
Configuration Manual

MSc Research Project

Cloud Computing

Hariharan Sathiyamoorthy
Student ID: 23201550

School of Computing

National College of Ireland

Supervisor: Ahmed Makki

www.ncirl.ie



National College of Ireland
Project Submission Sheet

School of Computing

Student Name: Hariharan Sathiyamoorthy

Student ID: 23201550

Programme: Cloud Computing

Year: 2024

Module: MSc Research Project

Supervisor: Ahmed Makki

Submission Due Date: 12/12/2024

Project Title: Configuration Manual

Word Count: 700

Page Count: 6

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature: Hariharan Sathiyamoorthy

Date: 11th December 2024

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). □
Attach a Moodle submission receipt of the online project submission, to
each project (including multiple copies).

□

You must ensure that you retain a HARD COPY of the project, both for
your own reference and in case a project is lost or mislaid. It is not sufficient to keep
a copy on computer.

□

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):



Configuration Manual

Hariharan Sathiyamoorthy
23201550

1 Introduction

This Documnet offers comprehensive guidelines for configuring and executing the re-
search experiments. It also provides the requisite software and platforms utilized in this
study. This study evaluated the solution’s effectiveness in improving cold start latency,
by comparing it to Apache OpenWhisk Apache OpenWhisk Documentation (n.d.).The
main tools, systems, and software libraries and packages used in this study are shown in
Table 1. A quick look at the files and folders in SmartFasS can be found in Table 2. ’

Component Details
Virtual Machines Google Cloud Platform (GCP) Compute Engine
Operating System Ubuntu 22.04 LTS
Serverless Platform OpenWhisk
Kubernetes Cluster KinD (Kubernetes in Docker) for running OpenWhisk
Container Technology Docker (27.3.1)
Cache Manager Redis 6.0.16
Machine Learning Google Colab & Keras TensorFlow
Programming Languages Node js 20.18 & Bash
Performance/Load Testing Java (openjdk-11) & Apache JMeter 5.6.3
Docker Image node:20-alpine

Table 1: System Configuration & Prerequisite

File/Folder Description
colab/ Folder containing Jupyter notebooks for analysis and modeling.
dataset/ Folder containing Azure dataset and ML results.
function.js Lodash Node.js app for execution
jmeter/ Folder containing JMeter scripts for load testing.
logs/ Folder containing log files and results from the experiments.
main.js Index file for the project.
package.json Configuration file for Node.js project dependencies and scripts.
scripts/ Folder containing shell scripts for setup and utilities.
utils/ Folder containing utility JavaScript files for SmartFasS.

Table 2: SmartFasS files and folders

1



2 Configuration

This section will outline the whole installation procedure to set up a virtual machine in
Google Cloud Platform (GCP) Google Cloud Console - Compute Engine (n.d.), along
with the installation of SmartFasS and OpenWhisk on the created virtual machine.

2.1 Creating VM

Two GCP e2-standard-2 instances will be used for the implementation, To use the
framework without memory issues, This will ensure that both the framework and Open-
Whisk will run smoothly on virtual machines.

Configure Your Project

1. Log in to GCP Console:.

2. Select/Create a Project:

(a) Choose an existing project or create a new one by clicking New Project and
following the prompts.

Instance Creation

1. Create an instance by navigating to Compute Engine, selecting the tire as seen
in Figure 1, and selecting the e2-standard-2 with the default configuration of 2
vCPUs and 8 GB of RAM.

Figure 1: Tire Selection

2. Choose the Ubuntu as Operating system and choose the version 22.04 LTS with
x86/64 jammy image and 64 GB storage Figure 2

3. Next, grant access to both HTTP and HTTPS traffic. Ensure that the access scope
covers all cloud APIs, and then proceed to install the Ops Agent for monitoring
and logging Figure 3.

4. Reiterate steps 1-3 to create another instance for OpenWhisk.

2



Figure 2: OS Configuration

Figure 3: Identity and Firewall Configuration

3



2.2 SmartFasS and OpenWhisk installation

SSH into the server by clicking the SSH button in the Compute engine page as shown in
Figure 4

Figure 4: SSH into server

1. Run the following command to clone the repository:

git clone https://github.com/Hariharan-Sathiyamoorthy/SmartFasS.git

2. cd into the SmartFasS/scripts folder

3. Execute the command ./env setup.sh it will prompt you to select an option based
on whether the instance is OpenWhisk or SmartFaaS server Figure 5. Choose
the appropriate option to continue with the installation.The installation will take
approximately 15mins

Figure 5: Choose Installation

4. After installation, simply run this command to set the path variables.

source ~/.bashrc

5. The full installation log will be in root/env setupOut.log. If there were any
errors, they will be shown there.

6. On an OpenWhisk server, run this command to see if the KinD cluster is working
correctly. It will show the pods running in the openwhisk namespace Figure 6.

sudo kubectl get pods -n openwhisk

4



Figure 6: OpenWhisk Installation

2.3 Running the Experiments

2.3.1 SmartFasS Experiments

1. To run the experiments, navigate to the SmartFasS folder on SmartFasS server.

2. Run the following command to install all the dependencies:

npm install

3. Run this command to execute the orchestrate function and start the JMeter script
parallelly

npm run coldMitigation

4. there will be two logs files will be generated from this experiment output node.log

and inIntiatorOutput.csv both will be in the SmartFasS/logs folder, this will
contain comprehensive information about the experiment Figure 7.

(a) Initiator Logs (b) Orchestration Logs

Figure 7: SmartFasS Logs

5



2.3.2 OpenWhisk Experiments

1. To run the experiments, navigate to the SmartFasS folder on OpenWhisk server.

2. Run the following command to install all the dependencies:

npm install

3. Run this command to execute the OpenWhisk function through JMeter script.

npm run OpenWhisk

4. This experiment is being run entirely with JMeter. The JMeter logs and results can
be found in the SmartFasS/logs folder, where they are named output jmeter.log

and inInitiatorOutput.csv. This will have all the details about the experiment
shown in Figure 8.

(a) JMeter Logs (b) OpenWhisk results

Figure 8: OpenWhisk Logs

2.4 Evaluating the Experiments

1. To evaluate the experiments, navigate to the SmartFasS/colab folder.

2. Inside the folder, the analysis.ipynb file can be found. This file contains the code
to analyze the results of the experiments.

References

Apache OpenWhisk Documentation (n.d.). https://openwhisk.apache.org/

documentation.html.

Google Cloud Console - Compute Engine (n.d.). https://console.cloud.google.com/
compute.

6

https://openwhisk.apache.org/documentation.html
https://openwhisk.apache.org/documentation.html
https://console.cloud.google.com/compute
https://console.cloud.google.com/compute

	Introduction
	Configuration
	Creating VM
	SmartFasS and OpenWhisk installation
	Running the Experiments
	SmartFasS Experiments
	OpenWhisk Experiments

	Evaluating the Experiments


