~

"'—-
\ National
College

Ireland

Configuration Manual

MSc Research Project
Cloud Computing

Hariharan Sathiyamoorthy
Student ID: 23201550

School of Computing
National College of Ireland

Supervisor: Ahmed Makki

National College of Ireland National

Project Submission Sheet Col]ege of
School of Computing Ireland
Student Name: Hariharan Sathiyamoorthy
Student ID: 23201550
Programme: Cloud Computing
Year: 2024
Module: MSc Research Project
Supervisor: Ahmed Makki
Submission Due Date: 12/12/2024
Project Title: Configuration Manual
Word Count: 700
Page Count: S

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature: Hariharan Sathiyamoorthy

Date: 11th December 2024

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). O

Attach a Moodle submission receipt of the online project submission, to | [J
each project (including multiple copies).
You must ensure that you retain a HARD COPY of the project, both for | O
your own reference and in case a project is lost or mislaid. It is not sufficient to keep
a copy on computer.

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only
Signature:

Date:
Penalty Applied (if applicable):

Configuration Manual

Hariharan Sathiyamoorthy
23201550

1 Introduction

This Documnet offers comprehensive guidelines for configuring and executing the re-
search experiments. It also provides the requisite software and platforms utilized in this
study. This study evaluated the solution’s effectiveness in improving cold start latency,
by comparing it to Apache OpenWhisk Apache OpenWhisk Documentation (n.d.). The
main tools, systems, and software libraries and packages used in this study are shown in
Table [I] A quick look at the files and folders in SmartFasS can be found in Table [2] ’

Component Details

Virtual Machines Google Cloud Platform (GCP) Compute Engine
Operating System Ubuntu 22.04 LTS

Serverless Platform OpenWhisk

Kubernetes Cluster KinD (Kubernetes in Docker) for running OpenWhisk
Container Technology Docker (27.3.1)

Cache Manager Redis 6.0.16

Machine Learning Google Colab & Keras TensorFlow
Programming Languages Node js 20.18 & Bash

Performance/Load Testing | Java (openjdk-11) & Apache JMeter 5.6.3
Docker Image node:20-alpine

Table 1: System Configuration & Prerequisite

File/Folder | Description

colab/ Folder containing Jupyter notebooks for analysis and modeling.
dataset/ Folder containing Azure dataset and ML results.

function. js | Lodash Node.js app for execution

jmeter/ Folder containing JMeter scripts for load testing.

logs/ Folder containing log files and results from the experiments.
main. js Index file for the project.

package. json | Configuration file for Node.js project dependencies and scripts.
scripts/ Folder containing shell scripts for setup and utilities.

utils/ Folder containing utility JavaScript files for SmartFasS.

Table 2: SmartFasS files and folders

2 Configuration

This section will outline the whole installation procedure to set up a virtual machine in
Google Cloud Platform (GCP) |Google Cloud Console - Compute Enging (n.d.), along
with the installation of SmartFasS and OpenWhisk on the created virtual machine.

2.1 Creating VM

Two GCP e2-standard-2 instances will be used for the implementation, To use the
framework without memory issues, This will ensure that both the framework and Open-
Whisk will run smoothly on virtual machines.
Configure Your Project
1. Log in to GCP Console:.
2. Select/Create a Project:
(a) Choose an existing project or create a new one by clicking New Project and
following the prompts.
Instance Creation

1. Create an instance by navigating to Compute Engine, selecting the tire as seen
in Figure [T, and selecting the e2-standard-2 with the default configuration of 2
vCPUs and 8 GB of RAM.

Shared-core e2-standard-2

2 vCPU (1 core), 8 GB memory
Standard

e2-standard-4
High memory 4 vCPU (2 core), 16 GB memory
High CPU e2-standard-8

8 vCPU (4 core), 32 GB memory

e2-standard-16
16 vCPU (8 core), 64 GB memory

e2-standard-32
32 vCPU (16 core), 128 GB memory

Figure 1: Tire Selection

2. Choose the Ubuntu as Operating system and choose the version 22.04 LTS with
x86/64 jammy image and 64 GB storage Figure

3. Next, grant access to both HT'TP and HT'TPS traffic. Ensure that the access scope
covers all cloud APIs, and then proceed to install the Ops Agent for monitoring
and logging Figure

4. Reiterate steps 1-3 to create another instance for OpenWhisk.

Operating system
" Ubuntu - ’

Version *
(Ubuntu 22.04 LTS hd ’

x86/64, amd6é4 jammy image built on 2024-11-19

Boot disk type *
‘, Balanced persistent disk - ’

COMPARE DISK TYPES

Size (GB) *
o |

Provision between 10 and 65536 GB

Figure 2: OS Configuration

Identity and APl access @

Service accounts @

Service account
[Compute Engine default service account -]

Requires the Service Account User role (roles/iam.serviceAccountUser) to be set for users who want to access VMs with
this service account. Learn more [

Access scopes @

(O Allow default access

(@ Allow full access to all Cloud APIs

() Set access for each API

Firewall @

Add tags and firewall rules to allow specific network traffic from the Internet
Allow HTTP traffic

Allow HTTPS traffic
[J Allow Load Balancer Health Checks

Observability - Ops Agent @

Monitor your system through collection of logs and key metrics.

Install Ops Agent for Monitoring and Logging

Figure 3: Identity and Firewall Configuration

2.2

SmartFasS and OpenWhisk installation

SSH into the server by clicking the SSH button in the Compute engine page as shown in
Figure []

= Filter @EUEHLIULILEEX) Enter property name or value X @ m

O status Name 1 Zone Recommendations In use by Internal IP External IP Connect

0 e
0e

1.

openwhisk us-central1-a 10.128.0.14 (nic0) 34.28.52.72 2 (nic0) SSH ~

smartfaas us-centrall-a 10.128.0.13 (nic0) 34.45.220.36 (2 (nic0) SSH ~

Figure 4: SSH into server

Run the following command to clone the repository:
git clone https://github.com/Hariharan-Sathiyamoorthy/SmartFasS.git

cd into the SmartFasS/scripts folder

Execute the command ./env_setup.sh it will prompt you to select an option based
on whether the instance is OpenWhisk or SmartFaaS server Figure [Choose
the appropriate option to continue with the installation.The installation will take
approximately 15mins

$./env _setup.sh

Select an option:

1.
2.

Install SmartFasS setup
Install OpenWhisk setup

Enter your choice (1 or 2): |

Figure 5: Choose Installation

After installation, simply run this command to set the path variables.
source ~/.bashrc

The full installation log will be in root/env_setupOut.log. If there were any
errors, they will be shown there.

On an OpenWhisk server, run this command to see if the KinD cluster is working
correctly. It will show the pods running in the openwhisk namespace Figure [0]

sudo kubectl get pods -n openwhisk

:~$ sudo kubectl get pods -n openwhisk

NAME READY STATUS RESTARTS AGE
owdev-alarmprovider-5d57d4b879-821rqg 1/1 Running 0 30h
owdev-apigateway-d6d756db8-mwx8v 1/1 Running 0 30h
owdev-controller-0 1/1 Running 0 30h
owdev-couchdb-89b8469bc-z£f94g 1/1 Running 0 30h
owdev-gen-certs-6hpcr 0/1 Completed 0 30h
owdev-init-couchdb-zm2dw 0/1 Completed 0 30h
owdev-install-packages-f6hnn 0/1 Completed 0 30h
owdev-invoker-0 1/1 Running 2 30h
owdev-kafka-0 1/1 Running 0 30h
owdev-kafkaprovider-7867778f74-5bvvz 1/1 Running 0 30h
owdev-nginx-67b8974c77-rxkxb 1/1 Running 0 30h
owdev-redis-74d7479464-g2zhn 1/1 Running 0 30h
owdev-wskadmin 1/1 Running 0 30h
owdev-zookeeper-0 1/1 Running 0 30h
wskowdev-invoker-00-198-prewarm-nodejsl4 1/1 Running 0 3m38s

Figure 6: OpenWhisk Installation

2.3 Running the Experiments
2.3.1 SmartFasS Experiments

1. To run the experiments, navigate to the SmartFasS folder on SmartFasS server.

2. Run the following command to install all the dependencies:
npm install
3. Run this command to execute the orchestrate function and start the JMeter script
parallelly
npm run coldMitigation
4. there will be two logs files will be generated from this experiment output_node.log

and inIntiatorQutput.csv both will be in the SmartFasS/logs folder, this will
contain comprehensive information about the experiment Figure [7]

:~/SmartFas sults$ tail IntiatorOutput 2024-11-27.csv :~/SmartFasS/logs$ tail output node.log
2024-11-27716:43:13.6442, coldMitigation node 27f1fc36-bJea-4360-8fed-blcIcedddd2e, warm, 164.61914600000006 sleeping for: 7060

2024-11-27116 6932, cold¥itigation node_724ba342-2dct-4b07-bbaa-ab2a306054£5, cold, 157.21063700000013 Starting Orchetration
2024-11-27116 ,coldMitigation node aSble313-251f-4623-93d6-abb0bd6291c8, warm, 174.819055 Orchetration Complete: coldMitigation node 1436£945-Tba7-4c47-ad60-51a182797ccd warm
2024-11-27116 3472, cold¥itigation node ac9e83b2-9101-deeB-8145-1319e4814432, warm, 151,14810799999998 sleeping for: 7060
2024-11-27116 6692, coldUitigation node 30977dd8-3423-4611-bd83-167821e£09c2, cold, 228.50852200000008 Starting Orchetration
2024-11-27116:43:56,070Z, cold¥itigation node 8f8cc93d-24ed-43c3-89d8-beTblfla3651, warm, 150.74437799999993 Orchetration Complete: coldMitigation node 1436£945-Tba7-4c47-ad60-51a182797ccd warm
2024-11-27716:44:11.730Z, coldMitigation node_52399784-ecbe-4417-a01£-64b7a5260e70, warm, 147.927618 sleeping for: 7060
2024-11-27716:44:19.716Z, coldMitigation node_714d31c6-8128-4bfb-8ada-TaBeScf00cT3, cold, 169.518016 Starting Orchetration
2024-11-27716:44:23.096Z, cold¥itigation node c615b300-f24c-4££0-9978-£707b262£a29, cold, 179.20648500000016 Orchetration Complete: coldMitigation node 1436£945-7Tba7-4c47-ad60-51a182797ccd warm
2024»11»27T16:44:26‘5092,coldMitigationﬁnode:dEeQ6f:a-7918-4988-821f-6f6dd75ff7b3,ccld,153.98893799999996 sleeping for: 7060 I LECE

(a) Initiator Logs (b) Orchestration Logs

Figure 7: SmartFasS Logs

2.3.2 OpenWhisk Experiments

1. To run the experiments, navigate to the SmartFasS folder on OpenWhisk server.

2. Run the following command to install all the dependencies:

npm install

3. Run this command to execute the OpenWhisk function through JMeter script.

npm run OpenWhisk

4. This experiment is being run entirely with JMeter. The JMeter logs and results can
be found in the SmartFasS/logs folder, where they are named output_jmeter.log
and inInitiatorOutput.csv. This will have all the details about the experiment
shown in Figure [§

2 $ tail output_jmeter.log 8 tFass/logs/results$ tail OpenihiskOutput 2024-12-09.csv

sumary = 188 in Ec;w;qa = 0/s hug: 1342 Min: 293 dax: 30 B 0 <0,03§1 . . 2024-12-09712:02:16.5492, bd5be891d0d10fbe3c59215d5£8159ea496433bc4 1adbaTddd10ea21d35¢3e3a, 1071.905972

T Whuiie GHbip MG wDis BRSO (I R e B R 02, baSbe8310d10Fc3c5921505 6815049643 bt ackaTddd1 lea2ld35c e, 668, 497220000001
9.8042, baSbe8S10d10Foc3c59215 815949643 bt LacbaTddd1 lea2ld35c e, 82, 0329539939998

sumary = 204 in 00:05:18 = 0.6/s Avg: 1350 Min: 790 Max: 3680 Err: 0 (0.003)
sumary + 22 in 00:00:27 = 0.8/s Avg: 1234 Min: 821 Max: 2151 Err: 0 (0.003) Active: 1 Started: 1 Finis 8.1632, bdSbeB1d0d10£bc3c59215d5£8159ead96433bc4 1adbaTd8d10ea2ld35c3e3a, 665.976053

:il:mar = 226 in 00:05:46 = 790 Max: 3680 Err: 0 (0.00%) 3. 4822, bd5be891d0d10£bc3c59215d5£8159ead 96433bcd 1adbaTdBdl 0ea21d35¢3e3a, 1111, 636572
Smﬂar; A | jn EE;M;?; = B 7’95 Nai; 1:49 B 0 (0:03%] Active: 1 Started: 1 Finis 2:35.663Z, bd5be891d0d10£hc3c59215d5£8159ead 96433bc4 1adbaTd8d10ea2ld35c3e3a, 1128. 0276199999998
hed: 0 2:31.205%, bd5be891d0d10fbe3c59215d5£8159ea496433bc4 1adbaTd8d10ea21d35¢3e3a, 830, 783977

summary = 250 in 00:06:15 = 0.7/s Avg: 1306 Min: 790 Max: 3680 Err: 0 (0.00%)
summary = 250 in 00:06:15 = 0.7/s Avg: 1306 Min: 790 Max: 3680 Err: 0 (0.00%)
Tidying up ... @ 2024 Dec 9 12:03:30 UTC (1733745810277)

... end of run

22, bdSbe81d0d10£be3c59215d5£815%ad 96433bcd 1adbaTdd: 35¢3e3a, 776.3080299999999
32, bdSbe81d0d10£be3c59215d5£815%ad96433bcd 1adbaTddd: 35¢3e3a, 705.2323769999999
2.3152, bd5be891d0d10fbc3c5921 5d5£8159ead 96433bcd 1adbaTdBdl 0ea21d35c3e3a, 1044, 301839

(a) JMeter Logs (b) OpenWhisk results

Figure 8: OpenWhisk Logs

2.4 Evaluating the Experiments

1. To evaluate the experiments, navigate to the SmartFasS/colab folder.

2. Inside the folder, the analysis.ipynb file can be found. This file contains the code
to analyze the results of the experiments.

References

Apache OpenWhisk — Documentation (n.d.). https://openwhisk.apache.org/
documentation.html.

Google Cloud Console - Compute Engine (n.d.). https://console.cloud.google.com/
computel.

https://openwhisk.apache.org/documentation.html
https://openwhisk.apache.org/documentation.html
https://console.cloud.google.com/compute
https://console.cloud.google.com/compute

	Introduction
	Configuration
	Creating VM
	SmartFasS and OpenWhisk installation
	Running the Experiments
	SmartFasS Experiments
	OpenWhisk Experiments

	Evaluating the Experiments

