~

N\ National
College
Ireland

Streamlining DevOps: Automating Testing
and deployment of Kubernetes Environments

MSc. Research Project
Cloud Computing

Mohammad Amaan Shaikh
Student ID: X23186925

School of Computing
National College of Ireland

Supervisor: Dr. Ahmed Makki

National College of Ireland National

Project Submission Sheet Col]ege of
School of Computing Ireland
Student Name: Mohammad Amaan Shaikh
Student ID: X23186925
Programme: Cloud Computing
Year: 2024
Module: MSc. Research Project
Supervisor: Dr. Ahmed Makki
Submission Due Date: 12/12/2024
Project Title: Streamlining DevOps: Automating Testing and deployment of
Kubernetes Environments
Word Count: 7400
Page Count:

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature:

Date: 12th December 2024

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). O
Attach a Moodle submission receipt of the online project submission, to | [
each project (including multiple copies).
You must ensure that you retain a HARD COPY of the project, both for | J
your own reference and in case a project is lost or mislaid. It is not sufficient to keep
a copy on computer.

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only
Signature:

Date:
Penalty Applied (if applicable):

Streamlining DevOps: Automating Testing and
deployment of Kubernetes Environments

Mohammad Amaan Shaikh
X23186925

Abstract

In this study we automated testing and deployment of a Kubernetes applica-
tion on AWS Elastic Kubernetes Service (EKS) cluster, utilizing Helm charts for
streamlined deployment and management. KubeScore was employed for configura-
tion validation of Helm charts. The report generated by KubeScore was analyzed
and more than 70% of critical issues were resolved and a new revision of the ap-
plication was deployed using updated Helm chart configurations. Additionally,
SonarCloud was used as a tool for static analysis of code and to deploy bug-free
quality code. In this study we also utilized the Open Container initiative (OCI)
mechanism and stored the Helm charts securely in AWS S3. A fully automated
Jenkins CI/CD pipeline was designed and developed to validate, analyze, generate
reports and finally deploy the application. In this study, we aim to identify the
critical gaps by previous contibutors and address those issues utilizing these tools.
The key objectives include exploring these advanced tools, utilizing the efficiency
of the OCI mechanism and automating the entire workflow to deliver a reliable
and robust software delivery cycle. This research contributes to the evolving mi-
croservice and Kubernetes world, offering insights into best practices and tools. We
conclude these study by evaluating metrics and analysis made by SonarCloud and
KubeScore and thus opening doors to the future contributors.

Keywords: Kubernetes, EKS, SonarCloud, KubeScore, Jenkins, OCI, Helm, S3.

1 Introduction

In the rapidly evolving world of computing, the adoption of DevOps principles that
facilitates cooperation between the development and operations teams has become an
essential part. One of the important open source platforms that facilitated this transition
is Kubernetes. Kubernetes is a highly effective container orchestration tool that helps in
running and managing containerized applications(Smith and Doe}; |2022)). Kubernetes has
become one of the most crucial tools for today’s DevOps processes because of how well
it serves dynamic and distributed environments, which are characteristic of cloud-native
and microservice-based environments.

Kubernetes brings a completely new concept to application deployment by stream-
lining several tasks such as load balancing, resource allocation, and fault tolerance that
typically require a lot of human intervention. Kubernetes makes use of declarative syn-
tax, which allows for repeatable and robust deployment, while the self-healing capability
ensures availability and reliability. However, with the advantages, Kubernetes also poses

considerable challenges. A small misconfiguration can bring security, deployment failure,
performance issues or can lead to an inefficient architecture. (Smith and Doe; [2022; |Lee
and Patel; [2023)

1.1 Background

Testing of Kubernetes environments is of significant importance in delivering a reliable as
well as high-quality application. The distributed nature of the platform requires the use of
advanced testing methods to ensure dynamic and efficient validation of both configuration
and application logic. Testing is important for delivering high quality, scalable, and
secure cloud-native applications. It is also important to avoid deployment failures in the
production environment. To find the optimal configuration, to increase the security of
an application and to implement clean, ethical static codes, it is important to include
testing in your software delivery lifecycle (Johnson and Nguyen; 2024]).

SonarCloud, a static code analysis tool, plays a significant role in ensuring code qual-
ity. Sonarcloud does this by identifying possible existing bugs in code, such as vul-
nerabilities and code smells etc. It also mandates that code being deployed follows a
certain set of rules of coding, thus enhancing its maintainability and avoiding poor qual-
ity preventing it from being released to the production line, hence enabling efficient and
secure product delivery. KubeScore, on the other hand, was implemented to deal with
configuration related issues of Kubernetes environments and standardization of YAML
files. It does this by identifying several risks including resource limits, identifying se-
curity related issues in configuration, improper setup of network related configuration
etc. Hence, KubeScore strongly improves the reliability of Kubernetes configurations, as
well as providing the configurations that enhance the security level. Hence, integrating
Sonarcloud and Kubescore with the Jenkins CI/CD pipeline to automate the deployment
alongside maintaining the code and configuration quality opens a door to implement
secure code and configurations (Green and Carter}; 2023)).

1.2 Motivation

Looking at the importance of the adoption of DevOps practices and implementation of
Kubernetes as an important tool for microservice based applications, there was a need
to suggest a better and efficient architecture that implements testing of static code and
configuration yaml alongside carrying out deployment using helm packages efficiently. In
this research, Sonarcloud and Kubescore were integrated with Jenkins CI/CD pipeline to
provide a robust solution. SonarCloud for enhancing code quality and implementing code
standards, while KubeScore for implementing secure and optimized configurations. An-
other essential component of preserving scalable and repeatable deployments is effectively
managing Helm charts and keeping them in an S3 store. This study offers a thorough
approach to optimizing Kubernetes-based processes by tackling these issues. This paper
presents a template of the CI/CD pipeline into which these tools and techniques have
been placed to create a reusable reference to implement in organizations. By filling in
these gaps, the research advances DevOps methods and ensures efficiency, security, and
scalability in dynamic Kubernetes systems while meeting the demands of contemporary
application deployment. E]

'https://spacelift.io/blog/kubernetes-devops

https://spacelift.io/blog/kubernetes-devops

1.3

Research Question

Testing is a significant part of DevOps, thus it is crucial to set up a baseline solution
that fully incorporates testing of static code or Application code and testing of Helm
configuration. The secure, bug-free static code combined with the best mode of con-
figuration forms the basis of ethically and securely constructed applications needed by
organizations.

Hence in this study we aim to address the following problems:

1.4

Implementation of standard pipeline to automate testing as well as deployment of
Application.

To identify the tools and utilize them to resolve code smell, security Hotspots in
application code and utilize tools to validate and analyze the configuration of Helm
chart.

Further, we aim to identifying a solution to store Helm charts efficiently.

Lastly, to identify and implement best security practices and configuration to im-
prove the reliability.

Objective

The primary idea of this paper is to create a standard Jenkins CI/CD pipeline
providing solutions to static code testing, enhancement of helm charts, secure stor-
age of Helm charts, providing integration steps and security measures.

Enhancing Code Quality: To utilize SonarCloud to run static code analysis of the
Django application to identify bugs, vulnerabilities, and code smells. Sonarcloud
provides a thorough report of bugs, vulnerabilities etc. It ensures that the code
quality adheres to the standard quality gates set by the developers. Lastly, based
on these suggestions, improvements were made to the application code to enhance
code quality, thereby minimizing failure and improving reliability of the application.

Optimizing Configuration Management: KubeScore ensures optimal and efficient
resource utilization and adheres to Kubernetes standards and ethics. The object-
ive was to utilize KubeScore and generate an analysis report identifying issues in
Kubernetes configuration. Lastly, following the iterative approach to improve the
Helm charts and deploy the new revision of application.

Cost-Effective Resource Management: To provide the best and cost-effective method
for storing helm charts. Based on this research, Amazon S3 was identified as an
effective method. Helm charts were stored as OCI artifacts on Amazon S3. This
approach eliminates the need for additional infrastructure while ensuring the avail-
ability and the ability to scale version-controlled deployment artifacts.

Enhancing Deployment Efficiency: Helm charts maintain the reliability and con-
sistency of an application in various stages of development. The objective was to
utilize the Helm chart to deploy the application. Lastly, to implement an auto-
mated Jenkins pipeline that im[proves stability, reduces human errors, reduces the
release time and makes the deployment process more efficient and accurate.

e Scalability and Adaptability: To utilize Amazon Linux EC2 instance to install
Jenkins and other Jenkins related plugins and to develop a CI/CD pipeline that
automates testing and deployment process to accommodate software delivery needs.

1.5 Research implication and Contribution

This research demonstrating the integration of Jenkins, Helm, SonarCloud and Kubescore
contributes to a lot of scientific studies and is beneficial for organizations focusing on ef-
ficient DevOps solutions. Utilization of testing tools and automating deployment and
testing reduces manual errors and ensures operation consistency across the environment.
The practical implementation of this research can be done by those organizations that
focus on adopting cloud native technologies. By providing detailed methods and im-
plementation steps for automating the pipeline and integration steps, organizations can
achieve higher quality of software deployment and efficiency in the software delivery life
cycle. This research makes an important contribution to DevOps and its practices and
provides its adaptability across different cloud platforms. With some tailoring of this
standard pipeline, organizations can directly use this study to meet their specific needs.
This research addresses a gap discussed in the Literature review section and plays an
important role in contributing to the evolving DevOps domain.

1.6 Paper Structure

This research report is put into the following section to provide a detailed overview
of the study. The report starts with an Abstract providing a brief summary of the
research topic, highlighting the importance of research, method used and key approaches.
Section 2 of the report focuses on the pre-work that was done as part of this study. It
provides a detailed review of the papers that were referred for this research to highlight
the key findings and identifies the gaps which are implemented in this research. In
section 3 of the report, the introduction of the study is mentioned, emphasizing the
importance of DevOps and Kubernetes in the software delivery life cycle. This section
also highlights the challenges that come up with Kubernetes related to security and
complexity of managing the cluster. This section also introduces the tools and technology
used, alongside mentioning key objectives of research. Section 4 of the report describes the
methodology used for developing the CI/CD template and to implement testing of Helm
configuration and static code testing. This section provides details of the implementation
of the study. Furthermore, section 5 of this report provides the Design perspective to reach
the final goal of this study. It describes challenges encountered during implementation
and also describes the functionality that was employed to encounter it. Additionally,
section 6 discusses the key evaluation technique, improvements made to achieve code
quality, and changes made to the Helm configuration based on the report by Kubescore.
It also evaluates the cost, security, and code optimization with this study. Lastly, the last
section concludes with the end note of the study providing the scope for future researchers
and discussing the impact.

2 Related Work

Upon reviewing a lot of research articles, it is clear that Kubernetes excels as a first
choice in container orchestration. But, each article mentioned its complexity related to

4

managing configuration, implementing secure configurations, fault free deployment, and
optimized memory usage. Many research studies discuss how default configurations of
Kubernetes were inadequate even for smaller deployments. As discussed by (Giangiulio
and Malmberg| (2022), issues and faults occurring due to misconfiguration leads to data
breaches in Kubernetes-based deployments.Further, a study by |Abhishek et al. (2022)
Abhishek et al. (2022) shows that while Kubernetes has a solid architecture, there is a
huge gap of frameworks for automating the containers management without violating the
set security requirements. A study by the Cloud Native Computing Foundation (CNCF)
clearly shows that a large majority, 78%, of companies that adopt Kubernetes do this
by running their apps in multi-cloud and hybrid cloud environments due to its elasti-
city. E] However, problems such as fragmented resources and complex cluster structure
still remain. Closely, 42% of the users identified managing of microservice dependencies
and securing interservice communication as critical and the need for innovative testing
methods and a standard template for deployment.

2.1 Automation and Testing of CI/CD pipeline

A ot of studies discuss how automation using CI/CD pipelines plays a vital role in
increasing the efficiency of the software delivery life cycle, producing high quality ap-
plications. As mentioned by |Golis et al.| (2023)), the use of tools like SonarCloud is quite
important to analyze and identify the vulnerabilities at an early stage of deployment. The
author (Golis et al.; 2023) also mentions that early stage identification of vulnerabilities
will ensure reliable and secure application deployment. Furthermore, the learning tool as
discussed by |Golis et al.| (2023) lacks reduces the complexity of deployment but does not
well-address the helm chart configuration validation technique, which is quite important
for Kubernetes operations. The research by [Zerouali et al.| (2023) lacks a simplified integ-
ration of Helm with Jenkins simplifying the deployment process, but lacks in providing a
method to validate configuration and static codes.Tools like KubeScore were not invest-
igated by the author Zerouali et al.|(2023). Hence, according to the above studies and
the issue addressed, current studies either focus on static code analysis or easier deploy-
ment process or configuration validation, rarely addressing all of them and increasing the
efficiency of applications. This gap justifies the need to integrate automation, testing and
configuration validation to improve CI/CD pipeline suitably.

2.2 Enhancing Deployment: Role of Helm and Security Chal-
lenges

The ability of Helm to package resources, deploy rollbacks, and ease updates, due to which
Helm charts, plays an important role in Kubernetes deployment. |Gokhale et al.| (2021])
discuss an example of how Helm decreases the time for deployment by six times compared
to the manual approach. Author (Gokhale et al.; 2021)) also claims that no other tool
could be as efficient as Helm, making it an indispensable tool. However, as discussed by
the author, |Zerouali et al.| (2023)) there are some issues like security flaws in configuration,
duplications in configuration in publicly available Helm charts. Both the studies highlight
the importance of using helm charts, but they lack providing a systematic method of
security practices like vulnerability scanning, validation of configuration, secure storage

Zhttps://www.cncf.io/wp-content/uploads/2020/09/Q4-2019-CNCF-State-of-Cloud-Native-Development-Es
pdf

https://www.cncf.io/wp-content/uploads/2020/09/Q4-2019-CNCF-State-of-Cloud-Native-Development-Extended.pdf
https://www.cncf.io/wp-content/uploads/2020/09/Q4-2019-CNCF-State-of-Cloud-Native-Development-Extended.pdf

of helm charts using OCI standards is unexplored. Hence,in this study we propose a
method that bridges this existing gap and enhances the quality and deployment of the
application.

2.3 Storage and Management of Kubernetes Deployment Arti-
facts

Zerouali et al.| (2023) in his study mentions securely managing and storing helm charts is
important. Author (Zerouali et al.; [2023) also provides the idea of storing the Helm charts
in Artifact Hub, but also says storing in Artifact hubs raises concerns about outdated
and vulnerable images. Author, mention’s 88.1% of the publicly available images contain
vulnerabilities. Even if Artifact Hub provides a centralized access, storing Helm charts
in Amazon S3 using OCI standards is more scalable, secure and cheaper (Golis et al.;
2023)). However, these storage methods are still not fully implemented into automated
pipelines.Hence, there was a need for a research addressing these limitations by integrating
CI/CD with Helm chart stored in Amazon S3. Hence, by implementation of this approach,
this study presents a secure management of Helm charts while ensuring accessibility,
version control and compliance.

2.4 Challenges in Securing Kubernetes Workflow

Securing Kubernetes is an important and crucial task as vulnerabilities and misconfigura-
tion in deployment artifacts can occur. The study presented by |Giangiulio and Malmberg
(2022), highlights the threats in multi-tenant Kubernetes clusters and also mentions risks
related to data beaches. Similarly, Abhishek et al.| (2022) proposed an automated Helm-
based framework but didn’t mention any security requirements in the CI/CD pipeline,
leaving an important gap to address. Additionally, study by [Spillner| (2019) highlights
the importance of Helm chart quality with HelmQA but didn’t provide a clear integra-
tion method with CI/CD pipelines and lack security practices. The research also failed
to consider security validation tools, including KubeScore and Sonarcloud. Hence, as
discussed in the above research, all the above discussed studies lack secure configura-
tions. Therefore, to address these challenges, the proposed study integrates static code
analysis tools, configuration validation tools, and secure practices of Jenkins to address
and provide secure workflow solutions to the challenges of the above studies.

2.5 Research gap and a Summary

The above discussed papers emphasize either on enhancement of deployment or improve-
ment in Helm Charts or static analysis of code. However, none of the studies discussed
above provided a standardized CI/CD template, secure configurations, method to analyze
static code, storage of Helm chart in Amazon S3 into a unified study. Hence, this brings a
need to approach these gaps, particularly related to security practices and integration of
tools. Therefore, the proposed research integrates these missing tools, aiming to improve
the reliability of Kubernetes-based deployment and increase in efficiency. This study pro-
poses a standard Jenkins pipeline incorporating SonarCloud for static analysis of code,
KubeScore for quality analysis of configuration, storage of Helm charts in Amazon S3
using OCI mechanism. This implementation not only bridges the gap but also improves

the efficiency and quality of deployment by incorporating security measures and enhanced
deployment strategies.

2.6 Overview of Reviewed Literature

Author Main focus Technological Limitations

solution
Golis et al. | Creation of framework | Helm, CI/CD, | Less focus on security of con-
(2023) for Kubernetes auto- | Kubernetes figuration, didn’t provide an

mation

idea or steps to integrate
CI/CD with Kubescore

Spillner (2019)

Provided a method to
test the quality of the
Helm chart.

Helm charts

Lacks development of auto-
mated pipeline and integration
of Helm with automation tools.
Didn’t address the challenge of
storage of Helm artifacts.

Zerouali et al. | Analysis of publicly | Artifact Hub, Helm | Very constrained discussion of
(2022) available Helm arti- | charts automation, lacks focus on in-
facts stored in Artifact tegration of OCI and use with
Hub. Jenkins or other CI/CD tools.
Giangiulio Analyzed security | AKS, Kubernetes | Focussed on benefits of
& Malmberg | risks of Kubernetes | security namespace isolation but lack
(2022) based environment in providing an overview or
multi-tenant setups. discussion for configuration
validation tool or improvement

of configuration.
Abhishek et al. | Proposed a Method | CI/CD, Helm | Lack in providing artifact stor-

(2022)

of using Helm and
ansible-based
tainer to carry out

con-

charts, Kubernetes

age solution and validation of
security in CI/CD pipeline

deployments.
Wadhams et al. | Explored the Son- | Sonarcloud, static | Lacks the explanation of
(2024) arCloud integration | code Analysis Kubernetes specific workflows.

with Gitlab for ana-
lysis of static code

Table 1: comparison of related work

3 Methodology

The objective of this study is to create and apply CI/CD pipeline that incorporates static
code analysis, configuration testing, and automated deployment of kubernetes applica-
tions. The pipeline uses open-source tools like Jenkins, SonarCloud, Helm, KubeScore,
and Amazon S3 repositories for storage of Helm charts and storage of reports of KubeScore.The
detailed tool used, configuration setup, and high level overview of the implementation
and workflow is discussed below

3.1

Research Procedure and Workflow Design

Requirement Analysis: Defining the issues of current Kubernetes deployment pro-
cess and related workflow, specifically identifying gaps of integration of static code
analysis, configuration validation, and artifacts storage etc with Jenkins CI/CD.

Pipeline Design: Designing a CI/CD pipeline to align the stages of developing,
testing, validation as well as deploying applications. Pipeline is triggered when
the new commit is identified, followed by Code Quality Check by sonar cloud,
configuration assessment by KubeScore, thereby generating a report at Jenkins
server and storage of that report in Amazon S3 and finally the deployment using
helm charts located in Amazon S3 bucket.

Tool Integration: This step involves integration of each tool within the Jenkins
environment where different stages are combined making sure that data and in-
teractions pass from one to another without interruption. This includes, defining
webhooks, setting up of APl installation and configuring the plugins and scripting
of pipeline stages using Jenkins pipeline-script.

Iterative Development: Every element was tried and tested to check for results
on the table to make improvements wherever necessary. Based on the results of
KubeScore and SonarCloud, changes in configuration and code were made. Hence,
a pipeline was made following the iterative approach of development, validating
each stage and, at the end, making a constructive pipeline.

Evaluation and Analysis: And finally, as a last stage of the development process,
data at each stage was collected, like configuration scores of KubeScore, metrics or
reports from SonarCloud and deployment success rate were documented and ana-
lyzed. This stage marks the future scope of this study and provides improvements
that can be made.

The above procedure was followed and designed to align well with the standard
software development lifecycle and adhere to research objectives. The above workflow
provides a standard pipeline that integrates different tools for the solutions.

3.2

Technologies used, Tools and System configurations

The implementation of this study involved the use of different tools and technologies
which were integrated, providing a template to simulate a secure and standard reliable
pipeline for deployment scenarios.

Jenkins: An open-source automation tool used to develop CI/CD pipelines. Jenkins
was set up on an Amazon EC2 running Amazon Linux 2 OS. Different plugins along
with default plugins like Git, SonarCloud etc. were installed.

SonarCloud: A cloud-based solution for Code Quality and Security analysis for
Static Code. It was integrated with Jenkins to analyze code as soon as commits
were made on GitHub, providing reports on code smells, bugs, and vulnerabilities.

Helm: An advanced package manager for Kubernetes which utilizes Helm charts
to define, install and upgrade complex Kubernetes applications. For deployment,
Helm was set up in Jenkins in order to carry out the deployment process..

e KubeScore: A tool for testing Kubernetes object definitions for best practices and
potential issues. Kubescore was integrated with the Jenkins pipeline to check Helm
chart configurations before running them.

e Amazon S3: It was utilized for storing Helm charts using the OCI standards. It
offers a safe, scalable storage solution that is accessible during deployments.

e Kubernetes (EKS):Amazon Elastic Kubernetes service was used as a deployment
engine. The EKS cluster was configured with 2 nodes and a production-like envir-
onment was created.

System Setup:

e Hardware: To host the Jenkins server, a t2.medium Amazon EC2 instance with
2 vCPUs and 4 GB of RAM was used. Additionally, a two node EKS cluster, of
instance type t3.medium, was created to handle changing traffic at EKS.

e Software: Helm version 3.16.2, Docker 25.0.5, Jenkins-2.479.1-1.1.noarch and re-
quired plugins were installed on the Jenkins server. The Jenkins server was given
network access to the EKS cluster and Amazon S3 buckets. There were two prob-
lems with Jenkins: it had network access to EKS clusters and Amazon S3 buckets.

e Security Configurations: TAM roles and policies were created so that Jenkins can
communicate securely with EKS and S3. The Sonar Token of SonarCloud and
GitHub personal access token were generated and stored in the credential manager
at Jenkins. This token also ensures secure communication between open-source
tools.

3.3 Techniques of Data Collection, Validation and analysis

Data was collected from various stages of the pipeline to assess the effectiveness of integ-
rated tools and to determine the quality of the deployment process.

e Static Code Analysis Data: The metrics concerning code quality, such as code
smells, bugs, vulnerabilities, and code coverage were reported in detail by Sonar-
Cloud based on the quality gate defined. The data was generated once the static
code analysis stage in the pipeline was triggered.

e Configuration Validation Data: KubeScore generated a report containing crucial,
significant, and other potential problems within the Kubernetes configurations, spe-
cified in Helm charts. The reports also contained some suggestions for enhancement.

e Deployment Metrics: Detailed information of rollout time, deployment success
rate and other metrics were logged and monitored during deployment using Cloud

Watch.

e Artifact Storage Logs: Since Helm charts artifacts were stored in Amazon S3,
Amazon S3 access logs were enabled to track the correct retrieval and storage of
Helm charts.

e Iterative Refinement: According to the gathered data, both Helm charts and ap-
plication code were gradually improved. For instance, if the KubeScore identified
a lack of resource limits, then the Helm chart was modified to meet the established
requirements.

e Peer Review: Configurations file and code changes were discussed by a mentor to
catch and improve the code and configuration not identified by automated tool.

e Compliance Checks: It ensured that configurations met ethical and governance
policies and ensured best practices were implemented for Kubernetes deployment.

Analysis Method:

e Code Quality and Configuration Quality: It was measured by the number of reduc-
tions in code smells, bugs and vulnerabilities. Furthermore, configuration improve-
ments were tracked by checking the number of priority, critical and severe issues
resolved.

e Resource Utilization: Using cloud watch Continuously Monitoring was done to
study the consumption of the CPU and memory of Kubernetes cluster and Jenkins
server.

e Failure Analysis: When there were deployment failures or other issues at the mo-
ment of pipeline running, a detailed root cause analysis studying the Jenkins logs
and build logs, were done to identify the issue and resolve it.

4 Design Specification

This section provides a brief overview of techniques, architecture of the study, framework
used and pipeline structure that was used to implement the study.

4.1 Proposed architecture of the study

Figure 1 is the architecture diagram of a study that was applied to implement the CI/CD
pipeline setup. All the necessary tools were installed and configured on the Jenkins server
where they acted as a main automation tool. The Jenkins server had Helm, Kubectl,
AWS-CLI installed. AWS-CLI facilitated communication with Kubernetes (specifically
EKS) and Amazon S3. Furthermore, KubeScore was installed on the Jenkins server to
validate the Kubernetes configuration from Helm charts. Using AWS CLI, the server was
configured to communicate and authenticate with the Amazon EKS cluster to facilitate
full-fledged deployments. The authentication method includes secure communication
using AWS credentials and TAM roles for secure access using AWS CLI.

The Jenkins pipeline was created as a multi-stage CI/CD to automate deployment
and validation. The pipeline consists of various stages. Once the pipeline is triggered,
updated code from GitHub was fetched on the Jenkins server. The fetched repository
consisted of application code and a Dockerfile. Further, in a second stage of the Jenkins
pipeline, the build process was triggered, where a Docker image was created and securely
stored in ECR (Amazon Elastic container repository). Furthermore, a dedicated stage
in which SonarCloud was defined for the analysis of code. SonarCloud analyzed the

10

EKS credential's
stored in Jenkins
server at path

Authenficafion |

@

Amazon EKS

Deploy

Secure Storage

\J' HELM Authentication

| dockerfile |

» Docker Image

docker
Sonar- KubeScore Configuration
Scanner Analysis

Jerlkms Server

Amazon ECR

Generate’s

Report

Authentication

Static Analysis SonarCloud Ul

Figure 1: This is a Architecture Diagram

(Start
¥ Stage 1
Credentials
setup
) Stage 2 Stage 7
Perform AWS Deployment 4
Actions stage M
r3
v Stage 3
Static Analysis CDHE;';'; o
of Code check |Stage6
r3
¥ Stage 4
- ge Docker Image
L » Build and
Authentication Publish | Stage 5

Figure 2: Flow Diagram of Jenkins Pipeline

11

bugs, vulnerabilities, and code smells in the application, immediately from the source
code and provided the result in the form of insights. Following this, Helm charts were
generated in the build stage. Utilizing Helm’s OCI (Open Container Initiative) storage
mechanism, these charts were securely stored in a repository in Amazon S3. This offered
a safe solution which was horizontally scalable, version controlled, providing a suitable
and efficient artifact management system for Helm charts.

Lastly, the KubeScore validation stage analyzed Helm charts configurations to check
for Kubernetes best practices and configuration validation. The pipeline concluded with
the deployment stage, where Helm was used to deploy the updated and validated applica-
tion to the Amazon EKS cluster. This architecture discussed ensures a seamless, efficient
and secure deployment process.

5 Implementation

This section describes the implementation strategies that were implemented to achieve
the final goal. In software development, various tools and strategies are incorporated and
integrated to achieve a final result. In our current study as discussed earlier, the core
part of our CI/CD template is the Jenkins server configured on Amazon linux instance.
The server, being the core component, had Jenkins, Docker, Helm, AWS CLI, Kubectl,
Sonar-scanner installed on it and integrated with it. This section provides a detailed
understanding of how each tool was integrated and utilized in this study. The detailed
implementation and creation of Dockerfile, port exposed, Implementation of deployment
configurations, Helm charts and output produced are emphasized in this section.

5.1 Jenkins Server Setup and Tools Integration

The Jenkins server acts as a central backbone of our CI/CD template, running on an
Amazon Linux instance. It was specifically configured to integrate seamlessly with several
critical development and deployment tools:

e GitHub Integration: GitHub webhooks were used by GitHub to trigger the pipeline
automatically. For each new commit to GitHub, the Jenkins pipeline is triggered
and each stage of pipeline was initiated sequentially. Jenkins had the Personal
Access Token stored securely in Jenkins credentials manager, which facilitated the
authentication, allowing for securely fetching the latest committed code into the
Jenkins workspace on the Jenkins server.

e SonarCloud Integration: SonarCloud was used as a tool for static analysis of code. It
was incorporated in the continuous integration stage of the Jenkins pipeline. Sonar-
scanner was installed on the Jenkins pipeline, which utilizes the sonar-project.properties
file to get the metadata, access configuration, project key, and inclusions specifying
the target directory for analysis. As a part of the Jenkins pipeline stage, static
analysis of code was done. SonarCloud had the quality gate defined, which con-
tained the conditions and validation, based on which the code is supposed to be
analyzed. These gates help to check for the quality of the code in various areas,
such as security and other coding quality standards, before the deployment.

e Tool Installation: The Jenkins server setup also involved installation of other re-
quired plugins, including command-line tools like AWS-cli to manage the AWS

12

services, kubectl to interact with EKS clusters, helm for creating and managing
helm charts and sonar-scanner for execution of static code analysis.

5.2 Docker setup and Amazon ECR Integration

e Docker setup: The Docker engine was installed on the Jenkins server to initiate
the creation of the docker image of our Django application deployed on EKS. The
dockerfile was kept along with the application code. The Docker file used in the
code, uses a lightweight, secure container image of python, and involves installation
of required packages from a requirements.txt file, ensuring the complete code is
copied to the container and the django server is run.

e Amazon ECR integration: Once the image is built, the docker image is tagged and
pushed to ECR (Amazon Elastic container Registry). Furthermore, this stage of
pipeline involves authentication with ECR using aws ecr get-login-password piped
with docker login. This method handles the ECR credentials securely and avoids
exposing them during the runtime of the pipeline.

5.3 Helm and Kubernetes Deployment Management

e Helm Chart Configuration: All the resources needed for deploying the Django ap-
plication to Amazon EKS are defined by Helm charts that manage the deployment
process. Helm setup in Jenkins involves creation of Helm chart, Helm chart up-
date, managing Helm releases and configuration of resources like deployment.yaml,
service.yaml and other configuration yamls. Helm was installed on the Jenkins
server using an installer script that automatically gets the latest version of Helm
and installs the helm after execution of the script.

e Helm Chart Implementation: To implement the helm charts, a helm chart was first
created. Once the Helm chart is created, it provides us with a directory structure
as shown in Figure 3.

[root@ip-172-31-20-58 nginx-appl# tree

Chart.yaml

NOTES. txt
_helpers.tpl
deployment.yaml
hpa.yaml
ingress.yaml
networkpolicy.yaml
pdb.yaml
service.yaml
serviceaccount.yaml

L— test-connection.yaml
values.yaml

3 directories, 12 files

Figure 3: Helm Directory structure

The core components of helm charts are values.yaml, deployment.yaml and service.yaml.
These are the files providing us a central understanding of how the application was de-
ployed.

13

e Service Configuration: In service.yaml, the specification for the Kubernetes Service
which routes traffic to the created pods is outlined. It is set to operate in a variable
type defined by values.yaml, providing flexibility to change the traffic flow between
ClusterIP, Loadbalancer and NodePort. In our study, NodePort was used to expose
the application to the external world, mapping traffic from node port to pod and
finally reaching the container.

e Deployment Configuration: The deployment.yaml is used to define strategies on
which the application is deployed. It describes how pods are labeled and selected,
specifies configuration related to security, and also handles resource limits to ensure
efficient utilization of resources. Additionally, readiness probes were configured in
deployment.yaml to check the readiness of the instance and application’s health at
the specified path and port. Lastly, configuration related to autoscaling, dynamic-
ally handling the number of replicas based on CPU usage were configured. Hence,
ensuring easy handling of replicasets, handling utilization, checking the liveliness of
applications and managing deployments.

e Values Configuration: The values.yaml file acts as the backbone of the Helm charts
and contains essential properties such as the image repository, security contexts,
and auto-scaling metrics. These configurations not only improve the flexibility
and security of deployment but also guarantee that resources are optimized for
improved cost and performance. Parameters mentioned in values.yaml are util-
ized by service.yaml and deployment.yaml without altering the main configuration
file (deployment.yaml, service.yaml). The separation of configuration information
from actual template ensures reusability, helps in maintaining clean code and reli-
able configurations. It provides a robust and efficient way to handle configuration
or settings related to applications that contribute to providing how application is
handled for scaling, security and how applications is deployed.

e Secret Management: To access the ECR credentials and pull Docker images, an
Image Pull secret mechanism was implemented. Kubernetes uses thesis secrets to
handle credentials safely in Kubernetes. Secret with the name “ecr-secret“ was first
created using Kubectl and then that secret was referenced as a parameter in val-
ues.yaml, When the deployment is created, Kubernetes will look at the imagePull-
Secrets, it will use the ecr-secret to authenticate with the ECR registry and deploy
the pods. Managing these secrets efficiently is crucial to maintain the reliability of
the environment and to utilize the correct private image of the application.

e OCI support:OCI support was enabled in the project to allow for managing Helm
charts as container images. Enabling OCI support facilitated versioning and arti-
fact sharing. By setting ‘HELM_EXPERIMENTAL_OCI=1‘, we enabled a Helm’s
ability to communicate with OCI-compliant registries. Furthermore, enabling OCI
support allowed Helm charts to be pushed and pulled securely from Amazon S3
configured as an OCI registry.index.yaml file was created and maintained in the
Amazon S3 repository. It acted as a searchable database, and had metadata about
each chart version, including its name, version, URL to Helm chart and a descrip-
tion. By updating the index.yaml file for each new version of Helm chart, this study
ensures users have access to the latest updates of the Helm chart and an efficient
configuration was implemented.

14

5.4 Security, Compliance and Continuous Improvement

e Security practices: GitHub token, AWS credentials and sonar token were stored
securely in Jenkins credentials manager. Access to these credentials was controlled
and restricted to the pipeline environment.

e KubeScore Integration: After the Kubernetes resources were defined and bundled
as a helm chart, KubeScore was used to analyze the configuration for best prac-
tices and security related issues in the configuration. After the installation of
KubeScore, a common manifest file containing all the configurations was created
and the KubeScore score command was used to generate the analysis of the report.
This analysis was further redirected to a text file and stored securely in AWS S3.
And based on the iterative based improvement practice, the report generated by
KubeScore was reviewed, and necessary configuration related improvements were
made and a new revision of the Helm chart was released. Furthermore, to utilize the
new revision and apply the efficient configuration, Jenkins pipeline was triggered
and the latest version of the Helm chart was utilized, and the application was
deployed on EKS.

e Pipeline creation and Flow: The Jenkins pipeline was created as a scripted pipeline
utilizing groovy. Different stages of the pipeline include running sonar-scanner for
static analysis, creation of Docker image, pushing the image to ECR, analysis of
configuration using KubeScore and generation of reports and finally, deployment of
the Django application on EKS (Elastic Kubernetes service).

Hence, implementation of the above discussed CI/CD template utilizing Jenkins,
Helm, Docker and EKS presents how modern open source tools can be integrated together
to achieve an efficient solution. Through the strategic use of Jenkins for automation, util-
ization of Docker for image creation and containerization, using helm for configuration
bundling and deployment on EKS, we achieved a significantly streamlined deployment
process. Furthermore, the use of the OCI mechanism for managing Helm charts and stor-
age of Helm charts in Amazon S3, enhanced our version control of Helm charts, thereby
significantly improving deployment reliability and efficiency. The above implementation
provided us with key evaluations and insights, which are discussed in the next section of
the report.

6 Evaluation

This section aims at providing a critical analysis to identify the performance and security
gain achieved through the integration of Helm, CloudWatch, KubeScore and SonarCloud
with our CI/CD pipeline. Utilizing these tools, we were able to analyze and produce
metrics concerning CPU utilization, network traffic, efficiency of resource allocation etc.
SonarCloud was successful in providing insights into the code, detecting vulnerabilities,
security concerns etc. Quality gates were configured to ensure the code meets standards
for coverage, duplication, reliability, security etc. Hence, this evaluation section provides
key metrics and outputs that increase the reliability, enhance the security of the system,
maintain the high quality code of application being deployed and finally provide us with an
efficient software delivery cycle. This section also provides further enhancement practices
and techniques that can be utilized to further improve the environment.

15

6.1 Kubescore evaluation

The evaluation of the CI/CD pipeline’s effectiveness significantly focuses on using KubeScore,
an important tool to analyze Kubernetes configurations. When the KubeScore stage in
the pipeline was triggered, it identified several issues related to security, missing config-
uration of readiness probes, threshold for maximum request handling and resource limits
etc. These insights mentioned in the report were important to address and prompted
revision of the Kubernetes deployment configuration within the Helm chart template.

[root@ip-172-31-20-58 Docker-Zero—to-Herol# cat kube-score-results.txt
~app apps/v1/Deployment

p apps/v1/Deployment
nginx-app apps/v1/Deployment: Skipped because container-memory-requests-equal-limits is ignored
nginx-app apps/v1/Deployment: Skipped because container-ephemeral-storage-request-equals-linit is ignored

inx-app apps/vl/Deployment: Container is missing a readinessProbe
nginx-app apps/v1/Deployment: Skipped because contai: source-requests-equal-limits is ignored
nginx-app apps/v1/Deployment: Skipped because contair u-requests-equal-limits is ignored

app apps/v1/Deployment: Skipped because container-ports-check is ignored
[OK] my-rele: pps/v1/Deployment
[CRITICAL] m ~app apps/v1/Deployment: (nginx) Container has no configured security context
[CRITICAL] my-r: p apps/vl/Deployment: (nginx) Image with latest tag
[OK] my-rele: i /v1/Deployment
[CRITICAL] my-r: p apps/v1/Deployment: (nginx) Ephemeral Storage limit is not set
[CRITICAL] my-r: -app apps/v1/Deployment: (nginx) Ephemeral Storage request is not set
[CRITICAL] my-r: p apps/v1/Deployment: The pod does not have a matching NetworkPolicy
[0K] my-rele i /v1/Deployment: Pod Topology Spread Constraints
[CRITICAL] my-r: ~app apps/v1/Deployment: (nginx) CPU limit is not set
[CRITICAL] my-re ent: (nginx) Memory limit is not set
[CRITICAL] my-r: apps. : (nginx) CPU request is not set
[CRITICAL] my-r s : (nginx) Memory request is not set

—app apps/v1/Deployment: (nginx) Container has no configured security context
[OK] my-releas-: pps/v1/Deployment
[SKIPPED] my app apps/v1/Deployment: Skipped because container-seccomp-profile is ignored
[CRITICAL] my-rel inx-app apps/vl/Deployment: The deployment is targeted by a HPA, but a static replica count is configured in the
[OK] my-rele: p apps/v1/Deployment
[0K] my-rele i p apps/v1/Deployment
[SKIPPED] my nginx-app apps/v1/Deployment: Skipped as the Deployment is controlled by a HorizontalPodAutoscaler
[CRITICAL] my-r: -nginx-app apps/vl/Deployment: No matching PodDisruptionBudget was Found
[WARNING] my- a nx-app apps/v1/Deployment: Deployment does not have a host podAntiAffinity set
[OK] my-rele: inx-app-hpa autoscaling/v2/HorizontalPodAutoscaler
[OK] my-rele: inx-app-hpa autoscaling/v2/HorizontalPodAutoscaler

[OK] my-rele: ~app v1/Service
[OK] my-releas-nginx-app v1/Service
[WARNING] my-releas-nginx-app vl/Service: The service is of type NodePort

Figure 4: First Analysis of KubeScore

The feedback mentioned in Figure-4 from KubeScore report led to improvement in
Kubernetes manifests. And, several Helm chart files were added to address the spe-
cific issues. The files that were added to address the particular issues are hpa.yaml,
ingress.yaml, networkpolicy.yaml, pdb.yaml, and serviceaccount.yaml, each playing an
important role in optimizing the application.

e Hpa.yaml (Horizontal Pod Autoscaler): This file plays an important role in hand-
ling the automation of scaling pod replicas based on CPU utilization and other
metrics. This file ensures varying loads are handled efficiently, autoscaling during
performance requirements or spikes are detected in CPU utilization etc. After in-
clusion of this file, CRITICAL issues related to CPU and memory were resolved in
an updated report provided by KubeScore.

e Ingress.yaml: It helps in managing external access to the application services
present in the Kubernetes cluster. It does this by defining rules of routing like
HTTP(S) traffic etc. to the appropriate service. Furthermore, it simplifies expos-
ing a single IP address and is crucial for SSL termination and load balancing. The
issues like secure routing of traffic, SSL/TLS termination, centralized configuration
management for routing were addressed by this file.

e PDB.yaml: This file was crucial to implement as this ensures that any kind of
disruptions, upgrades or maintenance, the minimum number of replicas of the ap-
plication should be running. It prevents your application from becoming unavailable
and maintaining service level agreements (SLAs).

16

e Networkpolicy.yaml: By implementing network policy, Kubernetes setup was en-
hanced with security and traffic flow concerning pod-to-pod communication within
the cluster.It also resolved issues related to uncontrolled access to data and flow by
defining ingress and egress rules. This file ensures only authorized users and traffic
has access, implementing strict regulatory standards.

Including the above files and enhancing the configuration as suggested by Kubescore
was a strategic decision to enhance the security, scalability and deployment management.
Each file was implemented considering the Kubernetes best practices and after the re-
deployment of the Helm chart and at the next iteration of analysis more than 70% of
the CRITICAL issues recognized in the previous report were resolved, ensuring enhance-
ment in DevOps practices and providing a strong foundation for deployment in EKS.The
updated report can be seen in Figure 5.

[root@ip-172-31-20-58 Docker-Zero-to-Herol# cat updated-kube-score-results.txt
[OK] my-releas-nginx-app apps/v1/Deployment
[OK] my-releas-nginx-app apps/v1/Deployment
[SKIPPED] my-releas-nginx-app apps/v1/Deployment: Skipped because container-ephemeral-storage-request-equals-limit is ignored
[SKIPPED] my-releas-nginx-app apps/v1/Deployment: Skipped because container-ports-check is ignored
[CRITICAL] my-releas-nginx-app apps/vl/Deployment: (nginx) The pod has a container with a writable root filesystem
[OK] my-releas-nginx-app apps/v1/Deployment: Pod Topology Spread Constraints
[SKIPPED] my-releas-nginx-app apps/v1/Deployment: Skipped because container-cpu-requests-equal-limits is ignored
[SKIPPED] my-releas-nginx-app apps/v1/Deployment: Skipped because container-memory-requests-equal-limits is ignored
[OK] my-releas-nginx-app apps/vl/Deployment: Container is missing a livenessProbe
[0K] my-releas—nginx-app apps/v1/Deployment
[SKIPPED] my-releas-nginx-app apps/v1/Deployment: Skipped because container-resource-requests-equal-limits is ignored
[OK] my-releas-nginx-app apps/v1/Deployment
[OK] my-releas-nginx-app apps/v1/Deployment
[OK] my-releas-nginx-app apps/v1/Deployment
[OK] my-releas-nginx-app apps/v1/Deployment
[CRITICAL] my-releas-nginx-app apps/v1/Deployment: (nginx) The container is running with a low user ID
[CRITICAL] my-releas-nginx-app apps/v1/Deployment: (nginx) The container running with a low group ID
[SKIPPED] my-releas-nginx-app apps/v1/Deployment: Skipped because container-seccomp-profile is ignored
[CRITICAL] my-releas-nginx-app apps/v1/Deployment: (nginx) Image with latest tag
[OK] my-releas-nginx-app apps/v1/Deployment
[OK] my-releas-nginx-app apps/v1/Deployment
[SKIPPED] my-releas-nginx-app apps/vl/Deployment: Skipped as the Deployment is controlled by a HorizontalPodAutoscaler
[OK] my-releas-nginx-app apps/v1/Deployment
[WARNING] my-releas-nginx-app apps/v1/Deployment: Deployment does not have a host podAntiAffinity set
[OK] my-releas-nginx-app apps/v1/Deployment
[OK] my-releas-nginx-app apps/v1/Deployment
[OK] my-releas-nginx-app-hpa autoscaling/v2/Ho: talPodAutoscaler
my-releas-nginx-app-hpa autoscaling/v2/Ho: talPodAutoscaler
my-releas-nginx-app-hpa autoscaling/v2/HorizontalPodAutoscaler
[WARNING] my-releas-nginx-app-hpa autoscaling/v2/HorizontalPodAutoscaler: HPA few replicas
[OK] my-releas-nginx-app-network-policy networking.k8s.io/v1/NetworkPolicy
my-releas-nginx-app-network-policy networking.k8s.io/v1/NetworkPolicy
my-releas-nginx-app-network-policy networking.k8s.io/v1/NetworkPolicy
my-releas-nginx-app-pdb policy/v1/PodDisruptionBudget
my-releas-nginx-app-pdb policy/v1/PodDisruptionBudget
my-releas-nginx-app-pdb policy/v1/PodDisruptionBudget
my-releas-nginx-app v1/Service
my-releas-nginx-app v1/Service
[WARNING] my-releas-nginx-app v1/Service: The service is of type NodePort
[OK] my-releas-nginx-app v1/Service

Figure 5: Latest Analysis of KubeScore

6.2 Static code analysis

The static analysis segment of the study presents an important aspect of implement-
ing effective DevOps practices in the CI/CD pipeline for analysis of vulnerabilities and
resolving them. The primary goal was to implement an efficient pipeline that is capable
of detecting vulnerabilities, security hotspots particularly focusing on those threats that
pose significant threats such as insecure handling of secrets or credentials, Cross-Site
Request Forgery (CSRF) and insecure configurations. This study presents a template
to detect the above vulnerabilities and an example of how these vulnerabilities can be
resolved with respect to quality gates and suggestions provided by SonarCloud.

This study evaluated and provided a resolution to specific high-priority vulnerabilities,
which provided a significant improvement in the security of the application. For instance,
the CSRF vulnerability was detected by SonarCloud, exposing the threats of unauthorized
commands or unintentional data being transmitted to the web application without the
user’s knowledge. The CSRF threat detected in fig b was resolved by adding a decorator
Q@require_http_methods(["GET”, "POST”]), specifying only GET and POST requests

17

=

6?) SonarQube

cloud

msc-thesis-2024
0 *

Overview
Main Branch
Pull Requests

Branches

Information

Administration

Collapse

@ SonarQube

msc-thesis-2024
EEE O *

Overview
Main Branch
Pull Requests

Branches

Information

Administration

Collapse

MyProjects Mylssues Explore Q f o +]

msc-thesis > m: 024 > 1 main

A Thelastanalysis has warnings. See details
Summary Issues Security Hotspots Measures Code Activity -_—

Filters T, Navigate to issue [O 3issues 151
python-web-app/
Clean Code Attribute
Intentionaiity
Use a specific version tag for the image. Notags +
Intentionality

Oo0penv Notassigned v (Maintanabiity @) @ Smin effort days ago

Intentionaiity
Remove cache after installing packages or store it in a cache mount.
Software Qualit . —

Y OoOpenv Notassigned v (Maintainabilty @) & Code Smell @ Major 5min effort

Intentionaiity
Maintainability

WORKDIR instruction should be used instead of cd command

OoOpenv Notassig aintainability @) & Code Smell @ Ma] Smin effort
v Severity @

shown

024 SonarSource SA. All riahts reserved. Pricina_Privacv_Cookie Policv_Securitv_Communitv_Documentation Contact us Status About

Figure 6: Sonar Scanner Results

MyProjects Mylssues Explore Q f o + [: 7]

msc-thesis > msc-thesis-2024 > § main @

The last analysis has warnings. See details
Summary Issues Security Hotspots Measures Code Activity _—

(O 0.0% Security Hotspots Reviewed @ 5 N
Make sure allowing safe and unsafe HTTP methods Review priority:
> O High

is safe here.

Toreview | Fixed Allowing both safe and un Categon)

sensitive python:S3752 Cross-Site Request Forgery (CSRF)
2 Security Hotspots to review oo
Status: To Review Not assigned
This Security Hotspot needs to be

reviewed to asse whether the code

poses a risk.

Review priority: © High

O Cross-Site Request Forgery (CSRF) 1 v

Whereistherisk? What's the ris| How can I fixit? | Activity
Make sure allowing safe and unsafe HTTP
methods is safe here.

fron django.http inport HttpResponse

fron django_shortcuts inport render

Review priority: © Low

def index(request)
Ry
© Insecure Configuration

Make sure allowing safe and unsafe HTTP methods is safe here.

of 2 shown

return render(request, 'demo_site htal')

Figure 7: Sonar Scanner Analysis Results

18

are allowed to index function. However, restricting HT'TP methods doesn’t completely
mitigate the CSRF risks. Hence, one can also look for implementing a CSRF token
into the form that checks this token during form submissions etc. By addressing such
issues and with the iterative analysis of revised codes, a standard code was implemented
ensuring it adheres to the quality gate defined in sonarcloud. The quality gates that were
implemented are:

New Code

Quality Gates @ reate on lew Code apply to all branches and to Pull Requests.

Reliability Rating

Security Hotspots Reviewed

Security Rating

Figure 8: Quality Gates implemented

Hence, by focusing on high priority issues, research not only enhanced the security
of the environment of the application but also demonstrated the effectiveness of imple-
menting SonarCloud with your DevOps pipeline. Implementing SonarCloud and the
above evaluation metrics addressed the research objective to create an efficient DevOps
implementation that focuses on static analysis of code too.

6.3 Versioning of index.yaml file

Implementation of versioning in index.yaml file plays an important role in managing
Helm charts within a Kubernetes environment. By creating versions, the system allows
for control over deployment, ensuring specific versions can be rolled back. Additionally,
the use of Open Container Initiative (OCI) enhances the security and creates a standard
format for storing them and distributing them. The file index.yaml, when analyzed,
had different versions created, confirming that the implementation was done accurately.
The application was further deployed using different versions and for each deployment,
changes corresponding to each version, were reflected in the application. This integration
improved the overall reliability and security of the deployment practice and provided a
modern cloud-native solution that can be implemented in DevOps practices. Figure 9,
shows the different version created in index.yaml file.

6.4 Discussion

The above experiment discussed from the implemented CI/CD pipeline and integrating
KubeScore, Helm, SonarCloud has provided us with the key evaluation and insights.
The integration of these tools has enhanced the deployment efficiency, providing metrics
like CPU utilization, resource allocation, network traffic etc. Use of SonarCloud played a
crucial role in identifying vulnerabilities and handling code quality based on quality gates.
Despite the improvements related to security and reliability, the evaluation after the
iteration revealed issues like insecure configuration, version tags in Dockerfile remained

19

[root@ip-172-31-20-58 Docker-Zero—to-Herol# cat index.yaml

apiVersion: vl

entries:

nginx-app:
— apiVersion: v2

appVersion: 1.16.0
created: "2024-11-18T19:21:20.874227038Z"
description: A Helm chart for Kubernetes
digest: 39bd938b8U{1e75¢c380178793de2+62650UbT7UUTed07e91b5U368691c672ce23
name: nginx-app
type: application
urls:
- https://x23186925-thesis—helm-charts.s3.amazonaws.com/nginx-app—0.2.0.tgz
version: 0.2.0
apiVersion: v2
appVersion: 1.16.0
created: "2024-11-18T19:21:20.87266880UZ"
description: A Helm chart for Kubernetes
digest: 869b9U4eBa2e@f9c6b631803dfbB2eb815ef5a1800127606998ab706d2baeba3l
name: nginx-app
type: application
urls:
— https://x23186925-thesis—helm-charts.s3.amazonaws.com/nginx-app—0.1.0.tgz
version: 0.1.0

generated: "2024-11-18T19:21:20.872270868Z"

Figure 9: Versioning of Helm charts

unresolved. This suggests a need for more iterative focus and revision of code to make
more bug-free and secure code.

The findings from KubeScore also provided us with suggestions related to Kuber-
netes configurations. Inclusion of files like hpa.yaml, networkpoicy.yaml, pdb.yaml, in-
gress.yaml resolved critical issues identified in the Kubernetes environment by deploying
a secure, scalable and manageable application.

Furthermore, this study focuses on creation of efficient pipelines having provision to
analyze static code, configurations, secure creation of image and deployment rather than
solving all the static code issues identified. This study provides how security can be
analyzed at an early stage of deployment and maintaining an interactive and continuous
improvement solution.

Overall, this section discusses the limitations and potential improvement made by
implementation of the above-discussed CI/CD pipeline. It contributes to ongoing research
and implementation practices to achieve an efficient solution and a secure deployment
process.

7 Conclusion and Future Work

The evaluation and methodologies discussed in this study provide us with a resolution of
critical issues, particularly related to Cross-site Request Forgery (CSRF), as analyzed by
SonarCloud. Almost more than 70% of CRITICAL issues identified by Kubescore were
resolved in latest revision of Helm chart. Although, issues like version tag implementation
in Dockerfile, use of WORKDIR, storage of cache in cache mount, these issues remained
unsolved. Contributors can work on resolving these issues to deliver a more robust
and secure environment. Furthermore, the use of COI mechanism for managing the
Helm versions proved effective. However, tools like Spinnaker and Terraform can be used
and explored to further enhance the maintenance and configuration of the deployment
environment. Additionally, contributors can look for implementing a monitoring system
that provides detailed visual insights and provide ease in troubleshooting.Implementation
of monitoring will enhance the observability, provides robust metrics and significantly
enhancing the system reliability.Further iterations can be made and evaluated based on
different tool to achieve a fully automated, secure, and efficient solution.Such iteration

20

would refine the deployment strategies and enhances the security posture of software
delivery cycle.

References

Abhishek, M. K., Rao, D. R. and Subrahmanyam, K. (2022). Framework to deploy con-
tainers using kubernetes and ci/cd pipeline, International Journal of Advanced Com-
puter Science and Applications 13(4): 522-530.

Giangiulio, F. and Malmberg, S. (2022). Testing the security of a kubernetes cluster in a
production environment. Degree project in technology, first cycle, 15 credits.

Gokhale, S., Gunjawate, S., Gupta, S., Poosarla, R., Hajare, A., Karve, K., Tikar, S.
and Deshpande, S. (2021). Creating helm charts to ease deployment of enterprise
application and its related services in kubernetes, 2021 International Conference on
Computing, Communication and Green Engineering (CCGE), IEEE, pp. 1-7.

Golis, T., Dakié¢, P. and Vrani¢, V. (2023). Automatic deployment to kubernetes cluster by
applying a new learning tool and learning processes, SQAMIA 2023 - Tenth Workshop

on Software Quality Analysis, Monitoring, Improvement, and Applications, Bratislava,
Slovakia, pp. 174—180.

Green, L. and Carter, S. (2023). Automated configuration management in kubernetes
with kubescore: A case study, Advances in Cloud Computing 18(2): 198-215.

Johnson, M. and Nguyen, H. (2024). Enhancing security and configuration manage-
ment in devops: The role of static analysis and ci/cd automation, Journal of DevOps
Practices 9(3): 345-362.

Lee, C. and Patel, B. (2023). Cloud native approaches to software delivery: Tools and
strategies for effective devops, Advances in Software Engineering 15(2): 150-165.

Smith, J. and Doe, A. (2022). Enhancing devops through automated ci/cd pipelines
and security tools integration, Journal of Cloud Computing Advances, Challenges and
Applications 13(1): 234-249.

Spillner, J. (2019). Quality assessment and improvement of helm charts for kubernetes-
based cloud applications, arXiv preprint arXiv:1901.00644 abs/1901.00644: 1-19.
This research was partially funded by Innosuisse - Swiss Innovation Agency in project
MOSAIC/19333.1.

URL: https://arziv.org/abs/1901.00644

Zerouali, A., Opdebeeck, R. and Roover, C. D. (2023). Helm charts for kubernetes applic-
ations: Evolution, outdatedness and security risks, Conference on Software Engineering
and Applications, Brussels, Belgium, pp. 1-9.

21

	Introduction
	Background
	Motivation
	Research Question
	Objective
	Research implication and Contribution
	Paper Structure

	Related Work
	Automation and Testing of CI/CD pipeline
	Enhancing Deployment: Role of Helm and Security Challenges
	Storage and Management of Kubernetes Deployment Artifacts
	Challenges in Securing Kubernetes Workflow
	Research gap and a Summary
	Overview of Reviewed Literature

	Methodology
	Research Procedure and Workflow Design
	Technologies used, Tools and System configurations
	Techniques of Data Collection, Validation and analysis

	Design Specification
	Proposed architecture of the study

	Implementation
	Jenkins Server Setup and Tools Integration
	Docker setup and Amazon ECR Integration
	Helm and Kubernetes Deployment Management
	Security, Compliance and Continuous Improvement

	Evaluation
	Kubescore evaluation
	Static code analysis
	Versioning of index.yaml file
	Discussion

	Conclusion and Future Work

