
Automation of Secure and Compliant
Infrastructure Orchestration Utilizing

Terraform

MSc Research Project

MSc Cloud Computing

Anusha Singamaneni
Student ID: 23237066

School of Computing

National College of Ireland

Supervisor: Ms. Shaguna Gupta

www.ncirl.ie



National College of Ireland
Project Submission Sheet

School of Computing

Student Name: Anusha Singamaneni

Student ID: 23237066

Programme: MSc Cloud Computing

Year: 2024

Module: MSc Research Project

Supervisor: Ms. Shaguna Gupta

Submission Due Date: 12/12/2024

Project Title: Automation of Secure and Compliant Infrastructure Orches-
tration Utilizing Terraform

Word Count: 8515

Page Count: 27

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature:

Date: 29th January 2025

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). □
Attach a Moodle submission receipt of the online project submission, to
each project (including multiple copies).

□

You must ensure that you retain a HARD COPY of the project, both for
your own reference and in case a project is lost or mislaid. It is not sufficient to keep
a copy on computer.

□

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):



Automation of Secure and Compliant Infrastructure
Orchestration Utilizing Terraform

Anusha Singamaneni
23237066

Abstract

The complexity of managing secure and compliant infrastructure increases the
need now for applying automation technologies. In this research, we focus on a
secure and compliant approach for the automation of infrastructure orchestration
with Terraform, which is an open-source IaC tool. Ideally, it aligns the goals to
automate the provisioning of secure cloud infrastructure aligned to best practices
and compliance rules. This research stream also applies infrastructure automation
from the Terraform tool, reduces human intervention, and enforces compliance
standards when defining, provisioning and managing resources.

This paper explores different approaches to the incorporation of security controls
and compliance standards into Terraform practices to bolster cloud security. It is
done through the recording of fundamentals and the weighing of several techniques
like role-based access control, encryption, and continuous monitoring of infrastruc-
ture with the view of making sure that it is provisioned safely. Also, the thesis
explores issues with working with multiple clouds and state files for Terraform in
a large enterprise. This research also helps to address the existing gap in the ad-
option of Terraform in securing cloud infrastructure through presenting improved
mechanisms of compliance and automation The research also provides a baseline
for future developments in the automation of secure infrastructure management.

Practical use and theoretical examination show that with proper application
and planning, Terraform can be as effective at providing idempotent and compliant
solutions that can scale as desired, although there is room for future growth and
improvement in the automation of security.

1 Introduction

With cloud computing becoming the new norm for doing business, small and medium-
sized enterprises (SMEs) are presented with opportunities and risks. Currently, there is a
tremendous utilization of cloud solutions, specifically the IaaS model, which has enabled
SMEs to obtain affordable and variable IT assets. Nevertheless, as the focus shifts to
the use of cloud-based solutions, business leaders struggle with securing sophisticated
information-protection measures as well as compliance.

On-demand self-service helps businesses to subscribe to services offered by cloud com-
puting without owning any form of capital investment in the form of physical assets
like storage, network, or virtual machines. There are several benefits that include high
cost-effectiveness, capacity for expansion, and practicability for organizations with a dis-
tributed workplace. In this regard, IaaS is a favorite choice for SMEs attesting to the fact

1



that it offers an environment within which numerous IT structures can easily be estab-
lished and implemented without requiring huge amounts of money at the initial stages of
business formation.

Nonetheless, the following remaining as hurdles have been identified to be hard to
overcome especially in cloud infrastructure for SMEs with less capital and human capital.
Configuration of safe and compliant cloud solutions may be rather a long and delicate
process, which needs significant analysis and certain expertise. Manual configurations
become very precarious because they introduce a lot of room for error and a vulnerability
to security breaches.

Security issues are particularly exaggerated with the advancing scale and increasing
sophistication of cloud infrastructures. Different security issues may arise from poor up-
take in security features for SMEs and limited resources for security to be implemented
as appropriate. That is why one of the major challenges for many SMEs is the mainten-
ance of security policies and standards consistent with rapidly growing and highly flexible
cloud structures.

AWS as a cloud service provider, provides a broad range of tools and services for
different business operations and sizes. To SMEs, AWS provides a chance to implement
a well-grounded cloud infrastructure that considers its scale and cost usage. Neverthe-
less, the potential of AWS can only be unleashed if SMEs tackle well-preserved security
and compliance issues and reproduce results. Which will resolve most of the challenges
addressed by Alkawsi et al. [2015]

A significant part of creating security for the cloud structures is the aspect of replacab-
ility, and repeatability used to create reliable structures. Identity confirms infrastructure
is maintainable in an appropriate and sustainable manner for interval in future. It re-
duces mistakes, makes it easier to restore during eventualities, and is also adept at serving
development and deployment processes continuously. However, as organizations expand,
the growth of infrastructure and at the same time sustaining the security aspect brings
about new issues such as; designs and infrastructure to align performance with security,
control of access, and application of security policies within large environments.

Automation, especially when through the Infrastructure as Code (IaC) guidelines,
overlays these challenges successfully. Frameworks such as Terraform allow the configur-
ation of infrastructures in code, which improves consistency, and speed and also ensures
the reduction of errors while making the whole process cheaper. IaC avoids lengthy
manual procedures in establishing infrastructure while making sure it is both elastic and
inherently safe from security and compliance vulnerabilities as discovered by Sharma
et al. [2023]

The focus of this research specifically is to apply the use of Terraform in the automa-
tion of the provision of secure AWS infrastructure for SMEs. It is designed to become a
part of infrastructural development where security is considered as one of the foundational
aspects; Terraform modules and practices introduce compliance validation and look for
possible security issues. In doing so, this work aims at enabling SMEs to control and
optimize their cloud infra, improve over resource scarcity, and provide a proven blueprint
for secure environments.
Research Question:
What would be the approach to using Terraform to automate infrastructure creation in
AWS, how policy and compliance can be integrated to ensure that the created infra-
structure is secure as well as having straight-forward ways to recreate itself in the future
where there are growths or changes, all with minimal configuration changes for small and

2



medium enterprises?

2 Related Work

Oulaaffart et al. [2021] states that the scope of cloud computing and infrastructure is
increasing, and the need for proper safe, and suitable infrastructure is the requirement
for SME’s. Kavas [2023] investigates the application of Terraform, an IaC tool with
an explanation of cloud resources management with reference to AWS. The research
problem concerns the capacity and the challenge of creating repeatable, reliable, and
compliant cloud environments for SMEs that can involve minimal configuration and that
do not produce errors from such work. This challenge has been addressed in the proposed
research. defines the need to employ security in cloud services. It states the

2.1 Infrastructure as Code and Terraform

Currently, one of the leading practices embraced in cloud computing to provide the archi-
tecture is Infrastructure as Code abbreviated as IaC that utilizes definition files readable
by machines. Terraform which is improved by HashiCorp was one of the most famous
and commonly used IaC tools in open source.1

Howard [2022] explore how Terraform can leverage plugins and abstract infrastruc-
ture providers for provider-agnostic, multiple-cloud management. It supports CDK for
Cloud Development which means the configuration can be done using languages such as
Python or Java and so on, and thus has improved compatibility with other tools. At
the same time, the single set of challenges concerns multi-cloud adaptation and depend-
ency management, which relates to the proposed research’s potential optimizations of
template-based automation.

Kovacevic and Dicola [2023] investigates the use of integrated security tools to enhance
the speed of response, and positional security using workflow automation. it is also similar
to the proposed research because both are focused on automating the optimization of
secure practices to manage structures. Some of the gaps include little or no emphases
placed in monitoring compliance in real-time, as well as the integration of Infrastructure
as Code (IaC) tools like Terraform to these automated frameworks. This brings a focus
on the possibility of using Terraform to address both security and compliance needs at
the same time.

Ibrahim et al. [2022] aims to develop an understanding of how DevSecOps can be
applied to an organization and implemented jointly with IaC tools such as Terraform to
enforce compliance and security policies. It draws focus on process-related security that
is not safeguarded well with conventional security systems with no automated and real-
time security assurance during the deployment phase. Accordingly, the study provides
evidence about the need to operationalize security during the early stages of orchestration
pipelines.

Teppan et al. [2022] focuses on developing security templates for IaC to enforce secur-
ity policies and practices throughout distinct implementations. They point out flaws in
existing structures that have issues with multi-cloud compatibility and propose the use
of Terraform as well. The results of this work extend the understanding of the role of
unification and provide attention to the various orchestration strategies.

1https://aws.amazon.com/blogs/apn/terraform-beyond-the-basics-with-aws/

3



Kumara et al. [2021] classifies possible threats in Terraform IaaS instances, including
misconfigurations and weak role-based access control. It emphasizes the necessity to have
combined risk management instruments which, in turn, matches in improving security in
orchestration.

Battula [2024] examines compliance issues with software services in combined cloud
structures and offers solutions for automated rule-checking of IaC templates. The ap-
proach helps to unload the amount of manual work thus relevant for Terraform engage-
ments focused on compliance.

2.2 AWS Infrastructure Management and Security

Because of the service sectors it offers, AWS has been considered to be a flexible cloud
provider for so many organizations. However, there are a couple of challenges in AWS
infrastructure’s management in both secure and efficient ways which requires a couple
of efforts, particularly to SMEs. Security in the AWS environment is also discussed by
Sharma [2024] and Pessa [2023] So, as in other works, Sharma [2024] reveal that the main
issues in AWS architectures are caused by misconfigurations, and access and network
control. However, Pessa [2023] thus states that for managing orders and performing
typical security actions across the AWS resources, it is beneficial to use IaC tools like
Terraform. From these studies, it could be noticed the potential of the Terraform in
addressing the challenge of security in AWS space which relates closely to the current
research question. Nonetheless, neither of them directly targeted SMEs or provided
a clear, specific policy and compliance enforcement plan, which is why the proposed
research is necessary.

2.3 Policy and Compliance as Code

The idea of taking the infrastructure code flow and adding policy and compliance was
refined to run as an efficient form as organizations aim to orchestrate their governance.
Anderson et al. [2023] formalized the notion that compliance had to be institutional,
that is, to become a ‘code’ of the organization, that is, one had to ensure the integration
of the check-up mechanisms so that they became ‘part’ of the organization. Similarly,
the current work has also pointed in Vakhula et al. [2023], that organizational policy
as code is significantly linked with the enhanced protective results in the utilization of
cloud services and is even a recent work. This position is as follows: The two works
propose that policy and ‘compliance checks should be integrated into the provisioning of
structures’ which proposed research of objectives. However, both the mentioned works
failed to emphasize how this can be achieved using Terraform in the context of AWS or,
in particular, for SMEs. This gap implies that there is potential usefulness of the present
research in setting up the simplest condition for policy and compliance as code to be
efficient on Terraform constructs for AWS.

Luo and Ben Salem [2016] presents a novel approach for dynamic Security Configura-
tion Management in software-defined environments with special focus towards scalability
and flexibility. This is highly relevant to the proposed research as it establishes that
orchestration can effectively approach security policies. Nevertheless, the study does not
deeply integrate Terraform or similar IaC tools, which is the limitation of the study that
this research tries to overcome by generalizing the approach to represent the approach to
include secure deployment automation via Terraform.

4



Moric et al. [2024] explores container orchestration platforms, this work offers an
understanding of how to protect orchestration workflows under one architecture. While it
mostly focuses on containers, its concept of continuous monitoring and policy enforcement
is translatable into the use of Terraform for orchestration of the infrastructure.

2.4 Cloud Infrastructure Management incorporated with Small
to Medium Enterprises

The literature of existing literature review reviews a considerable amount of literature
depicting the global management of cloud structures, however, in contrast to a number
of previous studies in this regard, there are only the nominal types of literature lined up
to apply this work in the context of SMEs.

Futhermore, Odukoya [2024] and Amini and Javid [2023] contribute on the challenges
that organization face while implementing cloud technologies for SME. Initial work in-
volves investigating that though cloud initiatives can be adopted in SMEs they themselves
lack the financial capital which is much required and the technical know-how to tackle
problems which arise due to management of cloud structures are also lacking. Second
research concerns itself with barriers that hinder the adoption of cloud solutions by some
of the SMEs by offering security solutions.

Even though Terraform and Infrastructure as Code (IaC) have progressed security and
compliance concerns for infrastructure orchestration, there are still knowledge-related is-
sues, and multidimensional, and scalability issues concerning SMEs. SMEs’ resource and
technical limitations are overlooked in the literature, and they primarily revolve around
Large Enterprises. The application of multi-cloud strategies is quite limited though it can
be applied for coordinating security policies among the providers. Other complex cap-
abilities including threat intelligence and response, compliance enforcement at scale, and
intelligent misconfiguration remediation are not highly developed either. Moreover, re-
producibility and auditable ability during the continuous deployment phase and the incor-
poration of Policy-as-Code (PaC) for real-time standards enforcement have not garnered
adequate attention in the literature. These gaps can only be addressed with real-life
examples and best practices, as well as solutions geared toward implementation in SMEs,
to assist practitioners in bridging these gaps and adopting Terraform more effectively and
securely on a large scale. This research helps fill these gaps by offering specific findings
that improve the orchestration of cloud computing.

Following Figure 1 summarizes the aforementioned related review.

5



Figure 1: Brief Summary of Existing Literature

6



3 Methodology

The research methodology outlined for this research is centered around Infrastructure as
Code (IaC) and the use of the IaC tool - Terraform to build a secure infrastructure on
the AWS cloud. The methodology is detailed step-by-step below and shown in Figure
??::

3.1 Research methods

• Infrastructure as Code (IaC): Infrastructure as Code or IaC refers to the process
of provision of computing infrastructure and management of infrastructure using
configuration mechanisms in a computer-readable format distinct from traditional
manual methods. IaC makes it possible to achieve dependable, scale-up, and repro-
ducible by automating the creation, tuning, and coordination of cloud assets. This
strategy reduces the role of persons in the construction of virtual structures with
considerable speed in deployment processes and known conformity to organizational
guidelines and policies.

• Most used IaC tools in the industry: A number of tools reign supreme in
sphere of IaC such as Terraform, AWS CloudFormation, Ansible, Chef, Puppet etc.
This means that each tool independent on itself reflects certain qualities and is
perfect in particular circumstances and for particular tasks.

AWS CloudFormation: Developed exclusively for AWS, it contains significant
levels of integration with AWS services but lacks broad cloud orchestration features.

Ansible: A tool to do configuration management that encompasses support for
a declarative approach to automated configuration management but lacks robust
support for sa tate-based approach to managing infrastructure.

Chef and Puppet: Stable and good in configuration management but not so
effective in provisioning a new infrastructure.

• Terraform in action: According to the literature review, Terraform from HashiCorp
is widely considered as an IaC software because of its multi-cloud handling, effective
state handling, and modularity. Its key advantages include:

Provider-Agnostic: Compatible with several cloud solutions; thus, flexible when
using a mix of multiple cloud solutions.

Declarative Syntax: Therefore, there is the users’ will or the state they want to
achieve, and there is the execution by Terraform.

State Management: Maintains records of the state of infrastructures which would
allow for updates, rollback as well as identifying changes to be made and reconciling
those changes.

Modularity: Promoting reusable modules for infrastructure constructs and hence
facilitates better maintainability and scalability.

Terraform is used in this research to automate and gain secure infrastructure for
SMEs on AWS. The implementation is centered on the pillar of baselining AWS services
and security controls, where utilization of Terraform modules guarantees standardized
conformity.

7



– IAM, Groups, Policies and Role:IAM is an AWS service that Terraform
manages to provide a secure way to access AWS resources. Computerized
users, groups, policies as well as roles facilitate centralization of access control
as well as easier audits.

– Virtual Private Cloud - VPC :A Virtual Private Cloud (VPC) is a logically
isolated section of a public cloud where users can launch resources like servers
and databases in a secure, virtual network. It offers control over IP address
ranges, subnets, route tables, and network gateways to customize and secure
cloud infrastructure.

– Security Groups and NACLs: Security groups are similar to firewalls and
control traffic in and out of a specific resource. Terraform follows the least
privilege principle in a very formal way because it has predefined rules. At
the subnet level, there is extra protection by a technique known as Network
Access Control Lists or NACLs for short.

– Bastion Host: Bastion Host and NAT Instances are fully featured machines
usually placed in a DMZ or another externally separated network to enable
some sort of access to the internal networks for temporary time periods. A
bastion host is provided to allow administrative access into instances in the
private subnets. What NAT instances are used for is to allow private resources
to connect to the Internet while not necessarily being exposed directly to it.

– VPC Flow Logs: VPC flow logs of AWS using Terraform help the network
monitor and audit flow traffic by network

– TLS termination and the reference of security groups: Secure commu-
nication is configured in the system to allow for the termination of TLS. This
provides security control allowed to the granular levels of traffic for resources
so as to also accept fine-tuned addition of associates within the security group.

– VPC Peering: VPC peering is used in order to allow different VPCs to com-
municate with one another while keeping the information exchanged private
and without going through the internet.

This means that security is built into the value proposition of using Terraform because
the declarative model forms an input that always factor in security. Key measures include:

Centralized access control is achieved through IAM configurations that ensure accur-
ate levels of access permissions, significantly reducing the risk of insider threats. Network
segmentation divides subnets into public and private, effectively minimizing attack vec-
tors. Traffic monitoring is enabled through VPC flow logs, allowing for the identification
of unusual traffic flows. Encryption, including TLS termination, ensures secure and safe
connections between resources. Additionally, the use of Terraform modules for imple-
menting security policies promotes modularity and reusability, streamlining adherence to
proper formats and simplifying maintenance.

This research shows that SMEs can automate the provision of secure and compliant
clouds by integrating Terraform with AWS in accordance with the best practices presen-
ted in this research. This methodology makes a solution not only replicable but also
inherently safe, satisfying the requirements of growth and adapting to the complexity of
business.

8



Figure 2: Architectural Flow of Proposed Research

9



3.2 Tools and Technologies

1. Terraform: Terraform, developed by HashiCorp, is an open-source Infrastructure as
Code (IaC) tool. It allows users to define, deploy, and manage infrastructure through
code.

2. AWS (Amazon Web Services): AWS is a robust cloud computing platform
offering scalable infrastructure and security features. Key Services Integrated:

IAM (Identity and Access Management): Configures access controls, roles, and per-
missions based on the principle of least privilege.

VPC (Virtual Private Cloud): Sets up isolated virtual networks to host resources
securely.

EC2 (Elastic Compute Cloud): Provides virtual machines, including bastion hosts
and NAT instances.

S3 (Simple Storage Service): Stores resources like VPC flow logs securely with en-
cryption.

CloudTrail and CloudWatch: Enable logging and monitoring of resource activity.
RDS (Relational Database Service): Ensures database security and encryption while

supporting reliable backups.
3. HashiCorp Configuration Language (HCL): The configuration language used

for writing Terraform scripts. Defines components such as IAM roles, VPCs, security
groups, and subnets.

4. NAT (Network Address Translation) Gateway: A managed AWS service
that enables private resources to access the internet securely.

5. Bastion Host: A secure point of access for private resources within a VPC.
6. Security Groups and NACLs (Network Access Control Lists): AWS tools

for managing traffic to and from resources.
7. TLS Encryption: Provides secure communication between system components.
8. S3 Bucket with Encryption: S3 buckets are used for secure data storage,

including logs.
9. Monitoring and Logging Tools: AWS CloudWatch and CloudTrail are em-

ployed for real-time monitoring and logging.
10. IAM Policies and Roles: Customized policies and roles enforce access control

and security compliance.

3.3 Structure of the Report

1. Introduction: Background and context for the research.
2. Literature Review: Overview of related works and research gaps.
3. Methodology: Explanation of the approach, tools, and technologies.
4. Design and Architecture: Details of the proposed system and its components.
5. Implementation: Technical details about the Terraform setup and configura-

tions.
6. Evaluation: Analysis of experiments, metrics, and comparison with other meth-

ods.
7. Conclusion and Future Work: Summary of findings and potential advance-

ments

10



3.4 Metrics Evaluated and Computation

Metrics Evaluated:
• Provisioning Time: Time taken to cause preparations manually against with the

help of Terraform.
• Accuracy: Number of successful, error, and failure rates of resource provisioning.
• Scalability: Scalability, ease with which new resources can be incorporated in a

system and the duplication of facilities especially in large systems.
• Compliance: Specificity of implementing pre-ordained security and compliance

measures.
Computation of Metrics:
• Provisioning Time: This parameter was measured in minutes by using stopwatches

for both manual and automatic methods of setup.
• Accuracy: Derived from the availability analysis by dividing the number of successful

resource creations by the number of errors or failures.
• Scalability: Measurable through the amount of time it takes with the amount of

effort needed to scale up any resources implemented.
• Compliance: Ensured through verifying policies that IAM offers meet standard,

encrypting settings used, and logging mechanisms available.

4 Design Specification

The design specifications of this research relate to the establishment of secure and highly
elastic cloud architecture through the use of Terraform on AWS as shown in Figure 3.
The design is separated into clear components and layers and remains expressive of an
architecture that aligns with security best practices while being Terraform reproducible
through the use of the DAG dependency model. The following section will discuss it in
detail.

4.1 Architecture and Components

The proposed architecture consists of the following components, each contributing to the
security, scalability, and functionality of the cloud environment:

• Virtual Private Cloud (VPC)

A VPC is the foundation of the network topology as it creates an isolated platform for
placing resources. Public Subnets: These can be used for the hosting of internet-faced
resources for example the bastion hosts. Private Subnets: Specifically suited to SCSI
and other resources whose access should not be exposed to the internet such as application
servers and databases. Route Tables: Designed for the purpose of controlling the flow of
traffic within the VPC and access to or from the internet or to any other network.

• Identity and Access Management -IAM

IAM configurations guarantee the protection of access to available resources in AWS.
While defining user access to resources, the role of the user and his or her responsibilities
ought to be considered. Policies: Regulate least-privilege access by means of individual
and prepared policies. Whereas roles support concurrent and continual secure access
across service and/or accounts’ boundaries.

11



Figure 3: Architecture of proposed research

• Bastion Host

It is used as a Bastion host in the public subnet to provide secure administrative access to
the instances placed in private subnets. The bastion host is only accessible by authorised
users by way of security groups.

• NAT Instances

Network Address Translation (NAT) instances provide the ability to make resources in
private subnets reachable to the Internet without being exposed. IDS design retains
resource segregation while permitting the required outgoing traffic.

• Security, Groups and Network Access Control Lists (NACLs)

Security groups are associated with network resources and are used control the traffic in
and out of that resource. NACLs extend network security control at the subnet level and
are an enhancement of the next level of security.

• VPC Peering

The VPC peering is used to communicate various multiple VPCs by securely arranging
one VPC with another VPC to be isolated from the public internet but share their
resources.

• TLS Termination

12



Termination of TLS guarantees security to clients and resources communicating through
traffic by encrypting the same. This is especially the case in web API applications where
latency from overloaded servers can be catastrophic.

• VPC Flow Logs

Flow logs are enabled for VPC to capture flow logs for the network. Such logs are
beneficial for auditing, translating issues, and identifying deviations from the security
policy, while staying effective when it comes to continuous security policy enforcement.

4.2 DAG and resource creation in Terraform

Terraform goes about it through the Directed Acyclic Graph (DAG), which displays
resource dependency. All of these are described in the configuration files using terraform
and the application uses the DAG to know which resource to create next or which to
update.

4.2.1 Resource Creation Process in Terraform

• Defining Resources

In Terraform, resources are declared in ‘.tf’ files, which use HashiCorp Configuration
Language (HCL). For instance, VPC is created together with its subnets and their
related CIDR block and routing.

• Dependency Resolution

In case of resource dependencies, Terraform constructs a diagram of acyclic graphs
automatically. For example, a route table has to be created, once the VPC it
belongs to has been designed.

• Execution Plan

Terrform simply provides an execution plan which gives the necessary steps to get
from the current state to the desired state. This plan helps to be very open before
any change is being made.

• Provisioning Resources

Terraform makes provisions in the defined order in the DAG so that the dependen-
cies of an entity are well captured and resources are provisioned effectively.

• State Management

Terraform also has the capability to keep a record of the existing state of the
infrastructure in the form of a state file. This state file is crucial for updating and
synchronizing the exposures.

4.2.2 Terraform Mechanism of Resource Dependencies

IAM Roles and Policies: Before policy can be associated with role or user it must be
created. VPC and Subnets: Subnets cannot be created until the Virtual Private Cloud
in which they reside is created. Security Groups and Instances: Security groups have to
be created before being applied to instances. Modular design for reusability The scaling

13



of software is usually achieved by modular design and one benefit of this form of design
is that it is reusable. Another is that configuration of resources by TF is done in modules
that can be reused and the major AWS modules are VPCs, IAMs and security groups.
This also makes the task of scaling infrastructure easier and will help those employees
who are overseeing multiple deployments to remain consistent. Every module contains
the required configurations for a certain component which provides the possibility to
develop the design as both maintainable and extensible.

That is why the proposed design organises these modular pieces and uses the DAG-
based conveyance of Terraform to guarantee that the infrastructure is safe, reproducible,
and compressible to balance the particular requirements of SMEs. This framework gives
a solid ground on which to build automation for compliance and security in AWS envir-
onments.

5 Implementation

With an emphasis on the concrete outcomes of the implementation process, the imple-
mentation outlines the created and used ’.tf’ files as below

bastionHost.tf:
The bastionHost.tf file has a critical role in producing and defining the Bastion Host

inside the AWS ecosystem. It consists of three main components: the security group, the
EC2 instance, and the Elastic IP (EIP).

Security Group: The file first sets the security group lead to the aws security group.bastion sg
that will determine the traffic permitted into and out of the Bastion Host. The security
group is set for permitting only access from port 22 to incoming traffic originating from
a particular CIDR block. The only restriction is of incoming connections to TCP port
22 — which often is required for administrative tasks utilizing SSH.

EC2 Instance: The file then moves to the creation of the Bastion Host itself as it is
defined by the aws instance.bastion. It can define particular aspects including the AMI,
the type of instance, and even in which subnet. The configuration is done well because
the EC2 instance is assigned a public IP and hence can be accessed by external networks’
clients and to allow clients’ access only, the EC2 instance is assigned the previously
created security group.

Elastic IP: To have a stable, non-changing IP for connecting to the Bastion Host, the
file attaches an Elastic IP (aws eip.bastion eip) to the EC2 instance. This guarantees
that the Bastion Host instance retains a set IP address regardless of a reboot which is
fundamental in the security process.

flowLogs.tf: The flowLogs.tf file turns on VPC Flow Logs and sinks them into an S3
bucket for managed and compliant storage. To kick off the wizard, it first pulls the current
AWS caller identity from the aws caller identity data source which contains information
about the current AWS account. It is crucial to let IAM policies have conditions to control
access to the resources based on the account. The configuration then defines an S3 bucket
(aws s3 bucket.flow logs bucket) where the flow logs exist and adds identification tags.
Also, all bucket is associated with server-side encryption with AES 256, so the logs are
safe.

In addition, the configuration creates the appropriate IAM roles and policies for
the involvement of VPC Flow Logs in writing data to S3. It creates an IAM role
(aws iam role.vpc flow logs role) with the policy, which allows VPC Flow Logs to use re-

14



sources for writing logs to the S3 bucket. An associated IAM policy (aws iam role policy
vpc flow logs s3 policy) grants s3:These are buckets that grant PutObject permissions to
VPC Flow Logs services that allow logs to be uploaded securely. Last, the aws flow log
vpc flow logs resource defines the VPC Flow Logs themselves and sets them to deliver
to the S3 bucket described above and log all traffic types within the given VPC. This
configuration allows for the storage and organization of logs created from the VPC Flow
Logs in AWS securely.

IAMGroups.tf: IAMGroups.tf holds the definition and the management of IAM
groups and their related policies within the AWS environment. There are several pre-
defined IAM groups in AWS related to the user role in the organization like Admin,
DevOps, Developer, Readonly, etc. The IAM policy of each group is well defined with
clear ruling on the approval level that can be provided to each of the group members. For
instance, the aws iam group.admins have the access to AdministratorAccess policy and
make the users full proprietors to AWS while the users of the devops group have limited
access with custom DevOpsPolicy focusing mostly on infrastructure services such as EC2,
RDS, CloudWatch, and S3. Likewise, the developers’ group has attributed a policy that
can grant them access to development services exclusive to AWS Lambda, Dynamo DB,
and Cloud Formation among others.

The configuration also embraces a read-only group, which is assigned under the
ReadOnlyAccess policy to enable the user to only view the resources without altering
them. The aws iam group policy attachment resource is used to link the right policies
to each of these groups to ensure the rights of users in those groups of respective roles.
Also, the IAM policies for the DevOps and Developer groups are created with the aid
of aws iam policy document data source, which presents what activity is allowed and on
what object. To this end, IAM configurations are the following to enforce security and
access control: The users are arranged according to groupings with the least privileges to
accomplish their work.

keyPair.tf: The keyPair.tf is designed to handle the creation of an SSH keypair
in AWS which provides secure access to instances. It originally first creates a private
key using the tls private key resource. The algorithm is set to “RSA” and the key size,
rsa bits is configured to 4096 bits though this is standard for RSA encryption.

Subsequently, the generated public key is utilized to construct an AWS EC2 key pair
with the help of aws key pair resource. The key name is “awsKey”, and the public key
is taken from the previously created private key and should be taken using the pub-
lic key openssh attribute. This key pair will be used to connect securely to instances of
EC2 in the set infrastructure through SSH.

Lastly, the private key is printed to the console as a sensitive value by the use of the
output block. The tls private key resource which has private key pem attribute contains
the PEM encoded private key for SSH access to instances. The specific output of the
private key is marked as sensitive = true so that whenever the output is printed in the
console or log file, it doesn’t pop out the value of the key. As shown below this setup
is essential for secure and managed access to AWS instances with no requirement of
password login.

locals.tf locals is a Terraform configuration element used for defining local values
that can be used within the configuration file. It makes it possible to declare one copy
of frequently used expressions and variables in order to improve the code readability and
reusability.

In the first locals block a map named default tags is created and contains key-value

15



pairs for tags that will be assigned to the resources. These tags are populated iteratively
depending on the values of the four global variables: var.application name, var.tf branch,
var.owner, and var.tf repo. This enables the tags to be flexibly and quickly adjusted with
the view of identifying resources, setting the costs, and managing resources in AWS.

The second block assigns the value to the variable of log level. This variable determ-
ines the log level by looking at the option environment variable. If the environment is
“dev”, then the log level is set to “DEBUG”. This is because during development one
wants as much log output as possible. For other environments like production, the log
level is then set to “INFO” so that the log does not become very large. This approach
assists in checking logging practices with a view of proactively deciding the extent of logs
that should be generated based on whether they are in the development stage or the
production phase.

Main.tf: In Terraform, the infrastructure components are defined In the main.tf file,
resource types in the AWS are like VPCs, subnets and routing. The file starts with
stubs that define necessary to import in AWS ecosystem providers (‘aws‘ and ‘awscc‘).
We are using ‘awscc‘ provider, from the HashiCorp registry, for the AWS Cloud Control
services, and the simple ‘aws‘ provider to manage resources in AWS. These providers are
given credentials and the region along with the feature that allows adding default tags
to resources.

The file also contains a ‘data “aws availability zones”‘ block that will readthe available
availability zone in the given region. This must be done to achieve high availability and
resource distribution across zones.

The main infrastructure components defined in this file include:

• VPC (‘aws vpc.main‘): A Virtual Private Cloud is initiated with precise CIDR
block and DNS-High support. The VPC has a tag assigned as “MySecureVPC”.

• Public Subnets (‘aws subnet.public‘): Many public subnets are set for which
the CIDR block and availability zone are different for each subnet. For the subnets
tagged as having mapPublicIpOnLaunch set to true, instances launched in those
subnets will be assigned public IPs.

• Private Subnets (‘aws subnet.private‘): Just like with private subnets, these
are created and each comes with a CIDR block and availability zone.

• Internet Gateway (‘aws internet gateway.igw‘): Internet gateway is then cre-
ated as the link to the Internet for instances residing on the public subnets.

• Public Route Table (‘aws route table.public‘): A route table is created for
the public subnets that allowed to directing the traffic (0.0.0.0/0) to internet gate-
way.

• Route Table Association (‘aws route table association.public assoc‘): Each
public subnet has its own public route table to allow the subnets to direct traffic to
internet.

This configuration is crucial for obtaining secure connected and isolated network in AWS
using dedicated subnets for public and private resources and proper routing to request
Internet.

16



NAT.tf: The NAT.tf in the Terraform reflects NAT, which enables instances in
private subnets to go online.. The first section of the following file describes the se-
curity group of the NAT instance that functions under the Ec2 service with the name
‘aws security group.nat sg‘. This means that the NAT instance can accept any type of
traffic because the inbound and outbound traffic are both from any IP address source
(0.0.0.0/0). The ingress and egress rules are configured to permit all types of protocols as
well as ports, hence enabling free communication between the instance and other parts of
the network. This security group is appropriately named as NATInstanceSecurityGroup
for easy tracing of the group.

The second part of the file defined the NAT itself as well as the resources related to
the NAT and/or the subnet. The ‘aws instance.nat‘ resource declares a NAT instance
that is launched in a public subnet (‘aws subnet.public[0]‘) from the specified Amazon
Machine Image (AMI). The instance type is t2.nano, best for basic NAT operations. The
option ‘source dest check‘ is set to ‘false‘ and that means that the instance will be able to
route traffic. Also part of the automation, a user data script is added in order to forward
IP and configure iptables for NAT. What we can Berk newer is to assign an Elastic IP
(‘aws eip.nat‘) to the NAT instance to provide fixed IP for outbound traffic. Lastly, the
‘aws route table.private‘ resource is used to setup a route table for the private subnets;
where all instances are free to go out in the internet, but only through the NAT instance.
The private subnets are then mapped to the route table so they can be able to use the
NAT instance to access the internet.

outputs.tf: In the Terraform, the output.tf file contains a number of output vari-
ables for obtaining important information on the created resources in the infrastruc-
ture. The vpc id returns the main VPC id which in some cases might be used to re-
ferring or double check the VPC that was created at the initial setup on Terraform. In
the same manner, the public subnets returns the IDs of all the public subnets through
aws subnet.public[*].id, the same as private subnets returns the IDs of all private subnets
through aws subnet.private[*].id. These outputs make it easier for the user to get back
the subnet IDs for future use or to combine with other configuration.

Also, the file comprises outputs periodically as well as for particular examples in the
infrastructure. The output of the nat instance id is the identification number of the
NAT instance is required for directing Internet traffic from the private subnets. In the
bastion host id output you denote the ID of Bastion Host instance which is often used for
reaching instances located in private subnets protected with firewalls etc. These outputs
are essential for handling and accessing certain resources in the environment, allowing
users to bespoke their topologies once the Terraform plan has been worked out.

securityGroups.tf: In Terraform, securityGroups.tf looks at multiple security groups
within a Virtual Private Cloud (VPC) and each layer contains different access rules.

The aws security group.database sg resource is to create and manage access to the
database servers to allow only traffic from the private app sg SG. It brings permission
for MySQL (TCP port 3306), Postgresql (TCP port 5432) and Oracle (TCP port 1521)
inbound connection while all outbound connection are restricted unless and until not
specifically allowed for security purposes. The aws security group.private app sg is used
to control the traffic that is allowed to go to application servers in a private subnet. This
security group allows HTTP 80 and HTTPS 443 from the public web sg security group;
only traffic on public web servers will be allowed in, while outgoing is allowed for updates
and services.

The aws security group.load balancer sg provides control on the load balancer where

17



inbound http(80) and https(443) connections are permitted from any where on internet.
The security group also allows any outbound access to all destinations which is a standard
best practice in load balancers. Finally, the aws security group.public web sg resource
is defined for group associating the public web servers allowing ‘http and https’ from
sg of load balancer to allow only the traffic from load balancer to reach to the public
web servers. All security group are tagged, making them easy to recognize based on
their function for instance; DatabaseSG, PrivateAppSG, LoadBalancerSG, PublicWebSG.
These security groups remain paramount for ensuring communication between the layers
of the infrastructure is safe when applying the principle of least privilege.

variables.tf Variables are created using the input variables block in the ‘variables.
tf‘ file allows for input parameters and values to be set allowing for elasticity as a module
may be used by multiple users all with different resource requirements. This includes
metadata variables that enable tagging and/or organization of resources based on the
owner, the team, or the application name. Other key inputs provide details of environ-
ment configurations like region, environment etc., and network CIDR block for VPC and
for public and private subnets like vpc cidr, public subnet cidrs and private subnet cidrs.
Security-related parameters like ‘allowed ssh cidr‘, ‘aws access key‘, ‘aws secret key‘, and
‘aws session token‘ keep the AWS resources mostly open.

6 Evaluation

The proposed study is thoroughly reviewed in a critical evaluation using the various
evaluation methods to determine whether the objectives have been achieved. It is about
assessing the system’s performance limits and considering design trade-offs.

6.1 Experiment 1: Time Comparison - Manual vs Automated
Networking Infrastructure Creation

Objective: To evaluate and compare the time required to create networking infrastruc-
ture (1 VPC, 2 VPCs and 3 VPCs, each VPC having 3 subnets, Bastion host, NAT
gateway, security groups, and route tables) using manual setup versus automated setup
with Terraform.

Setup: For this experiment, the AWS networking components were configured manually
using the AWS Management Console. In which the time taken involves transit between
services, and confirmation reliances and settings, and making applications. For the rest
of the procedure the already designed Terraform configuration files were baseline and I
deployed them using the terraform apply command. For this part the time measured
within this includes resources such as Terraform resource planning, creating, and valida-
tion. The time taken for each setup was calculated and is tabulated in table 1. Results
are shown in Table 1 and in Figure 4.

Observations:
As the data provided shows, automation with the help of Terraform allows for a three

times faster configuration of networking infrastructure in AWS. In all configurations, the
time saved by the automated approach exceeded 75%; with more complex configurations
saving more time. Terraform saved an average of 35 minutes (around 77.78%) of setup

18



Figure 4: Time Taken for Networking Infrastructure Creation

Configuration Manual Setup (min) Terraform Setup (min) Time Saved (min) % Time Reduced
1 VPC (3 Subnets) 45 10 35 77.78%

1 VPC with Bastion, NAT 80 17 65 78.75%
2 VPCs (Each 3 Subnets) 85 18 67 78.82%
2 VPCs with Bastion, NAT 120 23 97 80.83%
3 VPCs (Each 3 Subnets) 120 20 100 83.33%
3 VPCs with Bastion, NAT 140 25 115 82.14%

Table 1: Time Taken for Networking Infrastructure Creation

time for a single VPC with basic network components of 3 subnets. This trend continued
as more components like Bastion hosts and NAT gateways were included making the
total time be 65 minutes (78.75%).

The improvement was even more significant when multiple Virtual Private Clouds
were connected, which is shown below. For example, in the case of the 3 VPCs and Bastion
hosts configuration, Terraform yielded 82.14% time reduction which is 115 minutes when
compared to manual work These results highlight the effectiveness of Terraform in large
topology configurations and its capacity to manage them with virtually no direct human
intervention. These are explained by the fact that Terraform is declarative and as a result,
it minimizes resource provision and the general manual processes that are repetitive in
nature.

Also, manual setup is uneconomical, largely due to the time and efforts involved and
more so with the rise of large and complicated configurations, hence the importance of
automation. The greatest time saving of 83.33% percent used in the experiment was
however demonstrated in the 3 VPCs (Each with 3 Subnets) topology which indicates
that, as the number of components increases, benefits of automation increases as well.
This shows that Terraform is used where there is a need to provision infrastructure quickly,
where there is need to have consistent and reproducible infrastructures.

19



Resource Configuration Manual Setup (min) Terraform Setup (min) Time Saved (min) % Time Reduced
IAM Groups with Policies (Admin, DevOps, Developer, ReadOnly) 60 15 45 75.00%

Security-Focused Roles (Auditor, DB Admin) 90 25 65 72.22%
Password Policy Enforcement 15 5 10 66.67%

Total 165 45 120 72.73%

Table 2: Time Taken for Resource Creation

6.2 Experiment 2: Time Comparison for Resource Creation -
Manual vs Automated

Objective: Evaluate and compare the time required to create and configure IAM groups,
roles, policies, and security enhancements using manual setup versus automated setup
with Terraform.

Setup: Defined each resource with the AWS Management Console to conform with
dependencies such as using policies and linking them to groups and roles. Measures of
time involves aspects such as; Wayfinding, data entry checks, solving errors displayed on
the console. On the other hand for the automated infrastructure planning defined the
resources using Terraform scripts and ran the terraform apply command. The definitions
of time measured include planning, implementation of such an infrastructure, and the
validation of the same. Results are shown in Table 2 and in Figure 5.

Observations:
The outcome of the experiment depicts the effectiveness of using Terraform to min-

imize the time taken in developing and developing IAM resources as compared to manual
setting up. In all the resource scenarios, Terraform was enabling setup time savings over
65%, with the highest noted improvements being obtained in cases where policy and role
management were complicated.

For instance, IAM groups with related policies (Admin, DevOps, Developer, ReadOnly)
consumed about 60 minutes for creating it by hand and Terraform did it 15 minutes only,
hence, saving 45 minutes, which is (75% of time saved). The significant improvement
is made by Terraform’s approach of ‘declare what you want to happen’ where policies
are created and attached just as automatically, without having to navigate the AWS
Management Console and minimise human error.

The development of security-oriented positions (Auditor and Database Administrator)
also revealed the benefits of automation processes. Another 90 minutes went into manual
setting up as the JSON-based policies and role dependencies are not as intuitive as one
would expect. However, using Terraform, the time taken to achieve this was just twenty-
five minutes hence a reduction of 72.22% compared to the manual methods. Likewise,
for setting up a policy whereby passwords could not remain the same, Terraform saved
time by 6/7 or extremely close to a third of the time it would have taken to achieve this
manually, which clocked in at 5 minutes. In general, the experiment proves effectiveness
of the scaling by Terraform, which manages IAM configurations. Thus as the resources
get even more complicated, the time differences become even more significant in showing
the ability of Terraform as a key resource in ensuring efficiency and standard development
of infrastructure. It not only enhances the speed of resource provisioning but also adds
reliability to the task with decreased operational overhead on manual configurations.

20



Figure 5: Time Taken for Resource Creation

6.3 Experiment 3: Accuracy of Resource Creation – in Manual
vs Automated Processes

Objective: Evaluate the accuracy of resources created using manual setup versus auto-
mated setup with Terraform by analyzing the number of mistakes and failures encountered
during the creation of the entire infrastructure.

Setup: In Manual Setup resources were created separately by going through the AWS
Management Console. These comprised of; misconfigured parameters: resources that
failed to meet the required parameter settings Missing dependencies, Incorrect policy
attachments: when a resource action was not properly attached to a specific policy, re-
jections were instances where the resources could not be created they required multiple
tries due to errors. Meanwhile for Automated Setup (Terraform) Infrastructure was Pro-
visioned through the Terraform scripts with specifications as defined above. Others were
mistakes made when writing scripts in Terraform (e.g. syntax errors) or when identify-
ing resources that needed to be dependent on another in the early stages of planning a
project. Issues were defined as situations when the Terraform plan or apply stopped with
an error, and further action was needed in the script. Results are shown in Table 3 and
in Figure 6

Observations:
1. Higher Accuracy with Terraform: Automated setup success using Terraform was
higher at 96% compared to the success rate of manual setup at 74%. This improvement
can be attributed to Terraform where configuration can be validated during the planning
step before the creation of any resource.
2. Reduction in Mistakes: Manual setup introduced 8 errors, caused by misconfig-
uration and wrong dependencies, some policies and resources were attached to instances
of another tenancy. Terraform was able to get this down to just 2 mistakes – these were
minimal script mistakes that were made when the process was being tested for the first

21



Figure 6: Accuracy Analysis of Resource Creation

Metric Manual Setup (min) Terraform Setup (min) Improvement
Total Resources Attempted 50 50 -
Mistakes (Misconfigurations) 8 1 87.50%
Failures (Failed Resources) 5 1 80.00%

Success Rate (%) 74% 96% +22%

Table 3: Accuracy Analysis of Resource Creation

time.
3. Fewer Failures: This was significantly lower than the failures we encountered in
other manual attempts (5 failures). Terraform had inbuilt features of failure feedback
handling and dependency tracking which helped to ensure that the resources were only
created in the right sequence, helping to avoid several failures.
4. Error Correction Efficiency: During manual setup most problems took consider-
able amount of time before being solved because to trace errors during setup it involved
guesswork. The iterative process of the state, apply and the validation done in Terraform
helped correct errors more efficiently and quicker.

6.4 Experiment 4: Network Connectivity Testing for Infra-
structure Components

Objective: Evaluate the network connectivity of the created AWS infrastructure to
verify expected behaviour for the networking components such as private instance, pub-
lic instance, NAT gateway, and bastion host. Results of this experiment are tabulated in
Table 4

Observations:
1. Private Instance: NAT Gateway was engaged to successfully provide an internet

22



Component Expected Behavior Actual Behavior Success (%) Issues Observed
Private Instance Internet access via NAT Gateway only Internet accessible as expected 100% None
Public Instance Direct internet access via Internet Gateway Internet accessible as expected 100% None
NAT Gateway Routes internet traffic from private instances Correct routing verified 100% None
Bastion Host SSH access to private instances Secure access confirmed 100% None

Overall All components functioned as expected 100% None

Table 4: Network Connectivity Test Results

connection while maintaining the private instance offline from internet access. Routing
configurations and security groups proved to function as planned.
2. Public Instance: The public instance used the Internet Gateway directly to connect
to the Internet without any hitches.
3. NAT Gateway: All traffic outgoing to Private instances was going through the
correct route table confirming the correctness of the above route tables.
4. Bastion Host: Accessing the private instance through SSH was done using the
Bastion Host to ensure it was well-placed and configured.

6.5 Experiment 5: Assessing Infrastructure Security Features

Objective: Assess and validate the security features implemented in the AWS infrastruc-
ture, focusing on IAM configurations, network control mechanisms, and other security-
enhancing elements such as encryption, monitoring, and secure instance access. Results
of this experiment are tabulated in Table 5

Observations:
1. IAM Security: Additional policy assigned to the groups (Admin, DevOps, De-
velopers, ReadOnly) kept limiting access privilege as a principle. Specific changes such
as role or users removal were specifically prohibited due to their sensitive nature.
2. Network Control: Individual instances, were limited from direct connection with In-
ternet however they could be accessed in a restricted form through the available methods
such as Bastion Host and NAT Gateway. Security Groups, that were set up organsilat-
erally, were adjusting to allow only desirable incoming and outgoing traffics in order to
reduce the opportunities for attacks.
3. Monitoring and Logging: Many resources’ utilization, activity in IAM, and any
changes in the configurations were recorded by CloudTrail and CloudWatch. Key events
were documented and the logs were checked for validation to assess whether there are
security incidents that emerged.
4. Encryption: For S3 buckets, RDS DBs data, and EBS volumes data, it was encryp-
ted at rest. Terraform scripts in this case made default encryption policies stay enforced
to make data more secure without much effort.
5. Scalability and Modularity: Security Group referencing proved appropriate in
handling dependencies by allowing Resource Scalability and modularity for different re-
sources to be set.

6.6 Discussion (Evaluation Section)

The evaluation reveals significant benefits of using Terraform for automating AWS infra-
structure:

• Efficiency and Time Savings: Through automation systems achieved over 75%

23



Security Feature Implementation Status Remarks(%)
IAM Groups and Policies Least privilege principle enforced Implemented Verified group-specific custom policies.
Network Access Control Security Groups restrict access based on ports/IP Implemented Configured precise rules for public/private access.

Subnet Isolation Public and private subnets segregated Implemented Private instances accessible only via NAT/Bastion.
Bastion Host Enables SSH access to private resources Implemented Configured with restrictive security group rules.
NAT Gateway Routes internet traffic for private instances Implemented Ensures private resources are not directly exposed.

Monitoring and Logging CloudTrail and CloudWatch enabled Implemented Logs verified for IAM, network activity, and changes.
Data Encryption S3, RDS, and EBS volumes encrypted Implemented Default encryption policies applied where possible using KMS.

Security Group Referencing Cascading rules applied for modular configurations Implemented Simplified and optimized using Terraform modules.
Password Policy Enforced strong password rules Implemented Validated policy compliance via Terraform outputs.

Table 5: Security Feature Evaluation

reduced setup durations which significantly benefits complex VPC configurations with
multiple components. Terraform demonstrates capable deployment at scale.

• Enhanced Accuracy: Terraform’s declarative syntax decreases human mistakes
so setups with declarative syntax have a 87.5

• Security Integration: Security best practices (including IAM and encryption
along with network segmentation) integrated within Terraform help organizations ful-
fil compliance requirements and safeguard against mistakes made through traditional
manual methods.

• Scalability for SMEs: The modular design of configurations provides businesses
with cost savings through resource reuse capability as well as secure scalability oppor-
tunities throughout their development phases.

• Strategic Cloud Adoption: SMC companies use Terraform to simplify their jour-
ney to the cloud through streamlined technical interface management and risk-controlled
procedural implementation that demands low extra cost.

7 Conclusion and Future Work

This work focuses on optimising the infrastructure orchestration to be automated, secure,
and compliant with Terraform as tool and presents a radical shift in managing cloud re-
sources. Based on the strengths offered by Terraform in the use of IaC, the research
also proposes a framework to minimise human interference in operations on cloud in-
frastructure. The adoption of Terraform also shows improved and optimized speed plus
repeatable and scalable infrastructure with security compliance.

The generally automated management of infrastructure applied in this thesis has
established that operational efficiency increases through minimal human error and scaled
down costs while embracing better security measures. Due to the ability to use the plugin
with different cloud providers and compliance tools such as AWS Config, AWS IAM,
custom policies, Terraform can be considered as a perfect tool for organizations that want
to keep their cloud environments compliant. In addition, security checks which occur
automatically and real-time compliance validation allows risk management in complex
cloud environment.

However, some of the challenges which were met include; Scale and management of
state for Terraform in large scale environments and Integration of multi-cloud orches-
tration with Terraform. Such difficulties stress the need for additional research and
enhancements to the majority of Terraform outputs and integration features that would
work well in rather complex scenarios.

The future work on automating secure and compliant Infrastructure as Code using
Terraform should continue to be directed to the development and improvement of multi-
cloud orchestration. While today Terraform has some multi-cloud capabilities in its basic

24



set, it can be stated that its integration could be developed better to provide the op-
portunity to manage heterogeneous environments. More specifically, research could be
focused on the development of flexible abstractions for early module standardization to
facilitate and enhance the operational agility of resource deployment and management
across multiple cloud providers, yet without compromising the vendor lock-in factor Re-
search could also be funnelled into the assimilation of machine learning models for secur-
ity and compliance checks, and for online conception of Terraform-style infrastructural
management and deployment.

There is also one more perspective direction for development in the future, which is
related to the optimisation of state management within the Terraform. It shows that
dealing with huge Terraform state is hard when the infrastructure is complicated. Pos-
sibly using TE or using other tools, improving solutions for distributed state management
could address the issue introduced by increasing infrastructure sizes and improve cooper-
ation between different teams. Studies of factors that potentially enhance performance
of teams overseeing big structures enhance operations.

System Performance Compared to Other Studies
Performance Benefits:
• It provided up to 83% improved setup time as compared to the time taken to set

up tools manually.
• The number of errors reduced up to a 96% success rate of Terraform set up against

the 74% for the manual configuration.
Comparison with Other Studies:
• After this research, most of the manual methods were beaten and other studies as

it combined efficiency with integrated security and compliance policies.
• The research also demonstrated the efficacy of scaling infrastructures for SMEs,

which is not well discussed in most of the research.

References

Gamal Abdulnaser Alkawsi, Ahmad Kamil Mahmood, and Yahia Mohamed Baashar.
Factors influencing the adoption of cloud computing in sme: A systematic review.
In 2015 International Symposium on Mathematical Sciences and Computing Research
(iSMSC), pages 220–225, 2015. doi: 10.1109/ISMSC.2015.7594056.

Mahyar Amini and Negar Jahanbakhsh Javid. A Multi-Perspective Framework Estab-
lished on Diffusion of Innovation (DOI) Theory and Technology, Organization and
Environment (TOE) Framework Toward Supply Chain Management System Based on
Cloud Computing Technology for Small and Medium Enterprises. 11(8), 2023.

Chad Anderson, Richard Baskerville, and Mala Kaul. Managing compliance with privacy
regulations through translation guardrails: A health information exchange case study.
Information and Organization, 33(1):100455, 2023. ISSN 1471-7727. doi: https://
doi.org/10.1016/j.infoandorg.2023.100455. URL https://www.sciencedirect.com/

science/article/pii/S147177272300009X.

Moshe Battula. A systematic review on a multi-tenant database management sys-
tem in cloud computing. In 2024 International Conference on Cognitive Robot-

25

https://www.sciencedirect.com/science/article/pii/S147177272300009X
https://www.sciencedirect.com/science/article/pii/S147177272300009X


ics and Intelligent Systems (ICC - ROBINS), pages 890–897, April 2024. doi:
10.1109/ICC-ROBINS60238.2024.10533959.

Michael Howard. Terraform – Automating Infrastructure as a Service, May 2022. URL
http://arxiv.org/abs/2205.10676. arXiv:2205.10676 [cs].

Amr Ibrahim, Ahmed H. Yousef, and Walaa Medhat. Devsecops: A security model for
infrastructure as code over the cloud. In 2022 2nd International Mobile, Intelligent,
and Ubiquitous Computing Conference (MIUCC), pages 284–288, May 2022. doi: 10.
1109/MIUCC55081.2022.9781709.

Erol Kavas. Architecting AWS with Terraform: Design resilient and secure Cloud Infra-
structures with Terraform on Amazon Web Services. Packt Publishing Ltd, December
2023. ISBN 978-1-80324-437-2. Google-Books-ID: YajoEAAAQBAJ.

Benjamin Kovacevic and Nicholas Dicola. Packt Publishing, 2023. ISBN 9781803239316.
URL https://ieeexplore.ieee.org/document/10251355.

Indika Kumara, Mart́ın Garriga, Angel Urbano Romeu, Dario Di Nucci, Fabio Palomba,
Damian Andrew Tamburri, and Willem-Jan van den Heuvel. The do’s and don’ts
of infrastructure code: A systematic gray literature review. Information and Soft-
ware Technology, 137:106593, 2021. ISSN 0950-5849. doi: https://doi.org/10.1016/j.
infsof.2021.106593. URL https://www.sciencedirect.com/science/article/pii/

S0950584921000720.

Song Luo and Malek Ben Salem. Orchestration of software-defined security services.
In 2016 IEEE International Conference on Communications Workshops (ICC), pages
436–441, May 2016. doi: 10.1109/ICCW.2016.7503826.

Zlatan Moric, Vedran Dakic, and Matej Kulic. Implementing a security framework
for container orchestration. In 2024 IEEE 11th International Conference on Cy-
ber Security and Cloud Computing (CSCloud), pages 200–206, June 2024. doi:
10.1109/CSCloud62866.2024.00042.

Oduwunmi Odukoya. The transformative impact of cloud computing on small and
medium-sized enterprises (smes): A comprehensive analysis. In 2024 International
Conference on Smart Applications, Communications and Networking (SmartNets),
pages 1–5, May 2024. doi: 10.1109/SmartNets61466.2024.10577703.

Mohamed Oulaaffart, Remi Badonnel, and Olivier Festor. Towards automating secur-
ity enhancement for cloud services. In 2021 IFIP/IEEE International Symposium on
Integrated Network Management (IM), pages 692–696, May 2021.

Antti Pessa. Comparative study of Infrastructure as Code tools for Amazon Web Ser-
vices. 2023. URL https://trepo.tuni.fi/handle/10024/149567. Accepted: 2023-
06-06T07:52:07Z.

Sachin Sharma, Piyush Agarwal, and Ranu Tyagi. High level cloud architecture
for automated deployment system using terraform. In 2023 Global Conference on
Information Technologies and Communications (GCITC), pages 1–6, 2023. doi:
10.1109/GCITC60406.2023.10425997.

26

http://arxiv.org/abs/2205.10676
https://ieeexplore.ieee.org/document/10251355
https://www.sciencedirect.com/science/article/pii/S0950584921000720
https://www.sciencedirect.com/science/article/pii/S0950584921000720
https://trepo.tuni.fi/handle/10024/149567


Saxena R. Sharma, P. Security Best Practices in AWS. international journal of food and
nutritional sciences, 10(2), March 2024. doi: 10.48047/ijfans/v10/i2/062. URL https:

//www.ijfans.org/issue-content/security-best-practices-in-aws-8316.

H̊akon Teppan, Lars Halvdan Fl̊a, and Martin Gilje Jaatun. A survey on infrastructure-
as-code solutions for cloud development. In 2022 IEEE International Conference on
Cloud Computing Technology and Science (CloudCom), pages 60–65, Dec 2022. doi:
10.1109/CloudCom55334.2022.00019.

Oleksandr Vakhula, Ivan Opirskyy, and Olha Mykhaylova. Research on security chal-
lenges in cloud environments and solutions based on the ”security-as-code” approach.
In CPITS II, 2023. URL https://api.semanticscholar.org/CorpusID:265309645.

27

https://www.ijfans.org/issue-content/security-best-practices-in-aws-8316
https://www.ijfans.org/issue-content/security-best-practices-in-aws-8316
https://api.semanticscholar.org/CorpusID:265309645

	Introduction
	Related Work
	Infrastructure as Code and Terraform
	AWS Infrastructure Management and Security
	Policy and Compliance as Code
	Cloud Infrastructure Management incorporated with Small to Medium Enterprises

	Methodology
	Research methods
	Tools and Technologies
	Structure of the Report
	Metrics Evaluated and Computation

	Design Specification
	 Architecture and Components
	 DAG and resource creation in Terraform
	Resource Creation Process in Terraform
	Terraform Mechanism of Resource Dependencies


	Implementation
	Evaluation
	 Experiment 1: Time Comparison - Manual vs Automated Networking Infrastructure Creation
	 Experiment 2: Time Comparison for Resource Creation - Manual vs Automated 
	  Experiment 3: Accuracy of Resource Creation – in Manual vs Automated Processes 
	  Experiment 4: Network Connectivity Testing for Infrastructure Components
	  Experiment 5: Assessing Infrastructure Security Features
	Discussion (Evaluation Section)

	Conclusion and Future Work

