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Optimizing Particle Swarm Optimization Algorithm
on Serverless Computing for Cost-Efficiency and
Performance

Devashree Shedge
x23155906

Abstract

Serverless computing has enables the rise of the application deployment with
cost efficiency and scalability and no overhead in managing infrastructure.But cur-
rent challenges lies in optimization of resource utilization especially among dynamic
workloads. To solve the problems and enhance serverless performance, optimizing
it with Particle Swarm Optimization. A novel approach to dynamic optimal re-
sources threshold optimization in introduced through the combinations of PSO to
overcome any limitations to traditional optimization techniques. This research deals
with train the model,increased resource statistics and strategies of pre-warming. By
comparing it with Grid search (Without PSO), PSO is shown to be adaptable to
real time optimization tasks. This work represents a valuable insights on the de-
ployment of advanced optimization techniques in serverless architectures. These
findings fills the gaps and presents a scalable, cost effective framework for applica-
tions across industries like finance, healthcare, e-commerce and logistics.

Keywords: Particle Swarm Optimization(PSO),Serverless Computing, Cost-Efficiency,
Performance enhancement,Resource allocation.

1 Introduction

Cloud Computing is the most revolutionary development of technologies since it has made
data storage and computing to be flexible, scalable and affordable. Serverless comput-
ing, which is represented by tools like AWS Lambda, has became revolutionary allowing
customers to run their apps with no need to think about servers. These have greatly
influenced various scenarios including the identification cases of financial fraud where
real time analyzing is important by reducing potential economic losses. This research
is concerned with developing and deploying an effective fraud detection using serverless
platforms and an optimum solution such as Particle Swarm Optimization(PSO).

The contribution of this study to existing research is to perform PSO algorithm optim-
ization within AWS Lambda for real world scenarios. To the best of my knowledge, no
existing research has been explored the integration of PSO Optimization.

1.1 Background

Machine learning models, usually run constantly on standard servers. However,they are
largely resource intensive, expensive and inflexible. Pay as you go and scaling up and



auto scaling capabilities allow for a different solution of these constraints involved in
cloud computing with the advancement of cloud computing such as serverless architec-
ture. Researchers had attempted to explore serverless architectures and optimization
methods to handle such situations. Busetti et al.|[2022] focused on distributed synchron-
ous optimization of PSO for edge computing, in terms of scalability. Furthermore, our
work includes a key gap compared with, Delig [2022] work on scaling and distribution
of PSO on Microsoft Azure. On the one hand/Delis [2022] research largely concentrates
on distributing PSO across configurations on Microsoft Azure system, whereas our work
expands this with deploying and evaluating of PSO for a serverless architecture with
AWS Lambda. Moreover, this answers the practical questions of real time dataset under
concurrent invocation, serverless provisioned concurrency setups and cost performance
optimization that were not explored in any of the study till now.

1.2 Motivation

Due to high growth of cloud computing and serverless technologies, application deploy-
ment and management have changed rapidly. Problems such as optimal resource alloca-
tion, cost effectiveness and achieving high availability in real time did not had any precise
solutions yet. Traditional solutions often do not work well in such environments and can
be difficult to implement it on large scale. Hence, began with exploring others and similar
to PSO, which can enhance performance and cost aspects in serverless systems in a more
dynamic manner. This research aims towards offering actionable information that will
enhance industries on large and efficient cloud systems.

1.3 Research Question

The focused part of this work is presented as the research question below:

"How Particle Swarm Optimization(PSO) can be combined with pre-warming tech-
niques, resource provisioning strategy and together how will it enhance the performance
and reduce costs in serverless computing?”

1.4 Research Objectives

This research, finds out how serverless computing can be optimized in terms of cost re-
ducing and enhancing performance utilizing PSO as a practical framework. This brings a
substantial advantages to both the cloud providers and developers as well as for industries
with high concurrency requirements, such as e-commerce or financial service sector. It
shows real applicability to make scalable, efficient and handle dynamic workloads.

1.5 Structure of this Research

This report is structured as follows: Sections 2 consists of related literature on addressing
serverless optimization and PSO techniques. Section 3, describes the preparation of
dataset and utilization of the algorithm. In section 4, technical specification and system
architecture is mentioned. The implementation process is documented in the section
5 and in section 6, the results are evaluated on the base of case studies of cold start
performance, pre-warmed setups and cost analysis. Finally, section 7 concluded with
results and future work.



2 Related Work

2.1 An optimization Review of Serverless Computing

Serverless computing had played a major role in evolving cloud architecture by provid-
ing cost-effective and scalable solutions to allow different applications|Javed et al.| [2024]
proposed a comprehensive performance analysis of different serverless platforms which in-
cludes OpenFaaS, AWS Greengrass, Apache OpenWhisk, AWS Lambda and Azure func-
tions in resource limited edge environments those are including Raspberry Pi clusters.
They tested these platforms for different types of workloads, named as CPU intensive,
memory intensive and disk intensive, whereas they found that OpenFaas provides the
best latency and performance for edge computing along with that AWS Greengrass faces
latency challenges because of its dependency on cloud connectivity. Their study under-
lines the potential of serverless platforms which also shows the limitations with increasing
concurrency, moreover for ARM devices. Alternatively, the survey conducted by Shafiei
et al.| [2022] in their research they worked on areas like IOT, Al and video such as pay
as you go models which works on scalable and cost efficient. This is quite different from
where serverless architectures tend to perform relatively well workloads. They struggled
with real time applications they require low latency that is a very critical requirement
in fraud detection applications. |[Huang et al.| [2023] proposed a PSO-optimized ELM
model for short term load forecasting for its further improving the accuracy through op-
timizing the input weights and thresholds.Their work was used to fit with the random
initialization problem in traditional ELM and has better prediction performance. How-
ever their results proved the algorithm in simulation but lacked in real world testing.
Whereas, (Chahal et al.|[2021] extended the performnace in terms of cost investigation to
AWS Lambda and SageMaker for deep learning based recommendation systems, consid-
ering variable workloads. They found that whole AWS Lambda offers better scalability,
latency is observed in cold start, while SageMaker performed better under low concur-
rency situations. Gunarathne et al.| [2013] extended an iterative MapReduce framework
called as Twister4Azure, which enables large scale parallel data intensive computations
over scalability and fault tolerance on the Windows Azure cloud. They mentioned cach-
ing mechanism, decentralized scheduling and fault tolerenace strategies for improving
performance. Experimental results explains that Twister4Azure performs substantially
better than Hadoop for iterative tasks such as KMeans clustering and compared it with
Java HPC Twister workload in cloud as well as local environments.

On the other hand, Rostami et al.| [2020] proposed a novel feature selection method
using node centrality and a multi-objective PSO algorithm to increase performance on
high dimensional medical datasets.It optimized to a size, relevance and redundancy heur-
istic feature subset and integrates it with exploration along with exploitation strategies
like initialization by node centrality and mutation operators. The results they got with
various filter based and swarm intelligence based methods on a medical datasets.

Although these studies have contributed to serverless computing, it is important as
well to consider several limitations of these works. Overall, this point out extremely
adaptive and versatile framework for resource allocation, execution time processing and
concurrency in serverless architecture. Even though several of this existing methods
are scalable, low latency and on serverless environments, which are finding the balance
between there factors which mentioned above is challenging. This works fills these gaps
by proposing a PSO based framework that allows to work on advance optimization meth-



odology.

2.2 Optimized Cloud Resource Allocation with Advanced Tech-
niques

Several studies worked on modern cloud computing which is highly dependent on good
resource management. The techniques which are used in developing techniques in terms
of performance, scalability and adaptability,Qawqzeh et al.| [2021] carried out a compre-
hensive study of some algorithms such as Particle Swarm Optimization(PSO),Ant colony
optimization(ACO), Artificial bee colony (ABC) and the Firefly Algorithm (FA) they
underlined that how precisely they worked on the optimization and high dimensional
problems. They concluded that hybrid techniques enhances the scalability and efficiency
of heuristics.They faced some challenges while setting the parameters in SI(Swarm In-
telligence). Moreover, |Pradhan and Bisoy| [2022] proposed LBMPSO for task scheduling
and load balancing. This was found to give out significantly reduced makespan and in
order to improve the utilization of resource. Their work showed the value of dynamic
handling tasks and developed efficient systems.The simulations done on CloudSim, it
found that LBMPSO works better than other algorithms they performed those are IPSO
and LPSO for handling increasing tasks. [Shafiei et al.|[2022] proposed a hybrid PGA,
which are combining PSO and GA. The results showed that compared with the existing
methods, it increases resource utilization up to the range of 69.6% and user satisfaction
upto 65.4%In their work, the use of PSO and GA they utilized PSO fast convergence and
GA showed how potential it is for hybrid algorithm in solving complex problems. [Busetti
et al.|[2022] investigated distributed Apache Spark and Kubernetes container for optim-
ization in edge computing using 2 PSO variants, such as SDSPSO-LU and SDSPSO-DU.
They found that SDSPSO-LU obtained results faster,resulting in a speedup of 5x when
it compared with traditional PSO, whereas SDSPSO-DU obtained better fault tolerance.
This indeed showed the scalability of PSO in edge environments but also revealed that
PSO didnt provided expected results of scalability. Moreover Al-Hashedi and Magalingam
[2016], worked on 34 fraud detection techniques on a wide range of fraud domains such as
SVM, Naive Bayes and Random Forest. For instance, they discuss the studies of financial
domain of fraud from 2009 to 2019 as shown in figure |1, They conducted that SVM was
the most accurately fraud detection methodology within bank and insurance fraud due
to its accuracy. On the other hand they pointed the challenges in handling imbalanced
datasets and adapting to more evolving fraud patterns in which real time solutions has
been required.

However, Wang| [2010] presented an extensive review of fraud detection methods in
telecommunications, insurance and banking using different supervised, hybrid and unsu-
pervised approaches. The results highlighted that hybrid methods are becoming more
effective for handling it with new fraud patterns. In contrast of that, they pointed out the
severe shortage of publicly available real datasets for doing practical testing, this would
allow the validations of practical techniques.

Taking a different approach, |Delis| [2022] conducted an optimization study for PSO
on Microsoft Azure.The author experimented some parameters such as pre-warming in-
stances and activity concurrency and achieved precise drastic reduction of the execution
time, along with that improved parallel task distribution. Their study focused only on
Azure and it is limited on this platform. Interestingly, they mentioned explore these
optimization techniques on other cloud platforms in their future work, this closely aligns
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on what my research focuses on.

In this section, the reviewed studies described how hybrid algorithms and PSO has
been applied on resource allocations,optimization, task scheduling and predicting models
on cloud and edge environment. The findings showed how it is scalable in terms of model,
increased user satisfaction and greater efficiency in fraud detection improved. However,
there are certain gaps, many approaches are based on simulation environments, with an
realistic approaches on particular platforms, such as Microsoft Azure. Second, while there
is an improvement in fraud detection techniques, not too many studies have combined
these methods into serverless architectures for real-time, cost effective optimization. This
paper gives the extend insights of the above studies by implementing PSO in a serverless
platform for fraud detection.

2.3 Study of PSO Evolution and Real-world Implementation

The study of PSO by |[Eberhart and Kennedy| [1995] was one of the milestone in the history
of the development of optimization algorithms. Their algorithm was aimed at modeling
the interactions in social behavior of bird flocking, fish schooling and swarm theory. At
that time which published in 1995, it gave an effective novel solution to the non linear
optimization issues. With this,it gave an effective mechanism of iterating positions and
velocities based on an individual and swarm best solutions. Their work of PSO Algorithm
was one of the robust optimization techniques is using till now. Their work was further
extended by |Abbaszadeh et al.| [2020], where PSO was applied for the optimization of the
parameters for SVM in geological modeling. They classified accuracy which was greater
than 97% for mineralization and alteration zones. Their study further emphasized the
point that PSO is efficient in faster convergence with higher precision compared to the
traditional Grid Search method and hence it got preferred in most large scale classific-
ations. Based on this, Manasrah and Ali [2020] proposed a hybrid GA-PSO algorithm
for cloud computing workflow scheduling. This approach combined mutation and cros-
sover capabilities of Genetic Algorithm with the fast convergence of PSO and achieved
better reductions about 16% and enhanced in cost efficiency up to 13% this showed the
capabilities of hybrid optimization in resource management.Taking a different approach
of PSO’s, in healthcare domain (Choubey et al.| [2019] introduced the PSO’s applications
while integrating it with the kernels of SVM for diabetes classification. Their hybrid
framework optimized feature selection and kernel parameters with he accuracy of 79.57%
on the Pima Indian Diabetes dataset and 94% on a localized dataset, while computation
time got massively reduced. In this direction, Neha and Kumar| [2020] applied PSO-SVM




models to measure performance with PCA focused on datasets with GA.In their case,
experimental validity decreases the chance that the methods efficiency in a wise range
of real life scenarios has been decreased. In addition, PCA used for features extraction
which may not be that helpful on handling the problems with complications on reduction
based. This brings out the more requirement for the further study to improve its per-
formance. While analyzing, they reveal that PSO is capable of enhancing the accuracy
of classification of the types of data, hence it is efficient and compatible with any type of
data. Resolving issues regarding to unstructured dataset, |Chen et al.| [2016] introduced
SMOTE-PSO, a hybrid method is combining synthetic over sampling with PSO. SVM’s
decision boundaries to get improved metrics such as AUC and G-mean. Their work out-
lines PSO’s potential in reducing biases along with that it, improved the representation
in machine learning. Kumar et al. [2023] used Grid search in their work for optimizing
the parameter of Random Forest on educational data mining and reported an impressive
accuracy of 95.21%.Their interest in minimizing false negatives underlines the importance
of predictive accuracy for real world applications like the identification of students at risk.

In this regards, [Eberhart and Kennedy [1995] work has inspired a lot of interest in
using optimization techniques in different areas. Many studies showed that PSO can
enhance the managing resources and scalability. However most of these methods are
focused on batch processing. This research paper builds on the ideas by using PSO
in a serverless framework to detect fraud in real time, with a focus on better resource
utilization and low cost on cloud environments.

2.4 Findings from Related Work

While AWS Lambda optimization has largely been improved, there is a scope of PSO
optimization with other latest techniques. Comparisons on various datasets scenarios
of various cloud platforms are yet another untouched but potential informative area of
research. The related work showed the gaps in theoretical as well as practical implement-
ation. My study aims at filling these gaps by comparing various optimization techniques,
performing on experiments and working with performance analysis. It is expected that
this work will set a new benchmark for most practical scenarios on how to make AWS
Lambda more efficient and cost effective.

3 Methodology

This section describes the methodology which has followed for this study, the research
process,techniques of evaluation and various steps from data collection to analysis. The
goal was to evaluate the effectiveness of Particle Swarm Optimization(PSO) in enhan-
cing cost efficiency and performance in a serverless fraud detection system using AWS
Lambda. Moreover, sections will be describing the procedures of dataset preparation,
feature engineering, algorithm implementation and testing some scenarios.

3.1 Research Overview

This research is formatted in different stages such as dataset collection and preparation,
algorithm implementation and optimization to provide the detail understanding of this
study. These optimization strategies were mentioned related work in [2] Rostami et al.
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[2020],they worked on multi-objective PSO algorithm to optimize the high dimensional
datasets, along with that they have focused on feature selection for medical datasets,
this work generalize the PSO usage for serverless platform, this is not been implemented
before.

3.2 Tools and Equipments

This section includes the description of the tools and equipments used in this research as
per shown in [I}

Coding Language used Python 3.9
Development Tools Google Colab, AWS Cloud9, Visual Studio
Cloud Infrastructure AWS Lambda, AWS S3, AWS EC2
Monitoring and Testing AWS CloudWatch, Postman

Table 1: Tools and Equipment Used

3.3 Dataset Preparation
3.3.1 Dataset

The dataset in this research was synthetic and downloaded from data.world [ a trus-
ted platform for sharing and accessing datasets.This dataset,which was made especially
for testing fraud detection models, was downloaded from a trustworthy source. Fraud
(isFraud = 1) or non-fraud (isFraud = 0) was assigned to each transaction.

3.3.2 Data Cleaning

After fetching the raw dataset,started with data cleaning on Google Colah?l To find out
and manage if any missing values is present or not, before doing training and testing the
data. Next, used a method to replace this missing values in numerical columns with the
average value. This explained that our dataset is not having missing data after performing
this step, well it is ready for further analysis.

3.3.3 Feature Engineering

Feature engineering was used to make dataset’s more adaptable. This involved :

e One-Hot Encoding : This is a process of converting categorical variables such as the
type of branch or transaction, into numerical values represented by binary columns
which makes easy to merge it with machine learning models. The model analyze
the data and make it appropriate connections between the categories for better
understanding.

e In addition to that, the logistic regression model was built and tested with an
accuracy of 0.931 which means 93.10% on the maintained dataset.

!'Raw dataset: https://data.world/
Zhttps://colab.google/


https://data.world/
https://colab.google/

3.3.4 Dataset Storage

Once data pre-processing gets handled, the final formatted dataset was placed on AWS
S3 bucket. Storing it in S3, it made convenient to process with next steps. It ensured,that
data is safe.

3.4 Algorithm Selection

Shao et al. [2023] found that the hybrid of PSO-GA enhances the efficiency of re-
source allocation and user satisfaction in optimization. In our work we are utilizing
Grid Search(Without PSO) to test a search method which allows varying configurations,
although it is computationally demanding.

3.4.1 Grid Search(Without PSO)

e [ have initially used Grid Search,which systematically tested a combination of the
features of amount, oldbalanceOrg and unusuallogin.

e The error rate was calculated for each combination based on FN and FP and added
for thresholds that were set too high. while the logic was straightforward,many
combinations needed to be evaluated which made this efficiently possible.

e [t worked by trying all possible combinations within a certain range also its looking
for the one that performed the lowest percentage error.

3.4.2 Particle Swarm Optimization(PSO)

e Advanced optimization technique like PSO were used to explore the best solutions
dynamically.

e How this algorithm works at random intervals of particles with random velocities
and its position.

e Each of the particles updated its position in every iteration,this is based on the
personal best performance and the global best solution so far.

e While this is an iterative process, thresholds will improve by gradually updating it
over the time to minimize the error rate.

e The Fig[2] algorithm explains how the process of PSO algorithm is actually work,
how particles improves over iterations and gets initialized. This helps to directly
link the implementation of our research and as well as it helps to understand how
PSO was applied to optimize the fraud detection of this research.

3.5 Testing

The PSO and Grid Search algorithms are both tested with different memory allocations
and variations of the number of iterations and particles respectively. Provisioned Con-
currency were implemented and tested to set various experiments as well as the impacts
of cold-start times and overall execution performance were also presented.



1. Initialize particles (Xi), velocities (Vi), personal best positions (pbest), and global best position (gbest)
. Randomly generate particles (P) within defined bounds.
3. Evaluate each particle's fitness using the fraud detection objective function:
a. Calculate error rate for each particle. N N
b. Update pbest for each particle if the current fitness is better.
c. Update gbest if the global best fitness improves.
4. For each iteration:
a. For each particle:
i. Update velocity (Vi) using:
Vi=®*Vi+cl * rl ¥ (pbest - Xi) + c2 * r2 * (gbest - Xi)
ii. Update position (Xi) using:
Xi = Xi + Vi
iii. If Xi exceeds bounds, clamp Xi within limits.
iv. Recalculate fitness and update pbest and gbest.
5. End iterations when max iterations is reached.
6. Return the scaledﬁbestigolution and gbest_score.

[N

Figure 2: Algorithm of PSO
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Figure 3: Architecture diagram

4 Design Specification

This section presents the structure,methods and the architecture which will endorse the
research of the fraud detection using PSO optimization algorithm in the serverless en-
vironment. The aim is to develop a scalable and reasonable solution for AWS Lambda,
which allow to maximize the performance and utilization of resources. The following
sections describe about the implementation part of the work.

4.1 System Architecture

Fig[3] shows the architecture design of our research. Which has been set up the main aim
for utilizing AWS services in such a way, so that it will leverage serverless computing.
The architecture of this work, about its various components is explained below in detail.

e Google Colab : Started by using Google colab for pre-processing the raw dataset.
Data cleaning, missing values and feature engineering was done to normalize the
dataset. Then AWS S3,the data is stored to prepare for further analysis.



e Amazon S3 :In S3 bucket, stored a preprocessed dataset in CSV format. It is easily
accessible to fetch the data for aws lambda.

e AWS Cloud9: AWS Cloud9 is utilized for creating, debugging and deploying includ-
ing python libraries. It allows for seamless development environment for testing and
deploying purpose.

e AWS Lambda: The main execution is performed in this aws service, in which both
PSO and without PSO algorithms are implemented. Used two separate lambda
functions in our research. This helped to compare both the algorithms in a precise
way.

e Visual Studio Code: VS code was used to automate the calling of the lambda
functions.This helped in effectively triggering a large number of instances and the
results will get generated. This allowed to run the code in multiple instances at
once, it ensured that the function performed well.

e Postman : It enables to call API for testing purpose on lambda function, also it
verifies the deployed algorithm is working properly or not during the testing time.

e AWS CloudWatch : AWS CloudWatch monitors the logs from the execution of
lambda function this includes: errors, execution time and outputs. It also records
lambda invocations memory size utilization, bill duration and initialization time to
make sure system works well.

4.2 PSO Functioning

In this study, PSO algorithm plays an crucial role in optimizing thresholds using trans-
action data. PSO has been adopted for its ability to converge efficiently on optimal
solutions. Compared this algorithm with Grid Search, to figure it out which algorithm
works better. Detailed explanation of this functionality is mentioned below:

e Initialization of Particles : The PSO algorithm starts with initializing a particles.
Each particle represents a solutions, in terms of set of threshold values for each
important features in the dataset those are for: amount, oldbalanceOrg and unusu-
alLogin. The features were chosen based on the importance of the task of fraud
detection since those directly defined for fraudulent transactions. The PSO al-
gorithm places each particles inside its define range, from 0 to 1 randomly. It will
help to normalize the features. Thus the thresholds values for each particles are
randomly assigned from the normalize data range.

e Function : The objective function, fraud_Detection_objective it compares each
particles position by its error rate. It find the error rate by comparing the threshold-
based fraud predictions of a particle against the actual labels of fraud from the
dataset.It will reduces the false negatives more precisely to prioritize actual error
in fraud detection.

The research purpose is to find out the optimal set of thresholds of the fraud
detection which is the best solution of the issue and leads to minimize the error
rate. The best score is the lowest error rate obtained during optimization process
and this is the clear indication of an algorithm’s effectiveness.
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Figure 4: PSO Workflow

There are three variables that impact the velocity of a particle in this formula:

velocities = 0.5 * velocities + r1 * (personal_best - particles) + 2 * (global_best -
particles)

e Inertia, personalbest and globalbest: While r1 and r2 are random numbers between
0 and 1.This introduces the randomness into the search,whereas inertia termed
as 0.5 to maintain the particles current direction. Both the social part attracts
the particle towards the globalbest are controlled by unexpected parameters as
mentioned in the work by |[Shi and Eberhart| [1998]. In our work, we skipped the
coefficients ¢l and c¢2 to simplify the model for its optimal solution.Well,its focus
on the algorithms simplicity and efficiency.

e PSO Workflow : As mentioned above, data was preprocessed then created a con-
nection to AWS S3 bucket and stored the dataset over there. It does normalization
of the dataset in the next stage of data pre processing if the data is already there
presents in s3 bucket. It will then calculates the best fraud detection thresholds
and initialized the particles in the PSO algorithm performs the optimization loop
once the data is ready. Best solution and best score along with the performance
metrics are output as the algorithm saves that for further analysis. All these bring
about efficient and accurate threshold optimization that allows for fraud detection.
Please find the below workflow diagram [4]

4.3 Configuration Requirements

Serverless deployments is a fundamental aspects, because of its scalability and cost-
effectiveness. Combining various AWS services those are: AWS cloudWatch for mon-
itoring purpose, AWS S3 for storing the csv file and AWS Lambda for computing.The

11



pso-optimization- Description
[ function:onezerotwof
our

.....

Figure 5: Assigned Provisioned Concurrency

serverless architecture ensures a reduction for an unnecessary infrastructure, at the same
time it will ensure that system can handle dynamic workloads. And how it will give best
results to a developers/users.

4.3.1 AWS Lambda Configuration

e Memory Allocation: To evaluate systems performance and cost,testing has been
done with various configurations of memory.

e Provisioned Concurrency : It sets a number of Lambda instances to warmed up and
to get readyf] Created an alias with latest version of functions. Most importantly,it
offers consistent execution performance and faster cold start for reduce the latency.

For instance, in our case to able to relate it to the specific version of the lambda
function, as shown in the 5| fig, created a new alias to linked it with specific Lambda
function version. The provisioned concurrency for this function had been set to 10,
so that only 10 instances will be available to run the function every time as a
pre-warmed.

e Versions and Aliases : AWS Lambda versioning is utilized to ensure that updates
in a way that will prevents the disruptions. Created an alias pointing to the latest
version of the function.

4.4 Monitoring and Logging

In order to evaluate the performance of the Particle Swarm Optimization (PSO) al-
gorithm, utilized AWS CloudWatch to observe the most important performance para-
meters at runtime. It showed the execution time, memory used, billed time and the
success rates were obtained from CloudWatch and it shows how the algorithms worked
on different configurations.

FExecution metric : The output shows the clear evidence that PSO performance im-
proved, in fig [6lalso confirmed that execution times reduces when memory is increased
which proves that resource allocation is critical for gaining best performance.

3https://aws.amazon.com/blogs/aws/new-provisioned-concurrency-for-lambda-functions/
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Count Milliseconds Count No unit
19 567 .. 1 . - 100
'
12 R 05 99.5
180 |

5

- 103 110 n o -— - 99
10126 11/03 11710 1nT

1 @ Duration average 10/26 11703 11710 17

@ invocations @ ProvisionedConcurrencylnvocations @ Errors @ Success rate (%)
Throttles [0 Total concurrent executions @ i Recursive invocations dropped ® :
Count Count No unit

1 s . . e . 1

No data available
05 3 05
1 .
o - - 10/26 11703 1/10 N7 o
10/26 11/03 1710 nnr @ Total concurrent executions 10/26 1/03 /10 17

Figure 7: CloudWatch Metrics for PSO with Provisioned Concurrency.

Provisioned Concurrency : Since provisioned concurrency can gurantee a consist-
ent performance and low latency, was enabled for the PSO during the evaluation.Figure
[7, shows the cloudWatch graphs of provisioned concurrency that holds information of
invocation count, total number of concurrent executions and success percentage. The
performance metrics justified that 10 instances, were able to handle to concurrent invoc-
ations without any error or throttles, it maintained 100% of success rate. This proves the
efficiency of the presented system especially when its applied on workloads and enterprise
environments.

5 Implementation

At the implementation stage, research concludes and developed a theoretical concepts
into a functional and scalable. The final outputs of this section included processed data,
developed algorithms, serverless deployment configurations and its outputs at the final
stage of this research.
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@ lambda_function.py X I o=
®

lambda_function.py
1 import json
2 import time
import numpy as np
4 import boto3
5 import os
6  import io
import pandas as pd

# Initialize the S3 client
10 s3 = boto3.client('s3’)

12 # Function to evaluate the PSO particles for fraud detection
13 def fraud_detection_objective(particle, data):

14 amount_thresh, oldbalanceOrg_thresh, unusuallogin_thresh = particle
15 predicted_fraud = (

16 (data[ 'amount'] > amount_thresh) |

17 (data[ 'oldbalanceOrg'] > oldbalanceOrg_thresh) |

18 (data[ 'unusuallogin'] > unusuallogin_thresh)

19 ).astype(int)

22 true_fraud = data['isFraud']

23 false_negatives = ((predicted_fraud == 0) & (true_fraud == 1)).sum()
24 false_positives = ((predicted_fraud == 1) & (true_fraud == @)).sum()
25 error_rate = (2 * false_negatives + false_positives) / len(data)

27 return error_rate # Lower values are better

29  def optimized pso_algorithm(data, num_particles=20, num_iterations=3@):
30 bounds = [(@, 1), (8, 1), (8, 1)]
31 particles = np.random.uniform([b[@] for b in bounds], [b[1] for b in bounds], (num_particles, len(bounds)))
n102.Col 31 Spacess4 UTF-8 LF Python [Jlambda LayoutUs &

Figure 8: Code View: Deploying PSO Algorithm on Serverless AWS Lambda

Data Preprocessing and Storage: As mentioned above, the normalized transac-
tion data was securely stored in AWS S3 bucket. This was the important step which
made a seamless access for AWS Lambda functions.

Algorithms Deployment: Two different AWS Lambda functions were created for
PSO and without PSO and deployed to directly with their dependencies and uploaded as
zip files. The deployment was designed to provide performance under difference resource
allocation to test performance variations. A figure [8 of the Lambda function code used
for PSO implementation. Configure it with memory allocation variations and concurrency
in order to maximize performance.

Implementing concurrent executions using VS Code : Python scripts were
used on VS code to trigger concurrent invocations of Lambda functions to simulate real
world situations. It showed how precise it was, to add multiple requests to the system.

Provisioned Concurrency Setup: To resolve cold start latency problems, pro-
visioned concurrency was used. The system achieved consistent response times under
high demand scenarios by creating a new alias and providing provisioned concurrency for
particular lambda functions.

Failure handlings: In this implementation, also implemented robust exception
handling for handling AWS S3 access errors which means the system will not halt execu-
tion and will mention the issues or errors in log.

Advanced PSO Tuning : PSO parameter adjustments that are inertia, velocity
and improved globalbest convergence rates.

Execution Output: Recorded the thresholds and their error rate of both the al-
gorithms. These performance results were logged into AWS Cloudwatch so that, it per-
forms a detailed analysis on different configurations. Execution metrics visualization such
as cost comparisons and error reductions were mentioned in the evaluation section [0}
This research provides advanced testing workflows and performance efficiency to set a
benchmark for serverless deployment using optimization. This works not only focused on
theoretical solutions but also focused on practical, scalable and efficient solutions.
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Figure 9: Evaluation Results for Without PSO at 1024 MB Allocation

6 Evaluation

In this research, the evaluation section is focused on determining the performance, ef-
ficiency and cost effectiveness of the implemented dataset with different configurations.
Then compare it with and without PSO algorithms. Three case studies are addressed
in this evaluation part those are: cold start performance, pre-warmed techniques and
scalability of cost analysis.

6.1 Casestudy 1: Performance Comparison (With and Without
PSO)

1. Without PSO : First, tested with Grid Search approach to check the efficiency of
the system. In the configuration part for resource allocation, the lambda function
was configured with memory allocation of 1024 MB size and tested threshold values
for amount, OldbalanceOrg and unusuallogin features.The output we got as shown
in fig[9] execution time : 1.1255(s), billed duration:1128(ms),Init Duration:2442.58
(ms) ,max memory used: 165 MB. The best solution was examined through finding
out the common threshold which minimize the error rate and Without PSO (Grid
Search) has the best score of 0.0386 which is the error rate and weight calculation
of False Negative(FN) and False Positive(FP) where the lower rte of score indicated
better fraud detection.

2. With PSO : In next stage, Particle Swarm Optimization(PSO) algorithm is util-
ized to actively adapt the set thresholds used for fraud detection. The AWS Lambda
configuration, memory allocation was kept same as before, 1024MB size. In PSO,
a swarm of particles was initiated each of which presenting a best solution, ran-
domly located and possessing with random velocities. These particles over multiple
iterations adapted their thresholds with positions updated accordingly to personal
best scores and global best solution. Personal Best Score : The highest score
,particles has achieved to the time. Global Best Solution: It is achieved by the
any random particles reached its performance vector. The experiment performed
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Figure 10: Evaluation Results for With PSO at 1024 MB Allocation

with 10 particles and 20 iterations to perform a better converge towards the op-
timal solution. As illustrated in fig [10] the execution time was improved greatly
down to 0.693(s) with a billed duration:715(ms) and the max memory used:173 MB.
This took less time to converge and get the optimized best score of 0.0248,which
demonstrated a better improvement than the previous without PSO(Grid Search)
Algorithm method for minimizing the errors.

The comparision of performance between the system without PSO and With PSO
algorithm, both configured with a memory size of 1024 MB,the percentage improvement
over Grid Search is shown in [2] The findings of this table shows a enhancement with
the usage of PSO in relation to execution time, billed duration and accuracy. Also
its consuming similarly memory size as compared to without PSO algo. The results
described here are effective which showing the benefits of using the PSO for real-time
fraud detection optimization.

Metric PSO | Grid Search Percentage Improvement
Execution Time (s) 0.693 1.1255 38.45% Faster

Best Score 0.0248 0.0386 35.75% Better Accuracy
Billed Duration (ms) 715 1128 36.62% Reduction in Billed Duration
Max Memory Used (MB) 173 165 -4.62% Increase in Memory Usage
Init Duration (ms) 1425.73 2442.58 41.63% Faster

Table 2: Performance Comparison: PSO vs. Grid Search (Memory Size = 1024 MB)

6.2 Case study 2 :

Performance Analysis of Provisioned Con-

currency(With and Without PSO)

1. Without PSO: In this phase of the experiment, an attempt was made to use the

provisioned concurrency feature with 10 pre-warmed lambda instances. The size of
memory allocated with 1024 MB with 5 requests executing the script using Visual
Studio code. The lambda function runs successfully, as seen in fig [11b] from the
CloudWatch logs. The analysis showed that the function maintaining stability of
performance metrics with every concurrent requests. The testing was done with the
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help of python script in VS code where the requests were initiated in parallel with 5
and the logs proved fig that the function appropriately managed the load. The
execution time it took was 1.9845(s), billed duration :1988(ms), best score :0.0383
and max memory used:1656MB

CloudWatch Logs

Lambda logs all requests handled by your function and automatically stores logs generated by your code through Amazon CloudWatch Logs. To validate your code, instrument it with custom logging statements. The following tables
recent and most expensive function invocations across all function activity. To view logs for a specific function version or alias, visit the Monitor section at that level.

Recent invocations

# i Timestamp i Requestld i LogStream : DurationinMS  : BilledDurationInMS i MemorySetinMB : MemoryUsedinMB
»1 2024-11-14T11:17:34.590Z 8118a573-8¢32-4d57-9f3f-d5af02d23bda 2024/11/14/[6]470beabc2a5bad37b058784218fdee2e 210818 2109.0 1024.0 165.0
»2 2024-11-14T11:17:34.5502 1472435-2aff-40f6-84b3-£2917b333abf 2024/11/14/[6]2dcaee5299754a6d9f7029229a3d0c 10 207461 2075.0 1024.0 165.0
»3 2024-11-14T11:17:34.5232 6ffBBdaf-5a2f-4673-aade-251398f0bect 2024/11/14/[6]fe7b71ed2a44559813b80f603c89638 2049.99 2050.0 1024.0 165.0
»a 2024-11-14T11:17:34510Z 27b3b73d-690c-4062-ad83-a816eb288959 2024/11/14/[6]839824597 bfd4c0483c1 fafdSdfdcslS 203655 2037.0 1024.0 165.0
»5 2024-11-14T11:17:34.5002 458209 1c-4 15-4fc5-beaa-268fb4c79a31 2024/11/14/[6]1fee6be6b12049b3bf3522c70da6fcd3 1987.68 1988.0 1024.0 165.0

(a) CloudWatch logs showing concurrent invocations without PSO

Log events C Actions ¥ Start tailing (<]

You can use the filter bar below to search for and match terms, phrases, or values in your log events. Learn more about filter patterns [3

Q Filter events - press enter to search Clear 1m  30m 1h 12h  Custom(3h) [ || UTCtimezone w Display ¥ ‘

» Timestamp | Message

No more records within selected time range Retry

» 2024-11-14T11:87:35.6632 INIT_START Runtime Version: python:3.0.v64 Runtime Version ARM: arn:aws :lanbd -1: truntine:
> 2024-11-14T11:17:32.5122 START Requestld: 458e@91c-f415-afcs-beaa-268fbac79a31 Version: 6
v 2824-11-14T11:17:34.4972 {"statusCode”: 208, "execution_time": 1.0845280647277832, "best_solution”: [0.4444444444424444, 1.8, 1.8], “best_score”: ©.83828611515838325}

{
“statusCode™: 200
“execution_tis 98452
“best_solution™: [

©.4444444044204444,

“best_seore™: 8.03828611515838325

¥

» 2624-11-14T11:17:34. 580 END Requestld: 458¢891c-f415-4FcS-beaa-268fbac79a31

v 2024-11-14T11:17:34. 5002 REPORT Requestld: 458291c-f415-4fcS-beaa-268fb4c79a31 Duration: 1987.68 ms Billed Duration: 1988 ms Memory Size: 1624 MB Max Memory Used: 165 MB
REPORT RequestId: 4582801c-f415-4fc5-beaa-268fb4c79a31 Duration: 1987.68 ms  Billed Duration: 1938 ms Memory Size: 1024 MB  Max Memory Used: 165 MB

No more records within selected time range Auto retry paused. Resume

(b) Execution output of Provisioned Lambda function for without PSO

Figure 11: Performance analysis of prewarmed Lambda function without PSO.

2. With PSO: In the second phase of this experiment,the system was tested using
Particle Swarm Optimization(PSO) algorithm, whereas the provisioned concurrency
has been set as 10 instances of AWS Lambda.Assigned it with 1024 MB memory
size and to test its scalability 5 simultaneous invocations were made using a py-
thon script on VS code ref in fig The lambda function was able to handle all
concurrent requests successfully as seen in fig [I3a] cloudWatch which confirm the
efficiency and resource consumption.The following observations were recorded:
Billed Duration : The billed duration was 243(ms), efficiently handling concur-
rent requests.

Execution time : It took around 0.22982(s) while executing the program.
Memory Utilization : The maximum memory consumed when running the pro-
gram was 181 MB which is slightly above the initial measurement.

Optimization Owutput:With the implementation of 5 particles over 10 itera-
tions, it was noted that the PSO algorithm gave its best result when values of
[0.7772,1.0377 and 1.0167] were considered as threshold for the features: amount,
oldbalanceOrg and unusuallogin respectively These threshold values gave the
best score of 0.0114 to which PSO is highly efficient in enhancing the low error rate
in the fraud detection such as FN and FP. This results confirms the robustness of
PSO in continuously varying the threshold values on a way that would effectively
reduces rates in the detection of fraudulent transactions.
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1024 mb-pr rming.py > ..

import requests
import
import concurrent.futures

url = “"https 22vahvrbm34jbh2bhusqdyhi®hlqcq

payload = ""
headers = {

'Content-Type': 'application/json’

}

invoke_lambda():
try:

response = requests.post(url, headers=headers, data=payload)

return response.text

except requests.RequestException as e:

return f"Request failed: {e}"

with concurrent.futures.ThreadPoolExecutor() as executor:

futures = [executor.submit(invoke_lambda) for _

print(%uture.result{]ﬂ

in range(5)]
for future in concurrent.futures.as_completed(futures):

Figure 12: Python script on VS code-With PSO

CloudWatch Logs

.lambda-url.eu-west-1.on.aw

Lambda logs all requests handled by your function and automatically stores logs generated by your code through Amazon CloudWatch Logs. To validate your code, instrument it with custom logging statements. The following tables list the most
recent and most expensive function invacations across all function activity. Ta view logs for a specific function version or alias, visit the Monitor section at that level.

Recent invocations

# Timestamp : Requestld i LogStream
»1 2024-11-14T10:51:47.4772 202411,
»2 2024-11-14T10.51:47.4442 3659214-0468-489-be18-53244 1dbbTaf

'3 2024-11-14T10:51:47.4082 8511ac12-5927-43ef-Ge3c-20810e02(7b5

ra 2024-11-14T10:51:47.2692 90709061-1569-427c-bd5c-7f2d6a0aa2ch

s 2024-11-14T1051:47.2332 3b7f983cf152-4110-

: BilledD y
54858 5490 10240 1790
50475 5050 10240 1740
47536 4760 10240 1710
32777 3280 10240 1710
28433 2850 10240 1m0

(a) CloudWatch logs showing concurrent invocations with PSO (prewarmed setup).

v 2024-11-13T11:31:18.6662

> 2024-11-13T11:31:18.679Z

v 2024-11-13T11:31:18.679Z

REPORT RequestId: 344370b6-d76d-4adc-87be-be6@ddac8Ids Duration: 242.66 ms

(b) Execution output of Pre-Warmed Lambda function with PSO.

Figure 13: Analysis of Prewarmed Lambda Function with PSO.

The percentage improvement over Grid Search is shown table [3|this makes a clear
comparison that shows a significant increase in the performance in the use of PSO than
Grid Search. Compared it with the execution time is speed up by 88.42% ,the accuracy is
70.24% higher and the billed duration is 87.77% reduced and the memory performance is
optimized.These outcomes demonstrate that PSO can help to enhance real time processes
greatly and thus can be considered one of the most effective and flexible solutions for

enterprise applications.

END RequestId: 344376b6-d70d-4adc-87be-be60dGacsIds

Billed Duration: 243 ms Memory Size: 1024 MB

18

Max Memory Used: 181 MB.

{"statusCode": 260, "execution_time": 8.22979402542114258, "best_solution": [0.7772360422247899, 1.03706912505537, 1.016724874111895], "best_sc.

=}

REPORT RequestId: 344370b6-d76d-dadc-87be-be6@d0acs9ds Duration: 242.66 ms Billed Duration: 243 ms Memory Size: 1024 MB Max Memory Used: 181 M8
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Metric PSO | Grid Search Percentage Improvement
Execution Time (s) 0.22982 1.9845 88.42% Faster

Best Score 0.0114 0.0383 70.24% Better Accuracy
Billed Duration (ms) 243 1988 87.77% Reduction in Billed Duration
Max Memory Used (MB) 181 165 9.70% Increase in Memory Usage
Provisioned Concurrency 10 10 null

Table 3: Performance Comparison of Provisioned Concurrency

6.3 Case study 3 : Scaling Efficiency & Cost Analysis

In this phase, compared the performance of both the algorithms in performing cost ana-
lysis of 5 concurrent invocations as well as comparative study of cost involved in executing
1000 invocations. Thus, the objective was to analyze the effectiveness of both the ap-
proaches to the greater or huge amount of workload(data) and the expenses made some
decisions. For instance, the same configuration will assume : AWS Lambda with 1024
MB memory size and 10 instances of provisioned concurrency. Calculations for costs were
made based on the AWS Lambda Pricingf] for provisioned concurrency and the invoca-
tion costs. As mentioned above, utilized AWS Lambda pricing here, which consists of
Provisioned Concurrency instances as shown in table [4

Table 4: Cost Comparison for 5 and 1000 Invocations using PSO and Without PSO

Metric PSO Cost (USD) | Grid Search Cost (USD)

Provisioned Concurrency (1 hr) $0.000041667 $0.000041667

Invocation Cost (5 runs) $0.00025272 $0.00206752

Total Cost (5 executions) $0.000294387 $0.002109187

Invocation Cost (1000 runs) $0.050544 $0.413504

Total Cost (1000 executions) $0.050585667 $0.413545667
Findings :

Cost for 5 Invocations: When the 5 number of invocations and the total cost of using
PSO algorithm is $0.000294387,while Grid Search’s cost is $0.002109187.Hence the cost
reduction is approximately 86%.

Cost for 1000 invocations : The total 1000 invocations, the cost was $0.050585667
for PSO against $0.413545667 for Grid Search, marking a cost saving of 88% in terms of
PSO.

Efficiency : The huge cost reduction takes place from the fact that PSO completed
in 243 ms, while without PSO(Grid Search) takes 1988 ms, thereby PSO is giving better
savings in less invocation cost which explains the AWS Lambda expense.

6.4 Discussion

In Delis [2022] research, found out PSO is an efficient in optimizations tasks, tested most
in simulation environments which has limitation with real world scenarios. Well, this
research fill the gaps by deploying PSO in a real world serverless architecture using AWS
Lambda for real time scenarios. Moreover, |Javed et al.| [2024] worked on AWS Lambda

‘https://aws.amazon.com/lambda/pricing/
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and focused on performance and cost optimization but didnt explored a PSO. In this
work, it fill the gaps by optimizing resource utilization as well as reducing costs in a
serverless architectures with an integration of PSO algorithm.

However, this study shows how PSO is efficient in terms of optimizing serverless
architecture. But, it only did testing on limited data, this raises a question about its
more complex situations. It is mainly focused on aws lambda service, for instance the
testing between cost and performance was not thoroughly examined on live data access.

7 Conclusion and Future Work

This work has been able to address the research challenge on how to use Particle Swarm
Optimization(PSO) to set the correct fraud detection threshold in a serverless frame-
work. From this study, it got illustrated that how modern AWS Lambda can work with
top optimization methods to minimize cost and enhance performance in enterprises. For
instance, the PSO approach achieved higher accuracy and optimized the utilization of
resources compared it with Grid Search(without PSO algo.),indicating the method’s suit-
ability for real-time use.These experiments brought out the ideas that utilizing error rates
as well as it is managing serverless resources. The study also explained how provisioned
concurrency works in avoiding to ensure that serverless platforms are relevant to chan-
ging of data. Managing the concurrency and balancing cost was a challenge to integrate
PSO with AWS Lambda during research.Additionally, the provisioned concurrency set
up needed to achieve real time responsiveness while navigating cold start.

The Future work, will be expand the implementation to a cloud platform analysis
between AWS Lambda, Azure Functions, Google cloud Functions and to verify the cost
and performance between these cloud platforms. Researchers can also further enhance
the adaptability and its practicality by allowing real time scenarios data which will make
it more appropriate to test the real world scenarios issues.
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