID: x23180013

Programme: Master of Science in Cloud Computing

Year: 2024

Module: MSc Research Project

Supervisor: Aqeel Kazmi

Submission Due Date: 29/01/2025

Project Title: Configuration Manual

Word Count: 1632

Page Count: 10

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature:

Date: 29th January 2025

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). □
Attach a Moodle submission receipt of the online project submission, to
each project (including multiple copies).

□

You must ensure that you retain a HARD COPY of the project, both for
your own reference and in case a project is lost or mislaid. It is not sufficient to keep
a copy on computer.

□

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):



Configuration Manual

Anurag Singh
x23180013

1 Introduction

The Cloud Access Machine Learning System is developed to predict security scores based
on cloud access policies and the framework used. It aims to offer actionable remediations
of the cloud access control configuration to improve security. This thesis features a
Flask-based backend API that uses the machine learning-trained model as a pickle mod-
ule to predict and suggest, ensuring efficient and reliable communication between the
application and the machine learning models (Grinberg; 2018). In addition, it features a
user-friendly web interface that allows for easy interaction with the model’s capabilities.
Its predictive and remediation insights are built around the core of the system, which are
pre-trained machine learning models.

2 System Requirements

Hardware, software, and the infrastructure needed to design, develop, and implement the
proposed solution must be defined within system requirements. For this research thesis,
the system requirements typically fall into the following categories:

2.1 Hardware Requirements

Category Details
Minimum

• CPU: Dual-core processor

• RAM: 4 GB

• Storage: 2 GB free space

Recommended

• CPU: Quad-core processor

• RAM: 8 GB or higher

• Storage: 5 GB free space

• GPU: Optional (for retraining the model)

1



2.2 Software Requirements

Operating System

• Windows 10/11, macOS, or Linux/Ubuntu

Languages and Frame-
works • Python 3.9 or higher

• Flask 2.0 or higher

Libraries

• Scikit-learn

• Pandas

• Numpy

• Flask

• Gunicorn

• boto3

• seaborn

• matplotlib

• xgboost

• pyyaml

AWS Services

• Cloud9

• S3 (Simple Storage Service)

• Elastic Beanstalk

• CodePipeline

Additional Tools

• Postman (API testing)

• Browser (Chrome/Firefox/Edge)

• GitHub (Repository & Versioning)

Using AWS service like S3, Cloud9, and Elastic Beanstalk enhance scalability and
ease of deployment (Services; 2024)

2



3 Installation Instructions

3.1 Setting up the Environment

Go to the GitHub repository of this thesis through the link given below:

https :// github.com/Annurag99/CloudAccessML

Click on the code dropdown button and copy the SSH URL, then go to the terminal and
paste these commands to clone the repository.

git clone git@github.com:Annurag99/CloudAccessML.git

cd CloudAccessML/

cd cloudaccessui/

For machine learning go to its folder containing py and requirements files.

cd modelml/

3.2 Database Configuration

Figure 1: S3 Bucket Storing Dataset

To store and use the cloud access control dataset, we use AWS S3 (Simple Stor-
age Service) and Jupyter Notebook to manage the data securely and prepare for model
training efficiently as described in Figure 1. AWS S3 is being used to safely upload and
organize the dataset into a specific S3 bucket as a reliable, highly scalable dataset storage
solution. This offers the data accessible right away using AWS strong security, including
encryption, and access control policy.

It is loaded into a Jupyter Notebook environment so that we can then use the dataset
for model training and evaluation. For this, you would generally do this programmatically
by accessing the S3 bucket through AWS’s boto3 library and it gives you the ability to

3



talk to the S3 service easily. This dataset is downloaded directly from the bucket into
the notebook and preprocessed and analyzed so that it’s ready to be fed into machine
learning tasks as shown in Figure 2. Not only does this approach make it easy to handle
the data, but it’s also a way to prove reproducibility and allow for collaboration as the
dataset never actually leaves S3 but can be accessed by those who are authorized to do
so in disparate environments.

Figure 2: Code snippet to load a file from S3 bucket

3.3 Installing Dependencies

Create a virtual environment in Mac or Windows OS using the below commands.

virtualenv env

"OR"

python3 -m venv env

source env/bin/activate

pip install -r requirements.txt

python3 app.py makemigrations

If the above command throws an error update Pip and Setuptools

pip install --upgrade pip setuptools

python3 app.py migrate

python3 app.py runserver 8080

4 Project Configuration

In the figure, it is the project configuration and directory structure that are separated into
concerns to help keep things clear, scalable, and easy to manage. It is easy to maintain
with fewer complexities if the project structure and configuration follow best practices.
(Ray; 2022). I am elaborating below on the main components as shown in the Figure 3

• Root Directory: This contains essential files so that the overall functioning and
deployment of the project.

4



Figure 3: Directory Structure of the Thesis

– Procfile: Used in deployment (example Elastic Beanstalk), specifies the com-
mand to start the application.

– app.py: A script with main Flask application code that interacts behind the
scenes.

– best xgb model.pkl: The trained XGBoost model with the options used for
predictions as a serialized file.

– LICENSE: Terms of use for this repository are described here.

– .gitignore: A file containing the commands for Git to ignore certain files or
directories during version control.

• Subdirectories:

– cloudaccessui/: It has all Flask application components along with deploy-
ment, pickle, and proc files.

∗ static/: It contains things like CSS and JavaScript files for styling and
front-end functionality, but the useful part here is that these assets are
held statically.

∗ templates/: Contains all the views as HTML templates (e.g., index.html)
rendered by Flask’s Jinja2 engine.

– modelml/: It has machine learning related components.

∗ cloudaccesscontrolusingml.py: Machine learning implementation us-
ing python and its libraries.

∗ requirements.txt: It lists Python dependencies required for this thesis.

5



• .DS Store: Preferences displays a macOS system file storing folder. This file is not
necessary for the project so it can be ignored using .gitignore.

5 Running the Application

5.1 Start the Application

To start the application as well as the machine learning notebook. Follow the below
command to run the Flask application and preview the running application in Cloud 9
Figure 4.

Figure 4: Cloud9 terminal running the application

pip install -r requirements.txt

python3 app.py

For setting up dependencies in machine learning model training and evaluation follow the
below commands.

pip install -r requirements.txt

python3 cloudaccesscontrolusingml.py

5.2 Executing Machine Learning Notebook on Google Collab

Google Colab provides a collaborative space to train and evaluate machine learning mod-
els so it is apt for researcher(Google; 2024). To execute a machine learning notebook on
Google Colab as shown in Figure 5, begin by accessing Google Colab through your web
browser. Once you sign in with your Google account select ’New Notebook’ to make a

6



Figure 5: Implementation in Google Colab

brand new Python notebook. The method that seems to work when you have datasets,
navigate to the left sidebar, click on the folder icon, and then hit upload. Then, once up-
loaded with the necessary files, a code cell will have pip commands to install any needed
libraries. This way, you can use the essential machine learning libraries such as Pandas,
NumPy, and TensorFlow. After installing the libraries, we can import them into the
notebook with Python’s import statement, for example, pd for data manipulation from
the libraries will be imported as import pandas as pd.

6 Usage Instructions

Figure 6: UI for security score prediction.

7



Using the web interface or via API requests, users can input data into the Cloud
Security Scoring System as shown in Figure 6. It provides the web interface, which has
a list of cloud security policies displayed in toggle buttons that enable or disable given
policies. Users have to toggle the policies they want to apply, click the ”Get Security
Score” button, and the data as its input. The system takes input, sends it to the backend
API, and applies the calculation of the security score which is populated on the interface.
The score is accompanied by a color-coded feedback system.In red (poor performance),
scores less than or equal to 2 are displayed, yellow (average performance) with scores of
3, and green (good performance) with scores greater than 3.

It can be influenced by things like being able to enable or disable policies such as
”User Identity Management’ or ’Time-Based Access’. If users click on ’Get Security
Score,’ they may see a result in the form of something like ’Your cloud access security
score is 4.2/5.0,’ on the interface. Additionally, users can view model-specific confusion
matrices, F1, Recall, and accuracy to analyze the performance and error analysis of the
trained models to a deeper level. This high-level system ensures that you have an easy
way to use, distill down, analyze, and give feedback on your cloud security configurations
that you can use to improve as given in Figure 7.

Figure 7: UI for security score enhancement suggestions.

7 Deployment Instructions

7.1 Setup AWS CodePipeline and Deploy

To set up AWS CodePipeline and deploy an application to Elastic Beanstalk as shown in
Figure 8, begin by ensuring that your application is ready for deployment. This involves
having a properly structured application repository (e.g., Flask app) hosted on GitHub,
CodeCommit, or another supported source. Your repository should include essential files
like requirements.txt, a Procfile for specifying the application’s startup command, and any
environment-specific configurations under the .ebextensions directory if required. Nav-
igate to the AWS Management Console, open CodePipeline, and create a new pipeline.
Select a source provider such as GitHub, authenticate it, and choose the repository and
branch containing your application.

8



Figure 8: Implementation of Code Pipeline

7.2 Link Elastic Beanstalk with Your GitHub Repository

First, initialize Elastic Beanstalk in the project directory terminal.

eb init

Select any AWS region available and choose an application name then select Python
platform. Remember, do not enable CodeCommit if using GitHub. Then configure a
default environment using the below command.

eb create <environment -name >

Set up GitHub in your machine using SSH token and paste the token in the setting
window under SSH and GPG keys.

eb init -i

Then select the GitHub source control and give the repository/branch details. Finally,
deploy the application using the below command.

eb deploy

In the deployment step, select ”AWS Elastic Beanstalk” as the deployment provider.
Elastic Beanstalk makes deploying and managing applications simple without fighting
interface complexities (Buyya; 2024). Ensure that the Elastic Beanstalk environment
for your application is already created and running. The pipeline will automatically de-
tect the existing environment. Once configured, CodePipeline will trigger automatically
every time you push changes to the specified repository branch, fetching the updates
and deploying them to your Elastic Beanstalk environment. After deployment, you can
verify your application by accessing the Elastic Beanstalk environment URL provided in
the Elastic Beanstalk console. Monitor the pipeline’s stages in the CodePipeline dash-
board to ensure the deployment process is successful. This setup streamlines continuous
deployment for maintaining and updating your application efficiently.

9



References

Buyya, R. (2024). Elastic beanstalk: A simplified deployment approach, Cloud Computing
Journal 15: 45–50.

Google (2024). Google colab: A collaborative environment for machine learning.
URL: https://colab.research.google.com/

Grinberg, M. (2018). Flask Web Development: Developing Web Applications with Python,
O’Reilly Media, Inc.

Ray, A. (2022). Best practices for project directory organization in python.
URL: https://realpython.com/python-application-layouts/

Services, A. W. (2024). Aws documentation: Elastic beanstalk, s3, and cloud9.
URL: https://aws.amazon.com/documentation/

10


	Introduction
	System Requirements
	Hardware Requirements
	Software Requirements

	Installation Instructions
	Setting up the Environment
	Database Configuration
	Installing Dependencies

	Project Configuration
	Running the Application
	Start the Application
	Executing Machine Learning Notebook on Google Collab

	Usage Instructions
	Deployment Instructions
	Setup AWS CodePipeline and Deploy
	Link Elastic Beanstalk with Your GitHub Repository


