
Monitoring the Security Vulnerabilities in
CI/CD Pipeline Using DevSecOps Security

Testing Tools

MSc Research Project

Cloud Computing

Aniket Ashok Shetty
Student ID: x23217529

School of Computing

National College of Ireland

Supervisor: Prof. Vikas Sahni

www.ncirl.ie



National College of Ireland
Project Submission Sheet

School of Computing

Student Name: Aniket Ashok Shetty

Student ID: x23217529

Programme: Cloud Computing

Year: 2024

Module: MSc Research Project

Supervisor: Prof. Vikas Sahni

Submission Due Date: 12/12/2024

Project Title: Monitoring the Security Vulnerabilities in CI/CD Pipeline Us-
ing DevSecOps Security Testing Tools

Word Count: 6363

Page Count: 20

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature: Aniket Ashok Shetty

Date: 10th December 2024

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). □
Attach a Moodle submission receipt of the online project submission, to
each project (including multiple copies).

□

You must ensure that you retain a HARD COPY of the project, both for
your own reference and in case a project is lost or mislaid. It is not sufficient to keep
a copy on computer.

□

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):



Monitoring the Security Vulnerabilities in CI/CD
Pipeline Using DevSecOps Security Testing Tools

Aniket Ashok Shetty
x23217529

Abstract

With the increasing use of Development & Operations (DevOps) in the Software
Development Life Cycle, the security is an important concern which needs to be
taken into consideration. So, “Static Application Security Testing” (SAST) and
“Dynamic Application Security Testing” (DAST) have been integrated in CI/CD
Pipelines to check the vulnerabilities of a software at the build and deployment
stage. However, the current tools were not efficient enough to detect the vulner-
abilities in real-time, so in this research the main motive is to overcome those
gaps by advancing the security tool to check vulnerabilities and attacks in a soft-
ware. By integrating new methods like “Interactive Application Security Testing”
(IAST) it provides a real-time vulnerability detection by monitoring the internal
behaviour of applications. In this research, the demonstration of improved results
of security testing tools are showcased. Where “Snyk” (SAST) tool identified 82
vulnerabilities in more effective and efficient way than the previous work, on the
other hand “Stackhawk” (DAST) tool delivered decent results, lastly the integra-
tion of “Datadog” (IAST) was successfully done, as it does the work of both SAST
& DAST in one tool.

Key Words: Software Development Life Cycle (SDLC), DevOps, DevSecOps, Static
Application Security Testing (SAST), Dynamic Application Security Testing (DAST),
Interactive Application Security Testing (IAST).

1 Introduction

The advancement of software development practices nowadays has increased the stand-
ard of traditional method like DevOps and DevSecOps, which helps in highlighting the
performance of the software with automation, speed and security during the software
delivery process. DevOps is basically a combination of both Development and Operation
in a Software Development Life Cycle, which enables the integration and deployment
process that streamlines together. In DevOps, Continuous Integration and Continuous
Deployment (CI/CD Pipeline) life cycle play’s a vital role, which allows integration of
source code and its continuous changes that are made and deployed automatically within
testing and production environment. However, during this entire process, security needs
to be considered and taken into consideration, particularly with the data which needs to
be secured without any vulnerabilities being detected in that environment.

DevSecOps, which is built upon DevOps by enhancing the security parameters in
CI/CD pipeline, which ensures security to be embedded at every stage of the pipeline

1



in the software development life cycle. DevSecOps which basically means adding an ex-
tra layer in the Development and Operation process which detects and reduces those
vulnerabilities in the software. So, the extra layer contains security methods like Static
Application Security Testing & Dynamic Application Security Testing which are been in-
tegrated in the pipeline Diaz et al. (2019). SAST which mainly focuses on analyzing the
source code of the software to detect vulnerabilities within the build stage, Masood and
Java (2015)Gauthier et al. (2018), and on the other hand DAST detects the vulnerabil-
ities of the running application in real time within the deployed environment Putra and
Kabetta (2022). Even, after following both this approach in the software development
life cycle it lacks effectively in detecting vulnerabilities in real-time which impacts the
software.

The increasing difficulty level of the software system and growing culture of the cyber-
attacks requires more robust security tools which can detect and mitigate risk. From the
research it has shown that the traditional security tools like SAST and DAST are effective
but lacks in certain stages in real-time which increases the threat levels. “Implementing
and Automating Security Scanning to a DevSecOps CI/CD Pipeline” Marandi et al.
(2023) demonstrated the application after integrating the security tools SAST & DAST,
and found the vulnerability gaps during the real-time. Correspondingly, for the other
research, “Continuous Security Testing: A Case Study on Integrating Dynamic Security
Testing Tools in CI/CD Pipelines”Rangnau et al. (2020) proposed DAST integration but
noticed problems in detecting vulnerabilities in the CI/CD pipeline dynamically.

The above study problem motivates to come up with the following Research Question:

“How security can be enhanced in CI/CD pipeline using SAST, DAST &
IAST Security testing tools, in terms of efficiency, performance, and effect-
iveness?”

This research paper mainly focuses on answering the above research questions by
focusing on implementing and developing a standardized method for ideally integrating
Interactive Application Security Testing (IAST) in the CI/CD Pipeline. IAST basically
does the security testing in real-time during the built and deployment stage in the CI/CD
Pipeline which fills up the gaps that were not fulfilled by SAST & DAST. It does the
work of both SAST and DAST at the same time in the CI/CD pipeline which makes it
more efficient and effective.

Integration of SAST (Synk) and DAST (StakHawk) security tools on Damn Vulner-
able Web Application has been done and which was later deployed on cloud to check the
vulnerabilities. So, now the objective of this research was to propose the next step of
implementation by integrating IAST security tool to that application and get more effi-
cient and effective results, which might help in enhancing the security method of CI/CD
pipelines. By following this process and addressing the gaps which are related to SAST
& DAST, this research will evaluate the performance of IAST in real time, specifically fo-
cusing on identifying the vulnerabilities in the CI/CD pipeline and analyzing its efficiency
and ensuring more accurate vulnerability detection count.

Going forward the research paper is in the following format: Section 2 helps us to
understand the Related Work, that is been done till now and with achieved results and
detected gaps. Section 3 explains the detailed Methodology, that will be implemented
for this research. Section 4 showcases the Design Architecture & the Flow diagram

2



which makes the better understanding of the research. Additionally, Section 5 tells the
Implementation part, where it highlights the integration of tools and the entire process.
Later, the Evaluation has been discussed in the Section 6, by providing the comparison
and test cases that were performed during this research. Lastly, Section 7 tells the
Conclusion and Results that are achieved during this research by answering the research
question, and ending up with Future work by suggesting something that can be done
with more time period.

2 Related Work

DevSecOps is a process that integrates security between the Development and Opera-
tion framework in the CI/CD pipeline to ensure security embedded into the Software
Developemt Life Cycle (SDLC). As many organizations are moving towards the rapid
and continuous software development, the need to address security concerns at every
stage has become crucial. This literature review mainly focuses on the various aspects of
DevSecOps implementation, tools, challenges, and benefits, based on the papers that are
taken into consideration which mainly focuses on the adoption of DevSecOps in various
field like finance, micro-services, continuous security testing, and CI/CD pipelines.

2.1 Integrating Security into DevOps

The main motive of integrating the security in the SDLC is to reduce the vulnerabilities
in the CI/CD pipeline and to mitigate risks.

Grigorieva et al. (2024) helped us to understand the use of the Continuous Integration
and Continuous Deployment in a pipeline, by securing the code and the automating
the process in SDLC, whereas on the other hand Rajapakse et al. (2021) evaluated the
standard security techniques like Static & Dyanamic Application Security Testing. The
author also advised some new security tools such as Interactive Application Security
Testing & and Runtime Application Security Protection, to better match with DevOps
process. By examining the two research it was summarized that the integration of tools
and cultural methods were challenging.

So, Ahmed et al. (2019) showcased a real-time case study of integrating Synk, Github
& NPM in one of his research paper, were the solutions showcased massive drop in
vulnerabilities like ”Denial of Service (DOS)” & ”Insecure Encryption”. Apart from
this, Aljohani and Alqahtani (2023) presented a unique framework using micro-services
methods and tools like Shuffle and Docker for automating the security checks. By doing
this they were able to analyze efficient vulnerabilities, but were still facing issues like false
positive.

From analyzing all the above papers it was summarized that the common challenges
were related to security and development speed.

Feio et al. (2024), helped in focusing the integration of the security tools and process in
the Software Development Life Cycle, by showcasing the practical DevSecOps architecture
with an effective CI/CD pipeline, also by using the security tools like OWASP ZAP &
SonarQube. This architecture was really helpful as it helped in identifying the relevant
vulnerabilities, which included 1795 security issues which were been detected with the
help of the dependency check.

Additionally, by looking into this research there was another research where DevSecOps
was integrated into the Financial Web Application using Microsoft Azure platform which

3



identified 25 possible risks, and all this risks were related to the Data Breach & Injec-
tion attack David et al. (2024). They also offered a mitigating methods which included
encryption and RBAC.

Throner et al. (2021)used a template based DevOps CI/CD pipeline using several
tools like Kubernetes, Docker & GitLab which mainly focuses on the operating efficiency
and security in micro-services deployment. By doing this it helped in reducing the main-
tenance efforts and vector attacks.

However, in contrast to this research Seth et al. (2023) focused on evaluating the
effectiveness of Interactive Application Security Testing & and Runtime Application Se-
curity Protection security tools by identifying 91 issues within 2.14 issues per-hour. This
outcomes were better than DAST but were not that effective than SAST and EMPT.

So, by looking to all the research it was analyzed that the automation and security
has the main focus, but they also mainly focused on the importance of development and
testing in the real world.

2.2 Improving Security in DevOps and CI/CD Pipelines

After completing the research on integrating security in DevOps, this section discusses
how the security can be enhanced in the Software Development Life Cycle by address-
ing the critical constraints, efficiency and automation. Yadati (n.d.), highlighted the
use of integrating dynamic testing tools like JMeter, Selenium Base and OWASP ZAP
to identify the vulnerabilities during the execution process in the CI/CD pipeline, by
enhancing the efficiency and getting a runtime overhead of 15% which is less than the
actual time. However, there were certain limitations in the dynamic testing, so Masood
and Java (2015), addressed those issues in his research by integrating HP Fortify and
IBM AppScan as a static testing tool to mitigate SOAP and RESTful API based vul-
nerabilities. During this period the downtime of integrating the security has been hard,
Kushwaha et al. (2024) stepped in by featuring his research where the automatic security
work flowed in the financial application by using several tools like OWASP ZAP, GitHub
Advanced Security Tool and Codacy which helped in achieving some good results and
uncovering 26 vulnerabilities during threat modelling within 71 seconds. By following
this process, it connected the gaps in terms of speed and consistency but failed in the
architectural creation. So, Chen and Suo (2022), proposed the DevSecOps security archi-
tecture in his research, which not only reduced the release life cycle by 14 to 12 days but
also examined the mitigation for those issues by increasing the security and risk and de-
tecting the security vulnerabilities from 16 to 3. Later, Zunnurhain and Duclervil (2019)
appreciated the work, which was done by using the DevSecOps framework in the project
management, by integrating continuous security to the customer tools with the helps of
the agile method, which helped in addressing the gaps in an organization by managing
the development process along with security objectives.

In the DevOps CI/CD pipeline field, Singh and Singh (2016) acknowledged the tradi-
tional importance of containerizing an application with the help of Docker and Kubernetes
tools, and by showcasing their capabilities to improve the efficiency of the resource and
to increase the speed of deployments process. In addition to this Şengül et al. (2021),
found some basic vulnerabilities in the containerized environment with the help of An-
chor and Snort3 which are basically the Static & Dynamic security testing tool which
helped in identifying 48 critical vulnerabilities within a single docker image which was
been containerized. By doing this process it highlighted the gaps which were left by

4



Singh and Singh (2016), which mainly focused on the performance and speed of the
deployment. Later, Sun et al. (2021) further, explored the security of the pipeline by
automating it and integrating several tools like Fortify, Gitlab, Jenkins and SonarQube
which allowed to manage the security and helped in reducing the cost and increased the
efficiency of identifying vulnerabilities. Lastly, Ji et al. (2022) addressed the security
during the runtime by integrating Runtime Application Self Protection with static taint
analysis, which provided a traditional approach for classifying the threats and responses
effectively by reducing the false positives rate and improving the quality of production.

2.3 Integration of DevSecOps Security Tools in CI/CD Pipeline

After analyzing the standard research for the integration of DevSecOps in SDLC, this
section makes us understand the importance of integrating security in the CI/CD pipeline
using DevSecOps security tools.

As per Marandi et al. (2023) research, they showcased how with the help of StackHawk
& Snyk security tools they automated the image scanning security testing process which
helped in enhancing the Static & Dynamic Security Testing for the applications those
are containerized. Furthermore, the research by Putra and Kabetta (2022) extended the
future of SDLC by creating a ultimate DevSecOps pattern which contains the process
that starts from the development stage and ends at monitoring stage, also there are tools
that are been used during this process which are Docker and Gitlab for generating the
pipeline, OWASP ZAP tool for Dynamic Testing & NJSSCAN for Static tetsing.

Rangnau et al. (2020) mainly found the standard issues which were been faced while
integrating Dynamic Application Security Testing in CI/CD pipelines, which helped in
detecting and mitigating the configuration and aligning issues of the containers, also
there were several tools like SeleniumBase, OWASP ZAP & JMeter which were been
used during the process.

By looking at the above studies its mainly focuses on some key objective of enhancing
the security and efficiency of the CI/CD pipeline in the SDLC. The researchers show-
cased how they were able to achieve the results by detecting the vulnerabilities in the
software like SQL Injection, Cross-site scripting (XSS) and many more. But they also
mentioned the gaps and limitations that they faced during the process, like real-time
security testing and integrating some additional tools which can enhance the life cycle
of the software. So, this study will try to solve those gaps by automating the process of
detecting vulnerabilities in the DevSecOps CI/CD pipeline for a Software Development
Life Cycle.

2.4 Research Niche

In Table 1 Previous Work Comparison and Limitations.

Table 1: Comparison of Work Process

Research Work Proposed Work Constraints

Grigorieva et al. (2024) Introduced DevOps CI/CD Pipeline
in SDLC.

Security tools were not in-
tegrated into the CI/CD
Pipeline.

5



Table 2: Comparison of Work Process

Research Work Proposed Work Constraints

Singh and Singh (2016) Introduced Containerized Applica-
tion with Docker and Kubernetes.

Helped increase deployment
efficiency but missed security
concerns.

Rajapakse et al. (2021) Focused on Standard Security tools
like SAST & DAST.

Suggested integration of
IAST & RASP tools.

Ahmed et al. (2019) Real-time integration with Synk,
GitHub & NPM.

Achieved vulnerability detec-
tion but lacked IAST.

Aljohani and
Alqahtani (2023)

Unique Framework using Shuffle
and Docker.

High false positive rates af-
fecting software.

Feio et al. (2024) Introduced DevSecOps Architecture
with SAST & DAST.

Lacked IAST and RASP due
to open-source limitations.

Putra and Kabetta
(2022)

Enhanced DevSecOps pattern by in-
tegrating SAST & DAST from de-
velopment to monitoring stage.

Real-time testing and simul-
taneous mitigation were lack-
ing.

Marandi et al. (2023) Scanned Docker images with SAST
and DAST tools.

Lacked IAST tool integration
and efficiency enhancements.

3 Methodology

An in-depth research methodology is built to achieve the required results for this project
by following certain implementation steps. This research starts with an through invest-
igation of how the security vulnerabilities can be monitored & reduced in the CI/CD
pipeline with the help of DevSecOps security tools. Also, this methodology is motivated
by Marandi et al. (2023) where the security tools like SAST and DAST were been in-
tegrated in the CI/CD pipeline to detect the vulnerabilities of Damn Vulnerable Web
Application which is Dockerized. DVWA is a application which already contains vul-
nerabilities in it, also it is a open source application which can be studied and accessed
directly from Github Repository.1 However, this study helped in providing security to
the dockerized application but lacked in efficiency and performance of detecting accurate
vulnerabilities.

So, a new security method called Interactive Application Security Testing (IAST) was
been integrated to make the process more efficient and to increase the performance of
the application as it detects the vulnerabilities in real time and provide more accurate
results than SAST & DAST. While following this process certain tools were taken into
consideration like GitHub Private/ Public Repository, Google Cloud Platform, Docker,
Visual Studio Code, Security testing tools like Synk, StackHwak & Datadog which were
integrated with the help of several documentation, tools configuration manual, blogs and
YouTube videos.

Additionally, during the implementation process, each steps are documented, which
are mentioned in the configuration manual like the errors, results, version updates, API
keys for the security tools and many more which might help others to recreate the same
scenario at their local machine environment.

1https://github.com/opsxcq/docker-vulnerable-dvwa

6



3.1 Interactive Application Security Testing

IAST is a security tool which is a combination of both Static Application Security Test-
ing and Dynamic Application Security Testing, which allows identification of real time
vulnerabilities and monitors the source code while the application has been executed and
deployed on production. Basically, SAST helps in detecting the vulnerabilities from the
source code and on the other hand DAST, which detects vulnerabilities during the ap-
plication run time. But both the process works independently which takes time and that
makes the application more unsecure by time being. So, IAST helps in providing the
accurate awareness of the vulnerabilities by monitoring it in real time once it is pushed
on any environment. By following this process, it helps the developers to identify the
data risks earlier in the CI/CD pipeline, so that they can take the appropriate action to
mitigate those risks and get the application running without any harm in the software
development life cycle.

In this project, the IAST security tools has been integrated into the CI/CD pipeline
which will be showcased in the architecture diagram section.1 Once the application has
been built and deployed on cloud using Google Cloud Platform, then IAST tools gets
triggered at the same time and it tries to identify the vulnerabilities in the application
and monitors it. The integration of SAST and DAST is also done at the same time so
in the evaluation section the comparison can be showcases on the bases of efficiency and
performance.

After performing this step this not only tries to answer the research question but also
tries to fulfil the gaps that were left out from the literature review by other papers.

3.2 IAST Security Tools Selection

Selecting the appropriate tool for the IAST was the crucial job in this research. While
studying the previous research there were several tools which came up like Contrast
Security 2, HCL AppScan 3, OWASP ZAP Rangnau et al. (2020) and BurpSuit 4, that
allows IAST service enabled in their tool. But those tools were not open source and
easily accessible as they provide service to the organization or enterprise which was not
relevant to this research.

So, after doing some more research for the tool selection, Datadog was the only tool
which was open source and can be accessed and integrated in the test environment.
5 Datadog provides IAST service, and it offers a complete package in one tool also it
prioritize the critical vulnerabilities in the application which needs to be taken care of
by accelerating the mitigation process and managing the software development life cycle.
However, from the previous research it shows that SAST and DAST tools have been
integrated but IAST was lacking. The main objective for this research was to do that
integration, later when the implementation part started it came to know that Datadog
doesn’t support PHP language and it cannot detect the vulnerabilities for that application
which was built previously, as IAST code security support Java, Python and some other
language.

To take the implementation part forward the new application was been chosen and
integrated into CI/CD pipeline. This application was “Altro Mutual” which was very

2https://www.contrastsecurity.com/contrast-assess
3https://www.hcl-software.com/appscan
4https://portswigger.net/burp
5https://www.datadoghq.com/product/code-security/

7



much similar like DVWA, and it was a already vulnerable J2EE Banking Application
where the testing of security can be performed as it contains pre-defined vulnerabilities
in it. This application was in Java language, so Datadog can be integrated for this
application and perform the IAST Code Security process.

Lastly, in the next section the detailed design will be mentioned which will clear the
idea that how this process will take place and how the integration of all the tools are
made for this research.

4 Design Specification

This section elaborates the architecture design for the proposed solution for this research:

4.1 Architectural Design for the DevSecOps CI/CD Pipeline

The architecture diagram explains the DevSecOps CI/CD pipeline as shown in the Figure
1 where it explains multiple steps, stages and security tools which are been integrated to
establish a secure development and deployment of a application. This architecture is built
upon a prior work by Marandi et al. (2023) where the integration of Static Application
Security Testing (SAST) and Dynamic Application Security Testing (DAST) security
tools was been done for testing the efficiency of Damn Vulnerable Web Application and
to detect vulnerabilities. So, in this architecture diagram the new advancement lies by
adding a Interactive Application Security Testing (IAST) security tool into the CI/CD
pipeline, where it operates in real time to identify vulnerabilities.

The figure showcases that this architecture is a combination of two main features,
one is Google Cloud Platform and the other one is the Security Testing Tools. Also, it
starts from the source code which is developed on Visual Studio following several stages
in the project which contains repository handling, building, deploying and at last security
testing.

Figure 1: Architectural Design for the DevSecOps CI/CD Pipeline

The following are the steps, which are explained in more detail:

8



• Source Code and Repository Management:

The application is built with the help of the source code using Visual Studio, as
it’s an Integrated Development Environment (IDE). So, in this case the application
which was cloned was “Altro Mutual” banking J2EE web application as it already
contains security vulnerabilities in it and once the source code has been developed
then it is pushed to the GitHub Private Repository, which works as a version control
and collaborator among the team.

• Continuous Integration and Continuous Deployment (CI/CD) Pipeline:

To carry the process of CI/CD (Continuous Integration and Continuous Deploy-
ment) pipeline, GitHub Action has been used and integrated in this research as
it works as an automation tool and orchestrates the pipeline. The pipeline starts
when the source code is been pushed from the local machine to the private github
repository which ensures the automated deployment of the application which takes
place simultaneously.

• Google Authentication and Build Process:

The Google Authentication has been integrated with CI/CD pipeline as it provides
a secure access to the Google Cloud Platform where the build and development of
the application takes place. In GCP the authentication takes place by validating
the Google ID and generating a build ID. Once this process is completed then the
Docker Images are built for an application. Docker helps in packaging the images of
an application in a container which contains all its dependencies and requirements
as per the application’s need which makes it more consistent and efficient. Later,
this built image has been stored in the Google Cloud Artifact Registry, as it is a
more scalable and containerized storage for the artifacts.

• Deploying the Docker Image:

This is the second stage in the CI/CD pipeline, where the deployment of the built
Docker images takes place. The Docker images are deployed on Google Cloud Run,
as it is a serverless platform which provider access for deploying the container-
ized application. By doing this process it makes sure that a secure and efficient
deployment can be performed with no operational issues.

• Integration of Security Testing Tools:

Once the application has been deployed on cloud then the security testing tools
gets triggered where it checks all the security vulnerabilities in an application. So,
the integration of three security tools has been done in the CI/CD pipeline which
helps in enhancing the security of the application that is deployed.

– Static Application Security Testing- Snyk:

SAST is method which takes place at the build stage of the CI/CD pipeline to
identify the vulnerability in an application. For this research, “Synk” security
testing tool has been taken into consideration as it is an open-source tool, which
works as a SAST in the CI/CD pipeline. SAST basically means to detect
the vulnerabilities in the static code before the application is deployed on
production like over here its cloud, and if there are any critical vulnerabilities

9



that are found during this process, then the CI/CD pipeline fails, and the
source code won’t be pushed to the next stage which is deployment.

– Dynamic Application Security Testing- StackHawk:

DAST is the method that takes place after the deployment stage where it
detects the vulnerabilities of the application in real time. For this research
DAST is executed with the help of “StackHawk” Security testing tool as it
an open-source tool. DAST is a dynamic security testing tool so once the
application has been deployed after the static security testing the DAST tools
gets triggered, and it check vulnerabilities dynamically which makes the testing
process faster and more efficient.

– Interactive Application Security Testing- Datadog:

IAST is a security tool which is been developed in such a way that it does the
work of both SAST and DAST at the same time in the CI/CD pipeline. This
addition of tools in this research is the novel contribution. “Datadog” works
as a IAST security testing tool which is an open source. So, after integrating
this tool the application gets more secure in real time, and the performance
also get increased with more efficiency. Additionally, these tools detect the
vulnerability at the build and deployment stages with less false positive and
negatives.

5 Implementation

This section elaborates how the integration of SAST, DAST and IAST tools are done in
the CI/CD pipeline, for the “Altro Mutual” banking application. Additionally, in this
section a detailed steps are elaborated where the configuration of security tools with the
CI/CD pipeline will be showcased and the deployment of the application on cloud.

5.1 Application Setup

The “Altro Mutual” application has been accessed from the official GitHub Repository,
6 as it’s an open-source resource which contains predefined vulnerabilities in it and was
configured on Visual Studio (VS code). This application contains vulnerabilities like
SQL injection, Penetrating Testing, Authentication Flaws, Server-Side vulnerabilities,
IDOR and Cross-site scripting (XSS) which were used for testing the security tools like
SAST, DAST, and IAST to check the effectiveness, performance and efficiency. Inside
VS Code, a new directory was created named as “. github/workflow” to describe the
CI/CD pipeline workflow in the YAML format, which describes the project configuration.
Furthermore, one more directory was generated named “Dockerfile” to containerize the
application, and allowing the application to deploy and integrate in the testing and
production environment.

5.2 CI/CD Pipeline Creation & GCP Integration

The CI/CD pipeline basically automates the process by running the application smoothly
in testing and production environment. So, in this case once the application was com-
pletely setup then it was deployed on Google Cloud Run Platform by using GitHub Action

6https://github.com/HCL-TECH-SOFTWARE/AltoroJ

10



CI/CD pipeline. The workflow of the GitHub action- CI/CD pipeline is showcased in the
figure 2, where it shows the performed testing and the failed/passed pipelines, as per the
changes that were made in the source code.

Figure 2: Github Action Integration with CI/CD Pipeline & Google Cloud Platform

For automating the process in the CI/CD pipeline, it used cicd.yml file, which was
created within Github action, which organized several stages like setting up the envir-
onment, defining jobs, building Docker images and deploying it to Google Cloud Run
Platform. Additionally, security tools like Synk, StackHawk and Datadog was also integ-
rated in this workflow to make sure the application is secure and free from vulnerabilities
and is monitored correctly.

Also, after containerizing the application using Dockerfile it was deployed on cloud
without any disturbance and Google Cloud Platform services were accessed easily like:
“Cloud Run” and “Artifact Registry”. The deployment of the dockeralized application
was done by cloud run and once it was deployed the docker images were stored securely
in the artifact registry. By following all this steps, it assured that CI/CD process worked
smoothly and which increased the performance and efficiency of the project.

5.3 Security Testing Tools

Security testing tools have been integrated after the deployment process on GCP Cloud
Run to detect the vulnerabilities of the application in real time during the testing and
production environment:

1: Snyk: It is an open-source security testing tool which enables detection of vulner-
abilities within the application with the help of Static Code Analysis. Integration was
done by cloning the Synk tool with the Github Repository as shown in the figure 3, and
by using the official YAML configuration file of Synk which is available 7 ,and adding it to
the actual cicd.yml file of this project. Also, the API Key of the Synk tool was mentioned
in the cicd.yml file so it get’s integrated correctly and once the CI/CD pipeline runs the
tool get’s triggered and the static code analysis of the application is done. On the Synk

7https://github.com/snyk-labs/snyk-cicd-integration-examples

11



Figure 3: Synk Tool Integration with GitHub Repository

dashboard the logs of vulnerabilities are mentioned which can be accessed, for mitigating
it going forward.

2: StackHawk: It is a Dynamic security testing tool which detects vulnerabilities in
real-time application. Like Synk, StackHawk’s integration start’s with cloning the tool
with the GitHub repositories and creating a user/testing account for this research. An
application was created at the stackhawk dashboard as shown in the figure 4, which needs
the environment (production, pre-production, development) section to be selected, also
attach the URL of the deployed application which was generated by GCP Cloud Run.
The created application generates an Application ID and YAML configuration file which
was added in the project by creating a new directory and in cicd.yml file.

Figure 4: Stackhawk tool Integration with Github by creating an Application ID

3: Datadog: This is an Interactive Application Security Testing tool which was
integrated by adding the Datadog serverless init and Java tracer in Dockerfile of the
source code for installing a “Agent”. Integration involves steps like enabling IAST service
in datadog as shown in the figure 5 and by following the documentation that is provided

12



which was bit challenging.8 During integration it generated API and Application Key
which is was added in the cicd.yml file. Also, a synthetic test was generated for the
checking how well the tools is working with the application that is deployed on cloud
and checks the traffic that’s passing during the process. The logs were showcased at the
dashboard where it showcases the real-time vulnerabilities and monitors it critically on
priority.

Figure 5: Datadog Integration with Github Action

6 Evaluation

After the implementation part the results are showcased in this section with the help
of comparison chart which is divided into three sections where efficiency, effectiveness
and performance of the security tools are mentioned. This comparison is between the
previous work which was performed on “Damn Vulnerable Web Application” Marandi
et al. (2023)where “Static and Dynamic Application Security Testing” tools were used
and the work which was proposed in this research where “Altro Mutual Online Banking
Application” was used with one additional tool that is “Interactive Application Security
Testing”. Both the application works in a same way as they contain the similar vulner-
abilities in it like SQL injection, XSS and Authentication Flaws. So, with the help of
the security tools the number(performance) of vulnerabilities can be detected and the
time(efficiency) taken to do that work, and the severity(effective) of the vulnerability.

6.1 Synk Security Tool

SAST, detected the static code vulnerability for both the applications. Synk has been
integrated for DVWA application and it successfully detected vulnerabilities which are
showcased in the table.3 But, when the tool was integrated with Altro Mutual, the results
showcase 6 better advancement in terms of detecting number of vulnerabilities, time
consumed and its severity level. It particularly identified the critical dependencies in the

8https://app.datadoghq.eu/security/appsec/vm/code?detection=runtime

13



application and the authentication flaws that were missed out during DVWA application.
By doing this it showcases that the tool performs better for Altro Mutual application.

Figure 6: Synk Output with- 29:High 15: Medium 1: Low Vulnerabilities

Additionally, with this improved performance and efficiency, it enhanced the per-
formance of the CI/CD pipeline and allowed to work more smoothly for both the testing
and production environment. Lastly, by integrating Snyk for Altro Mutual application
showcased more effective, efficient & good-performing results.

Table 3: Comparison of Synk Tool for both the Applications

Applications Effectiveness Performance Execution Time

DVWA Marandi et al.
(2023)

29: High 15: Medium 1:
Low

45 Total Vulnerabilities 19sec

Altro Mutual 24: High 22: Medium 36:
Low

82 Total Vulnerabilities 13sec

6.2 StackHawk Security Tool

This tool works dynamically for the application to check the vulnerability in real-time.
From the previous workMarandi et al. (2023) which was performed it showcases that this
tool shows some good results while detecting number of vulnerabilities and took less time
and was effective. But, when this tool was integrated with Altro Mutual application,
it didn’t showed the expected results as shown in the figure.7 Even though stackhawk
tool was powerful enough to identify the vulnerability, but the number of vulnerabilities
detected, and its count was less than expected as shown in the chart.4 Also, it showed
some good results during the vulnerability scanning after the tool was triggered by CI/CD
pipeline, but lacked in checking the severity of it.

The main reason for this kind of behaviour by this tool for the Altro Mutual applica-
tion was because of the less vulnerabilities this application had during the testing phase,
and also stackhawk tool was not able to detect more vulnerabilities during this envir-
onment. From this integration it can be justified that stackhawk is efficient enough to

14



Figure 7: Stackhawk Output with: 0: High 6: Medium 3: Low: 9 Vulnerabilities

provide good performance during the run-time environment, but it will not always provide
good results in identifying vulnerabilities, like in this case for Altro Mutual application.

Table 4: Comparison of StackHawk Tool for both the Applications

Applications Effectiveness Performance Execution Time

DVWA Marandi et al.
(2023)

0: High 39: Medium 43:
Low

82 Total Vulnerabilities 2min 1sec

Altro Mutual 0: High 6: Medium 3:
Low

9 Total Vulnerabilities 43sec

6.3 Datadog Security Tool

Integrating Datadog Security testing tool in CI/CD pipeline was bit challenging, as the
provided documentation was not enough to get the results. But after doing lots of trail
and error testing, the proposed results were achieved by enhancing the security of the Al-
tro Mutual Application, and by detecting vulnerabilities and remediating it in real-time.
From the results as shown in the figure 8 it showcases 4 medium level vulnerabilities for
the application during runtime, by visualizing the effectiveness of detected vulnerabilities
and monitoring the security threat that were established. By following this process, it
filled up the gap of static & dyanamic testing, which was not satisfied by the previous
work.Marandi et al. (2023)

Furthermore, with the help of datadog lots of services were enabled, like Logs for
the application, monitoring Errors, analysing Traffic, tracking Latency, CPU utilization,
Application Performance Monitoring, checking Code Vulnerability, and lastly Threat De-
tection. By using this service, it helped us to know the performance and effectiveness of
the application. Lastly, after implementing Datadog IAST for this project it was worth
doing it, even it was not easy enough but was effective after implementing it into the
CI/CD pipeline for securing the data from threats.

15



Figure 8: Datadog Output with- 4 Medium Vulnerabilities

6.4 GitHub Action CI/CD Pipeline Workflow

The implementation of CI/CD pipeline for this project is helpful as it automated the
process, also the integration of security tools (Synk, Stackhawk, and Datadog) was suc-
cessful as it performed good without any error or loss during the entire process. CI/CD
pipeline helped in automating the “Build-Test-Deploy” process which ensured an ideal
working environment. All the tools which were integrated were triggered in a correct
manner at the planned stages in the workflow.9

Figure 9: GitHub ActionCI/CD Pipeline Output for Altros Mutual Application

Later, using this pipeline, the altro mutual application was deployed in GCP cloud run
https://vuln-image-77572195473.us-central1.run.app/altoromutual/ for scalab-
ility and better interaction. By successfully achieving the CI/CD pipeline running on
production and making it secure by using tools is the great design which is implemented
in this project.

16

https://vuln-image-77572195473.us-central1.run.app/altoromutual/


6.5 Discussion

The main objective of this research was to enhance the security vulnerabilities in CI/CD
pipeline with the help of security testing tools like Synk, Stackhawk & Datadog which
monitors the security vulnerabilities in an application. From the previous work that
was been proposed Marandi et al. (2023), SAST and DAST was integrated to check
the vulnerability in an DVWA application, which was based on PHP language, however
in this research a minor changes was done by choosing Altro Mutual application that’s
based on Java based because, Datadog’s IAST Code Security service doesn’t supports
PHP language.

Figure 10: Discussion Chart for both the Application

The discussion chart 10 showcases the comparison for the achieved results and the
previous work Marandi et al. (2023) in terms of Execution time, Performance and Severity
levels. Additionally, Datadog IAST showcased the Top 10 OWASP results in the figure
11 where it discusses the vulnerabilities like SQL injection, XSS, which were monitored
and analysed critically. Also, with the help of Datadog service, logs, traffic, detecting
vulnerabilities, Application Performance Monitoring features are provided.

Figure 11: IAST TOP 10 OWASP Vulnerability Detection

17



During this entire process there were several challenges that were faced while imple-
menting Datadog IAST tool, as lack of documentation was there on internet and by the
service provider it was bit challenging, so lots of trial and error were performed to get
the proposed results. Additionally, by increasing the computation power of IAST, it may
help many industries and organizations to keep their data secure, but this may be bit
costly. Regardless of these challenges, IAST have provided a secure service for CI/CD
pipeline by detecting vulnerabilities in real time environments.

7 Conclusion and Future Work

The reason of this research project was to answer the research questions that was been
proposed, and to check how well the security testing tools (Synk, Stackhawk, Datadog)
were functioning in terms of efficiency, effectiveness and performance while detecting vul-
nerabilities in an application. From the previous work the results were compared and to
showcase the improvement of work that was done in this research. The results, that were
achieved by “Synk” (SAST) tool for “Altro Mutual” application were better in perform-
ance (82 vulnerabilities detected), efficiency (13 sec) & effectiveness (complete severity)
than the “DVWA” application that was worked on previously. On the other hand, the
results for “Stackhawk” (DAST) tool when integrated with “DVWA” application show-
cased better results in terms of performance as it detected 82 vulnerabilities for “DVWA”
applications (as compared to 9 vulnerabilities for Altro Mutual).

Lastly, the novelty of this research was the integration of “IAST” using “Datadog”
security testing and monitoring tool, which was not performed in the previous research,
and was integrated for “Altro Mutual” application in this research. By taking crucial
steps and making this integration possible was a big task. As Datadog, detected the
vulnerability with more precision and performed well, as it contains both the features of
SAST & DAST in a single tool.

Finally, after doing this integration of SAST, DAST & IAST security tools, the per-
formance of CI/CD pipeline was scalable, and the application security was enhanced, by
that means this answered the research question.

7.1 Future Work

For future, this research can be taken to another level of security enhancement in CI/CD
pipeline by integrating “Runtime Application Security Protection” (RASP) in an applic-
ation. As RASP provides runtime mitigation for the threats and vulnerabilities that are
detected during the production environment. Additionally, IAST tool needs to be intro-
duced to more vulnerable applications so that it helps us to understand how effective and
efficient it works in the worst-case scenario for all stages in CI/CD pipeline. By, doing
this the tools can be used by various organizations and industries to keep their data safe
and secure from any threats or causes in the software development life cycle.

References

Ahmed, Z., Ahmed, Z., Francis, S. C. and Francis, S. C. (2019). Integrating security with
devsecops: Techniques and challenges, IEEE International Conference on Dielectrics .

18



Aljohani, M. A. and Alqahtani, S. S. (2023). A unified framework for automating software
security analysis in devsecops, International Conference on Software and Computer
Applications .

Chen, T. and Suo, H. (2022). Design and practice of security architecture via devsecops
technology, 2022 IEEE 13th International Conference on Software Engineering and
Service Science (ICSESS), IEEE, pp. 310–313.

David, P., Kushwaha, M. K. and Suseela, G. (2024). Devsecops in finance: Strengthening
the security model of applications, International Conference Design, Engineering and
Computer Sciences .

Diaz, J., Pérez, J. E., Lopez-Peña, M. A., Mena, G. A. and Yagüe, A. (2019). Self-service
cybersecurity monitoring as enabler for devsecops, Ieee Access 7: 100283–100295.

Feio, C., Santos, N., Escravana, N. and Pacheco, B. (2024). An empirical study of
devsecops focused on continuous security testing, IEEE European Symposium on Se-
curity and Privacy Workshops (EuroSPW) .

Gauthier, F., Keynes, N., Allen, N., Corney, D. and Krishnan, P. (2018). Scalable static
analysis to detect security vulnerabilities: Challenges and solutions, 2018 IEEE Cyber-
security Development (SecDev), IEEE, pp. 134–134.

Grigorieva, N. M., Petrenko, A. S. and Petrenko, S. A. (2024). Development of secure
software based on the new devsecops technology, 2024 Conference of Young Researchers
in Electrical and Electronic Engineering (ElCon) .

Ji, M., Yin, M. and Zhou, Y. H. (2022). Application of static taint analysis in rasp pro-
tection strategy, Proceedings of the 2022 International Conference on Cyber Security,
pp. 40–45.

Kushwaha, M. K., David, P. and Suseela, G. (2024). Automation and devsecops: Stream-
lining security measures in financial system, 2024 IEEE International Conference on
Electronics, Computing and Communication Technologies (CONECCT), IEEE, pp. 1–
6.

Marandi, M., Bertia, A. and Silas, S. (2023). Implementing and automating security
scanning to a devsecops ci/cd pipeline, 2023 World Conference on Communication
Computing (WCONF) .

Masood, A. and Java, J. (2015). Static analysis for web service security-tools & tech-
niques for a secure development life cycle, 2015 IEEE International Symposium on
Technologies for Homeland Security (HST), IEEE, pp. 1–6.

Putra, A. M. and Kabetta, H. (2022). Implementation of devsecops by integrating static
and dynamic security testing in ci/cd pipelines, 2022 IEEE International Conference
of Computer Science and Information Technology (ICOSNIKOM) .

Rajapakse, R. N., Rajapakse, R. N., Zahedi, M., Zahedi, M., Babar, M. A. and Babar,
M. A. (2021). An empirical analysis of practitioners’ perspectives on security tool
integration into devops, International Symposium on Empirical Software Engineering
and Measurement .

19



Rangnau, T., Rangnau, T., v. Buijtenen, R., v. Buijtenen, R., Fransen, F., Fransen, F.,
Fransen, F., Türkmen, F., Turkmen, F. and Turkmen, F. (2020). Continuous security
testing: A case study on integrating dynamic security testing tools in ci/cd pipelines,
IEEE International Enterprise Distributed Object Computing Conference .

Şengül, Ö., Özkılıçaslan, H., Arda, E., Yavanoğlu, U., Doğru, I. A. and Selçuk, A. A.
(2021). Implementing a method for docker image security, 2021 International Confer-
ence on Information Security and Cryptology (ISCTURKEY), IEEE, pp. 34–39.

Seth, A., Bhattacharya, S., Elder, S., Zahan, N. and Williams, L. A. (2023). Comparing
effectiveness and efficiency of interactive application security testing (iast) and runtime
application self-protection (rasp) tools in a large java-based system, arXiv.org .

Singh, S. and Singh, N. (2016). Containers & docker: Emerging roles & future of cloud
technology, 2016 2nd international conference on applied and theoretical computing and
communication technology (iCATccT), IEEE, pp. 804–807.

Sun, X., Cheng, Y., Qu, X. and Li, H. (2021). Design and implementation of security test
pipeline based on devsecops, 2021 IEEE 4th Advanced Information Management, Com-
municates, Electronic and Automation Control Conference (IMCEC), Vol. 4, IEEE,
pp. 532–535.

Throner, S., Throner, S., Hütter, H., Hutter, H., Sänger, N., Sanger, N., Schneider, M.,
Schneider, M., Hanselmann, S., Hanselmann, S., Petrovic, P., Petrovic, P., Abeck,
S. and Abeck, S. (2021). An advanced devops environment for microservice-based
applications, International Symposium on Service Oriented Software Engineering .

Yadati, N. S. P. K. (n.d.). Integrating dynamic security testing tools into ci/cd pipelines:
A continuous security testing case study.

Zunnurhain, K. and Duclervil, S. R. (2019). A new project management tool based on
devsecops, 2019 International Conference on Computational Science and Computa-
tional Intelligence (CSCI), IEEE, pp. 239–243.

20


	Introduction
	Related Work
	Integrating Security into DevOps
	Improving Security in DevOps and CI/CD Pipelines
	Integration of DevSecOps Security Tools in CI/CD Pipeline
	Research Niche

	Methodology
	Interactive Application Security Testing
	IAST Security Tools Selection

	Design Specification
	Architectural Design for the DevSecOps CI/CD Pipeline

	Implementation
	Application Setup
	CI/CD Pipeline Creation & GCP Integration
	Security Testing Tools

	Evaluation
	Synk Security Tool
	StackHawk Security Tool
	Datadog Security Tool
	GitHub Action CI/CD Pipeline Workflow
	Discussion

	Conclusion and Future Work
	Future Work


