~

“—-
\ National
College

Ireland

Configuration Manual

MSc. Research Project
Cloud Computing

Mohammad Amaan Shaikh
Student ID: X23186925

School of Computing
National College of Ireland

Supervisor: Dr. Ahmed Makki

National College of Ireland National

Project Submission Sheet Col]ege of
School of Computing Ireland
Student Name: Mohammad Amaan Shaikh
Student ID: X23186925
Programme: Cloud Computing
Year: 2024
Module: MSc. Research Project
Supervisor: Dr. Ahmed Makki
Submission Due Date: 12/12/2024
Project Title: Configuration Manual
Word Count: 1800
Page Count: 2

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature:

Date: 12th December 2024

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). O
Attach a Moodle submission receipt of the online project submission, to | [J
each project (including multiple copies).
You must ensure that you retain a HARD COPY of the project, both for | O
your own reference and in case a project is lost or mislaid. It is not sufficient to keep
a copy on computer.

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only
Signature:

Date:
Penalty Applied (if applicable):

Configuration Manual

Mohammad Amaan Shaikh
X23186925

1 Introduction

Introduction: This configuration manual provides detailed steps that were utilized to
set up and automate the robust CI/CD pipeline. It provides detailed understanding of
configuration and integration steps utilized. Additionally, it provides the downloading
and installation steps for each tool used and provides the details of configuration and OS
image used for each server. This configuration manual ensures instructions are cleared
for the future researcher who wishes to contribute to the study.

2 Configuration of EKS Cluster

2.1 Step 1: IAM Role for EKS Cluster:
e Go to TAM console in AWS

e Roles ; create role
e Choose EKS service from the available AWS service list.

e Click next and attach policy: AmazonEKSClusterPolicy

2.2 Step 2: IAM Role for Node Groups (Worker Nodes)
e Go to IAM console

e Roles ; create roles.
e Choose EC2 service from the available AWS service list.
e Attach the below policies to IAM role:

— AmazonEKSWorkerNodePolicy
— AmazonEC2ContainerRegistryReadOnly
— AmazonEKS_CNI_Policy

2.3 Step 3: Cluster creation

e From the AWS Console create AWS master node or EKS cluster, for this study the
default VPC and subnets were used and AmazonEKSClusterPolicy created in step
1 was attached to EKS cluster.

e Once the EKS cluster is ready, under the compute section of the newly created EKS
cluster, create a new node group and attach it to the cluster. Below is the detailed
configuration of node group that was utilized and attached to the EKS cluster.

For this study Amazon Linux 2 instance of instance type t3.medium was configured
and desired size of 2, minimum size of 1, Maximum size of 5 was added. This ensures
a stable starting point to operate and at increased workloads nodes can be scaled to
maximum size of 5 making the setup scalable. Additionally, IAM role created in step 2
was attached to giving permission to worker node to interact with ECR registry, container
related permissions, and worker node policies.

Node group scaling configuration

Desired size
Set the desired number of nodes that the group should launch with initially.

Node group compute configuration
e orbe reated nodes
A
Sele Amazon Machine Image for nodes.
v

Desired node size must be greater than or equal to 0

Minimum size
Set the minimum number of nodes that the group can scale in to.

= Maximum size
] Set the maximum number of nodes that the group can scale out to.

Figure 1: EKS Worker Node Configurations

3 Jenkins Server setup:

To set up a Jenkins server Amazon linux AMI, with instance type t2.medium was used.A
key pair named x23186925-thesis.pem was generated and attached to this Jenkins server.

e Step 1: ssh ec2-user@server-ip -i x23186925-thesis.pem

e Step 2: Jenkins has a software requirement of Java to run. Hence utilizing below
command specific version of java can be installed.

— sudo amazon-linux-extras enable corretto&

— sudo yum install java-1.8.0-amazon-corretto -y

e Step 3: Once the installation is complete, verify installation of java using command:
java -version

e Step 4: Furthermore, once the java is installed successfully, using below command
one can install Long Term Support release of Jenkins.

-20-58 ec2-userl# java
"17.0.12" 2024-07-16
i rretto-17.0.12.7.1 (build 17..12+7-LTS)

tt0-17.0.12.7.1 (build 17.0.12+7-LTS, mixed mode, sharin
root@ip-172-31-20-58 ec2-user]#

Figure 2: This is a caption

— sudo wget -O /etc/yum.repos.d/jenkins.repo https://pkg.jenkins.io/redhat-
stable/jenkins.repo

— sudo rpm —import https://pkg.jenkins.io/redhat-stable/jenkins.io-2023.key
— sudo yum upgrade

— sudo yum install fontconfig java-17-openjdk

— sudo yum install jenkins

— sudo systemctl daemon-reload
e Step 5: Below are the commands to enable, start, stop and check status of Jenkins.

— sudo systemctl enable jenkins
— sudo systemctl start jenkins

— sudo systemctl status jenkins

If everything is configured properly, you should be able to see below screen after
running ‘sudo systemctl status jenkins® command.

Figure 3: Jenkins Status

e Step 6: Post installation Setup

— After the download and installation of jenkins is complete. When you first
access Jenkins at http://jenkins-server-ip:8080, you are asked to unlock it using
the initial passwordo

— InitialAdminPassword can be accessed using below command

« sudo cat /var/lib/jenkins/secrets/initial AdminPassword

Once the jenkins is unlocked a new user can be created and suggested, required plugins
can be installed.

4 Setting up S3 bucket

Amazon S3 was used to store the Helm charts using OCI mechanism and store the report
generated by KubeScore.To setup the Amazon S3 buckets below steps were followed.

e Navigate to AWS Management console, navigate to S3 console and click on create
bucket as shown in below Figure 4. Enter the name of Bucket, and keep the
versioning enabled and finally click on the create button.

Figure 4: S3 Bucket configuration

e T'wo bucket’s named: x23186925-kubescore-results and x23186925-thesis-helm-charts
were created in the eu-west-1 region

5 Installation of kubectl and Helm:

Below are the steps to install Kubectl and Helm.

5.1 Installing Kubectl

e kubectl was used to interact with the EKS cluster. Below are the command to
Download and verify the installation of kubectl.

— curl -LO "https://dl.k8s.io /release/v1.28.1 /bin/linux/amd64 /kubectl” (Replace
v1.28.1 with the desired version)

chmod +x ./kubectl (Providing kubectl execution permission)

— sudo mv ./kubect] /usr/local/bin/kubectl (Moving kubectl to System PATH)

kubectl version —client —output=yaml (To verify installation)

5.2 Installing Helm

e Helm was installed using an installer script that grabs the latest version of Helm
and installs the Helm after execution of script. Below are the commands to fetch
the script and install helm.

— curl -fsSL -o get_helm.sh https://raw.githubusercontent.com/helm/helm /main/scripts/get-
helm-3

— chmod 700 get_helm.sh

— ./get_helm.sh

— helm version (To verify the installation of Helm)

4

6.1

6.2

7

Installation of KubeScore and Sonar-Scanner

KubeScore setup:

KubeScore was used to analyze the Helm chart configuration. KubeScore generated
a report, which was further studied and changes in Helm chart configuration were
done.Application was redeployed using Helm increasing the reliabilty and security.
Below are the steps to install KubeScore.

— curl -Lo kube-score https://github.com/zegl /kube-score/releases/download /v1.19.0 /kube-
score_1.19.0_linux_amd64

— chmod +x kube-score
— sudo mv kube-score /usr/local /bin/

— kube-score version)

Sonar-Scanner setup:

sonarScannerRepo="https://binaries.sonarsource.com/Distribution/sonar-scanner-
cli/”

sonarScannerZip=(curl—sSsonarScannerRepo — grep "’ sonar-scanner-cli-. *linux.zip”’

— sed "$s/.*7 %7 ¥/ /p;d’)
curl -sS -O sonarScanner Repo/sonarScannerZip

wget https://binaries.sonarsource.com/Distribution /sonar-scanner-cli/sonar-scanner-
cli-6.2.1.4610-linux-x64.zip

unzip sonar-scanner-cli-6.2.1.4610-linux-x64.zip -d /opt
mv /opt/sonar-scanner-6.2.1.4610-linux-x64,/ /opt/sonar-scanne
export PATH=$PATH:/opt/sonar-scanner/bin

sonar-scanner —version

Kubernetes configuration file and Jenkins pipeline.

Below are the steps that were used to create the Helm charts and configuration employed.

e Stepl: First create a Helm chart using below command

— helm create nginx-app

e Step2: Navigate to the chart created

— cd nginx-app

e Step3: Below Figure 5 is the Directory structure of Helm chart.

root@ip-172-31-20-58 nginx—appl]# tree

hart.yaml

NOTES. txt
_helpers.tpl
deployment.yaml
hpa.yaml
ingress.yaml
networkpolicy.yaml
pdb.yaml
service.yaml
serviceaccount.yaml

L— test-connection.yaml
values.yaml

3d ies, 12 files

Figure 5: Helm Directory Structure

[root@ip-172-31-20-58 templates]# cat deployment.yaml
apiVersion: apps/vl
kind: Deployment
metadata:
: {{ include "nginx-app.fullname" . }}
S5

{{ .Values.appName }}

spec: y "

replicas: {{ .Values.replicaCount }} # Leave out if using HPA [root@ip-172-31-20-58 nginx-appl# cat values.yaml
selector: appName: nginx

matchLabels:

: {{ .Values.appName }} replicaCount: 3

image:
rgpository: 250738637992 .dkr.ecr.eu-west-1.amazonaws.com/x23186925-thesis
: {{ .Values.appName }} tag: la?ESt
: : -app pullPolicy: IfNotPresent
containers: containerPort: 8000
- : {{ .Values.appName }}
i g : {{ .Values.image.repository }}:{{ .Values.image.tag }} imagePullSecrets: ecr-secret
ports:
- containerPort: {{ .Values.containerPort }} service
readinessProbe: type: NodePort
htthet:/ port: 80
path: nodePort: 30009
port: {{ .Values.containerPort }}
initialDelaySeconds: 5 autoscaling:
periodSeconds: 10 enabled: true
securityContext: minReplicas: 1
runAsUser: 1000 maxReplicas: 5
runAsGroup: 3600 targetCPUUtilizationPercentage: 80
allowPrivilegeEscalati
resources:
requests:
cpu: "500m"
memory: "512Mi" : .
Aephen.lerakstorage: "1Gi" mg?:;iéd: false
llmlts'u annotations: {}
cpu: "leeem" hosts:
memory: "1024Mi" . - host: chart-example.local
ephemeral-storage: "2Gi" paths
imagePullSecrets: =
- name: {{ .Values.imagePullSecrets }}

serviceAccount:
create: true
name: ""

Figure 6: Configuration of Deplyment.yaml and values.yaml file

[root@ip-172-31-20-58 templates]# cat ingress.yaml
{{- if .Values.ingress.enabled }}
apiVersion: networking.k8s.io/vl
kind: Ingress
metadata:
name: {{ include "nginx-app.fullname" . }}
labels:
{{- include "nginx-app.labels" . | nindent 4 }}
annotations:
{{- with .Values.ingress.annotations }}
{{- toyaml . | nindent 4 }}
{{- end }}
spec:
rules:
{{- range .Values.ingress.hosts }}
- host: {{ .host }}
http:
paths:
{{- range .paths }}
- path: {f . }}
pathType: ImplementationSpecific
backend:

{{ include "nginx-app.fullname" . }}

port:
number: {f .Values.service.port }} [root@ip-172-31-20-58 templates]# cat hpa.yaml
7 d apiVersion: autoscaling/v2

i{- end }} kind: HorizontalPodAutoscaler

{{- end }} netadata:
{{- if .Ualues.ingress.tls 1} name: {{ include "nginx-app.fullname" . }}-hpa
. spec:
tls:) scaleTargetRef:
{{- range .Values.ingress.tls }} apiVersion: apps/vl
— hosts: kind: Deployment
: name: {{ include "nginx-app.fullname” . }}
{{- range .hosts }} minReplicas: {{ .Values.autoscaling.minReplicas }}
= i maxReplicas: {{ .Values.autoscaling.maxReplicas }}
- metrics:
ti- end 1} ~ type: Resource
secretName: {{ .secretName }} resource
{{- end }} name: cpu
target:

{t- end 1} type: Utilization
f{— end 1} averageUtilization: {{ .Values.autoscaling.targetCPUUtilizationPercentage }}

Figure 7: Configuration of Deplyment.yaml and values.yaml file

nginx-app.fullname” . }}

{{ .Values.service.type }} # Update ‘Values.yaml' to set this to ClusterIP or LoadBalancer if possible
tor-
app: {{ .Values.appName }}
ports
- port: {{ .Valu rvice.port }}

targetPort: {{ containerPort }}
nodePort: {{ .Values.service.nodePort }}

Figure 8: Helm Directory Structure

e Step4: Based on the suggestions or analysis made by KubeScore Chart.yaml, val-
ues.yaml,deployment.yaml, service.yaml hpa.yam,ingress.yaml file were created and
updated to resolve CRITICAL issues.

e aws eks —region eu-west-1 update-kubeconfig —name x23186925-thesis —profile MSCCLOUD-
250738637992 (This command creates a kubeconfig file essential to manage the
kubernetes cluster at path: /.kube/config

e Step 5: Package and deploy the chart to EKS cluster:

— Once the Helm chart is created, it was package and first deployed manually
using command:

— helm package .

— helm install my-releas . /nginx-app (Utilizes credentials stored in /.kube/config
file)

8 Helm charts versioning

By export ‘HELM_EXPERIMENTAL_OCI=1* you enable Open Container Initiative of
Helm. It let you store, pull and manage Helm charts as OCI artifacts. To use S3 bucket
as a Helm repository, below steps were followed.

e Stepl: Package your Helm chart, depending on the name of chart and version
number present in Chart.yaml ”.tgz” file will be created, binded with specific version

e Step2: Upload the packaged chart (.tgz file) to the S3 bucket you created in Section
2 (x23186925-thesis-helm-charts) using command

— aws s3 cp nginx-app-0.1.0.tgz s3://your-bucket-name/

e Step3: Generate index.yaml file for the repository

e Index.yaml file will contain metadata about the charts, each time the Helm chart
is updated, index.yaml should be also edited. Updating index.yaml will reflect the
versions of helm in it as a metadata.

— helm repo index . —url https://x23186925-thesis-helm-charts.s3.amazonaws.com
e Step4: Upload the index.yaml file to your s3 bucket using command:
— aws s3 cp index.yaml s3://x23186925-thesis-helm-charts/

e Steph: Now that your .tgz file of Helm chart and index.yaml file are in S3 bucket
configure add S3 bucket as Helm repository.

— helm repo add my-s3-repo https://x23186925-thesis-helm-charts.s3.amazonaws.com

e Step6: Use the Repository

— helm repo update (Update the Helm Repository)
— helm search repo my-s3-repo (Search for the chart)
— helm install my-releas my-s3-repo/nginx-app —version 0.1.0 (Install the chart)

— helm upgrade my-releas my-s3-repo/nginx-app —version 0.1.0 (upgrade the
chart)

X23186925-thesis-helm-charts ...

Figure 9: Versions of Helm chart

9 Sonar Cloud Configuration

Below are the steps to setup quality gates and SonarCloud project.
e Stepl: SonarCloud Account

— At https://www.sonarsource.com/products/sonarcloud/ sign up using preferred
method(Github,Gitlab, Bitbucket etc). Once signup is successful, Log in to
the SonarCloud dashboard.

e Step2: Create a new Organization and project

— From the sonar cloud dashboard Click 4+ Create an organization
— Select version control system as Github

— Follow the instruction and Click Create Organization
e Step3: Once the Organization is created, create the Project using

— Navigate to project and Click + add a project
— Choose the repository from the available repositories.
— Also copy the provided sonar-project.properties configuration file. This file
will be used by CI/CD environment to trigger the analysis
e Step3: Configure quality gates

— From your dashboard, go to Quality Gates section

— Click on Create to create a new quality gate

— Figure 10 shows the conditions for Quality gates that were defined.
— And finally save the quality gates

— Once the quality gates are created, Go to Project Settings— Quality Gate. and
select the newly created quality gate to apply Quality Gate to the project.

Figure 10: Quality Gate Conditions

10 Setup of Jenkins pipeline and final configurations

e Credential Handling: GitHub Token, AWS Access Key, AWS Secret Access Key,
SonatToken are securely stored in Jenkins Credentials Manager.These credentials
are used in pipeline stages to authenticate different tools and services.

e This stage of pipeline authenticates with AWS, updates the kubeconfig file, provid-
ing access to EKS cluster. Additionally, using GitHub Token, GithHub repositor is
cloned on Jenkins server.

stage('Perform AWS Actions') {
steps {
withCredentials([string(credentialsId: "GITHUB_TOKEN', variable: "GITHUB_TOKEN')]) {
sh "
aus sts get-caller-
ans eks --region eu
git clone https://$

1 update-kubeconfig --name x23186925-thesis
_TOKEN@github. com/mdamaan@8/msc-thesis-2024.git

#kubectl apply -f /var/lib/enkins/workspace/testt/msc-thesis/Deployment.yml
#kubectl apply -f /var/lib/jenkins/workspace/testt/msc-thesis/service.yml

Figure 11: Code Cloning and updation of kubernetes credentials

e This stage of pipeline navigates to sonar-project.properties file and triggers sonar
scanner for static code analysis.

stage('Static Analysis of Code’){
steps{
sh '
cd fvar/lib/jenkins/workspace/testt/msc-thesis-2824
sonar-scanner

Figure 12: Static Analysis stage

Sonar-project.properties file was stored at a root of the project in GitHub, below are
the configuration of sonar-project.properties file

e This stage authenticates with Amazon Elastic Container Registry (ECR) for pulling
and pushing the application image

10

£3 Code 55% faster with GitHub Copilot

Figure 13: sonar-project properties file

/ Dockerfile (&)

&3 Code 55% faster with GitHub Copilot
M ubuntu
IR /app

requirements.txt /app

Y devops fapp

RUN apt-get update && \
apt-get install -y python3 python3-pip &% \
pip install --break-system-packages -r requirements.txt & \
cd devops

T ["python3"]

["manage.py”, “runserver”, "0.0.0.0:5600"]

Figure 15: DockerFile

Figure 16: Build and Publish Docker image stage

11

e Build and Publish Docker Image stage: The pipeline builds a Docker image via
Dockerfile present in a directory that was cloned from GitHub. DockerFile is stored
securely in GitHub with application code.

e Helm Configuration Check stage: This stage uses kube-score to validate the Kuber-
netes Helm charts configuration, generates a report and upload it to S3 Bucket.The
first iteration of report was created manually using ‘kube-score’ command directly
on Jenkins server. And from second iteration onward, evaluation was automated
in jenkins pipeline generating a updated-kube-score-results.txt file and uploading
it to S3 bucket (x23186925-kubescore-results)

Figure 17: Configuration check of Helm charts

e Deployment using Helm: The final stage of pipeline deploys the Helm chart to EKS
cluster and ensures application is running with the latest Helm package stored in
S3-based Helm repository.

Figure 18: Deployment stage

11 Conclusion

e Application code, DockerFile, sonar-project.properties file were stored in GitHub

e Configuration related to static analysis was mentioned in sonar-project.properties
file.

e Result generated by KubeScore were stored in S3 bucket ((x23186925-kubescore-
results))

e Helm charts are stored securely in S3 bucket (x23186925-thesis-helm-charts), S3
bucket which is configured as a Helm repository.

e The Jenkins pipeline was structured in stages to perform AWS action, static ana-
lysis, create and push Docker image, configuration check of Helm and finally de-
ployment of application stage.

12

	Introduction
	Configuration of EKS Cluster
	Step 1: IAM Role for EKS Cluster:
	Step 2: IAM Role for Node Groups (Worker Nodes)
	Step 3: Cluster creation

	Jenkins Server setup:
	Setting up S3 bucket
	Installation of kubectl and Helm:
	Installing Kubectl
	Installing Helm

	Installation of KubeScore and Sonar-Scanner
	KubeScore setup:
	Sonar-Scanner setup:

	Kubernetes configuration file and Jenkins pipeline.
	Helm charts versioning
	Sonar Cloud Configuration
	Setup of Jenkins pipeline and final configurations
	Conclusion

