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Mitigating Serverless Cold Start Latency with
Predictive Function Invocation and Adaptive Caching

Hariharan Sathiyamoorthy
23201550

Abstract

The serverless industry is estimated to be worth over $21.9 billion in 2024 due to
its separation of infrastructure management from application, and at the same time,
it provides scalability and immense cost reduction. There are few problems when
it comes to serverless that is cold start latency, which hinders the performance.
The purpose of the study is to create a hybrid approach by combining predictive
modeling to predict the function invocation along with adaptive caching to reduce
the cold start frequency and latency. The study involved setting up the OpenWhisk
serverless platform on a cloud machine, simulating real-world serverless behavior,
using machine learning techniques to predict the function invocation time, creat-
ing a robust cache algorithm, and combining these two by creating a framework
called SmartFaaS, followed by comparing it with the vanilla OpenWhisk solution
for benchmarking. The key finding from the study was that SmartFaaS consistently
used 30% of resource throughout all the experiments and the overall execution time
were maintained under 200 ms compared to OpenWhisk 1200 ms showing an ap-
proximate 83% reduction in latency. By Using the predictive model in SmartFaaS
only 37% of cold starts were recorded showing efficient reduction in cold start fre-
quency. From these results, SmartFaaS offers a more effective and cost-efficient
solution for mitigating cold start issues in serverless computing. The research
contributes to the current state of the art by demonstrating the effectiveness of
combining predictive modeling with adaptive caching. In practice, this means de-
velopers and cloud service providers can achieve better performance and resource
utilization.However, the limitations of this study were that a single node applica-
tion was tested, and as of now, only Node.js applications can utilize SmartFaaS.
Future work could involve testing SmartFaaS with diverse workloads and exploring
other machine learning models.
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1 Introduction

Recently, considerable literature has grown around the theme of mitigating cold starts in
serverless computing due to its performance hindrance, which makes it unattractive to
cloud providers and developers. At the same time, serverless computing provides signific-
ant benefits such as isolating infrastructure management from application development,
scalability, and cost management. Serverless computing is a combination of Function-
as-a-Service (FaaS) and Backend-as-a-Service (BaaS) Jonas et al. (2019). These two
paradigms rely on each other to make serverless work efficiently. FaaS divides the ap-
plication into multiple microservices, which are combined to form a function, while BaaS
handles all the storage needs for result execution. An example of function execution in
serverless computing is shown in Figure 1.

This research addresses the cold start issue by providing a hybrid approach to reduce
cold start latency as well as the number of cold starts. It combines predicting invocation
times beforehand—thus reducing the number of cold starts—with caching libraries onto
the containers and pre-warming them, which further decreases the frequency of cold
starts.

1.1 Motivation

The absence of pre warmed container during function invocation can introduce cold start
latency, this will significantly impact the performance and user experience. These cold
start will result in high operational overheads and utilize more resources, this will be a
concern when there are unpredictable workloads. Mitigating cold starts is critical for en-
suring the scalability of serverless applications. As the demand for serverless computing
grows, the ability to handle many concurrent requests efficiently becomes increasingly
important. By reducing cold start latency, serverless platforms can provide a more re-
sponsive and scalable environment for applications, leading to better performance and
user satisfaction. The demand for serverless computing growing exponentially, According
to Advisory (2024) the serverless market have registered a healthy CAGR of over 23.17%
by 2029. This emphasizes the need to mitigate the cold start issue on serverless platform.

1.2 Research Question

”Can implementing a predictive modeling technique to determine function in-
vocation on a serverless platform, together with adaptive cache management,
result in reduced cold start frequency and latency for Developers and Cloud
service providers?”

Comparatively, fewer studies have analyzed hybrid approaches to reduce cold start
frequency and latency. Mitigating cold starts is usually carried out using four mech-
anisms: cache-based, application-based, snapshot-based, and prediction-based. Several
studies have focused on specific mechanisms and provided valuable insights. The com-
mon approaches to reduce the number of cold starts include container-based strategies,
which are categorized into container pre-warming, pools of warm containers, container
scheduling, and keeping containers alive. For instance, Liu et al. (2023) identified key
factors influencing cold starts by implementing a solution called FaaSlight, which signific-
antly reduced cold start frequency by optimizing code size and loading times. Similarly,
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Oakes et al. (2018) analyzed the installation time of commonly used libraries and de-
veloped a plugin called SOCK, which significantly reduced installation times and, as a
result, latency. Each approach has its own merits and drawbacks. This study combines
two mechanisms—prediction-based and cache-based—to reduce cold start latency and
frequency by warming containers using predictive modeling techniques and preloading
libraries into the containers to minimize latency. The concept of containerization is the
backbone that orchestrates all necessary actions in an isolated environment.These con-
tainers are highly efficient and adaptable, enabling them to run independently on any
given operating system. However, scheduling and orchestrating containers can be chal-
lenging at times. Several technologies have emerged in recent years, such as Kubernetes,
which has gained significant popularity. The leading serverless providers in the industry
are Google Cloud Functions, Azure Functions, and AWS Lambda.

Figure 1: Example of Function execution in serverless computing

1.3 Research Objective

This study’s short term goals focusing on developing the framework and simulating it with
real world dataset using load testing tool and evaluating the framework with open source
serverless software. The long term goals for this study are to integrate the framework
with commercial serverless platform such as AWS Lambda, Google Cloud functions. Fur-
thermore, future work could explore diverse workloads and runtime environments. This
research main focal point is as follows:

• Set up an open-source serverless platform on virtual machines in the cloud.

• Simulate real-world serverless behavior using official Microsoft Azure Functions
dataset and a load testing tool.

• Use machine learning techniques to analyze traces and forecast function execution
patterns.

• Creating an adaptive cache management algorithm for frequently used libraries.
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• Integrating adaptive caching with the predictive model to create a framework
(SmartFaaS) that reduces cold starts

• Analyzing the outcomes in comparison to the vanilla open whisk solution

1.4 Report Structure

The rest of this paper is structured as follows. Literature review of related work in
this topic. Sections include methodology, design specifications, implementation details,
experiment evaluation, conclusion, future work discussion, and bibliography.

2 Related Work

To date, several studies have been carried out to mitigate the cold start issue and server-
less computing overall. There have been four categories when it comes to mitigating cold
starts: those are cache-based, snapshot-based, application-based, and prediction-based.
These four categories have provided major improvements to reduce the cold start fre-
quency and latency overall. Initiating a new container takes time, and upon invocation,
if there is no existing container present, creating a new container will delay the process
and label it as a cold start. Serverless computing needs to run at a higher level to ex-
ecute complex business logic. This literature review will explore major contributions to
mitigate cold start.

2.1 Cache Based Mitigations

The functions that need to be executed should be placed in the container initializing
the required libraries, which leads to increased latency. A qualitative study by Daw
et al. (2020) provided a Xanadu tool that mitigates the cascading cold start by providing
resources at the right time; at the same time, it also supports explicit and implicit
workflow specification options. This resulted in reduced platform overhead compared to
native, and it also did perform well in a short workflow. It reduces the cascading cold
start at the same time, providing minimal cost implication. This approach sometimes
leads to resource overhead and low workflow invocation rates.

Detailed examination of cold start by Solaiman and Adnan (2020) introducing WLEC.
It’s a container management architecture to reduce the cold start. They have provided a
way that modified the S2LRU structure, which is S2LRU++. By adding a queue, which
will enhance container management. They evaluated this with OpenLambda and AWS
local machine environments using six different metrics and a real-world image render-
ing application. This method showed 50% reduced memory consumption and reduced
cold starts. This method will introduce added complexity in container management and
unpredictable function invocation patterns. A significant analysis and discussion on the
subject was presented by Oakes et al. (2018). They managed to identify the bottlenecks
in container primitives, specifically in storage and network isolation. They have figured
out that adding most-used Python libraries will add latency to the startup time, so
they have introduced a container system called SOCK, which is optimized for serverless
workloads, avoiding kernel bottlenecks and achieving a noticeable speedup over Docker
environments. This methodology incorporates zygotes-based provisioning, which signific-
antly improves the speedup times behind the scenes. It uses a three-tier caching strategy
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based on zygotes. They also did an image processing case study; it has shown reduced
platform overheads compared to a conventional setup. Like WLEC, adding advanced
optimization techniques may introduce increased complexity and become unpredictable
on complex workloads. Another qualitative study by Fuerst and Sharma (2021) described
how keeping functions alive after execution will reduce the cold start overhead. They have
implemented a keep-alive strategy that is combined with caching, resulting in significant
latency reduction. They have implemented concepts like reuse distances and hit-ratio
curves. The main focal point of their study is the greedy dual keep-alive policy, which
reduces overhead by 3 times compared to conventional setups. They have managed to
implement this on the OpenWhisk platform. It has shown reducing requirements for
dynamic, complex serverless workloads noticeably.

All these papers have given significant improvement for reducing cold start latency;
for instance, Xanadu mitigates cold start by inferring function dependency models and
allocating resources at the right time, and SOCK optimizes container performance by
addressing kernel bottlenecks. Utilizing hibernated containers also resulted in a significant
performance increase. This study focuses on caching npm packages for the application
beforehand and preloading them for reduced latency. Along with adaptive caching, this
study involves predictive modeling, which will further reduce the cold start latency to a
great extent. Unlike the above papers that primarily focus on container management or
resource allocation, this study includes machine learning and provides a hybrid approach
that addresses the limitations of existing solutions and provides a more comprehensive
strategy for reducing the cold start latency.

2.2 Prediction Based Mitigation

Recently, predicting invocation time prediction has gathered the vast majority of attrac-
tion due to its improved performance. In the background, this approach uses container-
based strategies, which are basically four categories.

• Container Pre warming

• Container scheduling

• Pool of warm containers

• Keep alive containers

Container pre-warming can effectively reduce cold starts by loading necessary code
onto the container, whereas the container scheduling predicts and provisions the resources
beforehand, which will significantly improve latency. Maintaining warm containers in
memory also enables warm starts. This section will discuss the wide variety of container-
based techniques.

A qualitative study carried out by Xu et al. (2019) emphasizes that creating an adapt-
ive warm-up strategy that predicts the function invocation times using the chain model
and fine-grained regression algorithm along with the Adaptive Container Pool Scaling
Strategy (ACPSS) will automatically align the size of the container to its needs; this
will reduce the wastage of resources. These strategies show huge significance in reducing
cold start latency and numbers. This methodology excels at all scenarios but may be
less accurate in complex serverless workloads, thus leading to suboptimal performance.
A significant analysis and discussion on the subject was presented by Vahidinia et al.
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(2023). They have implemented a two-layer approach that uses predictive models to mit-
igate the cold start. The layer 1 has the reinforcement learning technique, which gives
better suggestions upon creating containers, and the other layer uses the LSTM pre-
dictive approach that determines the number of required containers to pre-warm. This
methodology shows major improvements in memory reduction and increased pre-warmed
container execution. This approach’s effectiveness depends upon the LSTM learning mod-
els and reinforcement learning models, which may lead to highly unpredictable workloads
that cause inefficiencies that will predict the function invocation arrival before arrival and
be less efficient when comparing with other machine learning algorithms for time series
predictions. Their policy is not only helpful in mitigating cold start but also helpful in
other problems such as provisioning virtual software. Again, this study also heavily relies
on the TCN predictions, which may lead to highly volatile or unpredictable workloads.
A detailed examination of FaaS by Sethi et al. (2023) showed that predicting the least
recently used by machine learning methodologies can improve cold start latency. They
also combine the affinity-based scheduling with this to increase the life span of the warm
containers. The LCS approach showed huge performance improvements compared to
the MRU (most recently used container) selection approach in evaluation. The memory
usage with usage will be more when it’s compared to the other approaches, making it
less resource efficient. A recent study by Nguyen (2024) has proposed a new ensemble
policy for reducing cold starts by low-coupling high-cohesion strategies unlike the regular
policies. Behind the scene, the policy uses the temporal conventional network (TCN).

A significant analysis and discussion on the subject was presented by Li et al. (2021),
emphasizing that borrowing other functions from other actions that share similar pack-
ages. Their pagurus system provided significant improvement to mitigate the cold start
issue by advanced container scheduling, which shares the container across the actions
into two variations, which are the inter-action scheduler and the intra-action scheduler.
This will efficiently manage the container lifecycle. This methodology showed a massive
performance boost of 10 ms even without warm container creation. This makes this
model stand out from others, but the pagurus specifically relies on similarity between
the actions to share between the containers; this will hinder performance when it’s intro-
duced to complex workloads. The study carried out by Roy et al. (2022) has implemented
a novel technique called icebreaker, which basically reduces the service time and keeps
alive costs by a heterogeneous system. They also implemented a dynamic node allocation
policy that selects the most appropriate node for function invocation, which significantly
reduces the operational overhead and noticeably reduces costs. By using heterogeneous
nodes, the icebreaker can increase the number of warm functions within the same cost
budget. This study also heavily relies on predicting the invocation probability to man-
age the node heterogeneity, which leads to performance bottlenecks on certain complex
workloads.

Finally, predictive warming has provided a huge performance boost to serverless com-
puting. Techniques like container pre-warming and predictive resource provisioning have
provided great benefits, and LCS (least recently used) strategies combined with affinity-
based scheduling extend the warm container lifespan. The icebreaker technique provides
a heterogeneous approach to mitigate the cold start issue. All these studies are heavily
relying on predictive modeling algorithms alone; this study aims to achieve the function
invocation prediction along with adaptive caching. By integrating two mechanisms, this
study can proactively warm the containers and preload the necessary packages, which will
address the cold start latency effectively rather than using predictive modeling alone. This
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hybrid approach not only improves the performance but also improves resource utiliza-
tion by removing the container immediately after execution. Furthermore, the adaptive
caching helps in maintaining a high cache hit rate, further minimizing the latency asso-
ciated with cold starts. This solution addresses the gaps in existing solutions and offers
a robust framework for reducing the cold start.

2.3 Comparison Table

References Technique ML Caching Runtime Awareness

Fuerst and Sharma (2021) Greedy-Dual Caching to Mitigate cold start ✓

Oakes et al. (2018) Zygote based Provisioning ✓ ✓

Daw et al. (2020) Speculative Provisioning ✓

Solaiman and Adnan (2020) Introduced WLEC container management architecture ✓ ✓

Xu et al. (2019) Adaptive Warm Up Strategy ✓

Vahidinia et al. (2023) Reinforcement Learning ✓

Roy et al. (2022) Heterogeneous Node Allocation ✓ ✓

Nguyen (2024) Ensemble policy for reducing cold starts using TCN ✓

Li et al. (2021) Function borrowing from other conatiner sharing same libraries ✓

This Study Predictive Modeling and Adaptive Caching ✓ ✓ ✓

Table 1: Comparison of literatures with this study

3 Methodology

3.1 Action Plan

The SmartFasS consists of two main steps, which are caching the frequently used libraries
and predicting the function invocation time to pre-warm the containers and reduce the
cold start latency and frequency in serverless computing. Preloading the libraries into
the container to minimize the overhead with function initialization. Using a machine
learning model trained on the official Azure dataset Azure (2021). This dataset provides
the key insights for understanding the function invocation predictions and optimizing the
prewarming strategies.

The framework uses the Docker containerization technology to execute the node app.
To monitor the performance, two servers were created.

• Server 1: Runs Apache OpenWhisk on a Kubernetes cluster (using KinD)

• Server 2: Runs the SmartFasS framework.

A simple Node.js app was created using the popular package Lodash. This app is ex-
ecuted on server 1 to analyze the behavior of cold and warm starts on the OpenWhisk
platform. The same app also executed on server 2, which has the SmartFasS framework
in it to monitor the performance. On both of the servers, custom JMeter scripts were cre-
ated and simulated real-world serverless patterns using the Azure function trace dataset.
These scripts generated traffic patterns that reflect real-world serverless invocation scen-
arios. A thorough evaluation of the framework’s effectiveness compared to the baseline
environment. The final evaluation highlights the significant importance of SmartFass on
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the serverless platform while at the same time emphasizing its ability to substantially
reduce cold start latency and maintain the cold start resource efficiency.

3.2 Data collection and preparation

Field Name Description
app Identifier for the serverless application
func Identifier for the serverless function, unique within each

application
end timestamp Timestamp (in seconds) marking the completion of the

function execution
duration Total execution duration (in seconds)

Table 2: Dataset Field Descriptions

To predict the invocation times accurately, some sort of real-world data is essential.
The predictive model must be trained on that data to get desirable results. For this
study, a dataset from Azure function trace Azure (2021) was utilized; this data is pub-
licly available for use. This dataset contains serverless invocation patterns. And it has
the Creative Commons Attribution 4.0 License by Microsoft Azure.This dataset has func-
tion invocation log traces for a two-week period starting from January 31, 2021. Along
with this dataset, the SmartFasS has generated log files from which were incorporated,
capturing function invocation patterns during the evaluation phase. Importantly, this
study doesn’t involve any personal or sensitive data. The dataset was modified for this
study’s predictive model. The dataset field descriptions are shown in Table 2.

Standard data processing techniques such as KDD were used to clean and analyze
the data. The distribution of data doesn’t follow any specific pattern; it is positive
and continuous but exhibits dependency due to daily and weekly patterns. The data is
also highly variable with a coefficient more than 1. To calculate The funcStart time

is calculated as the Initial time plus the difference between the end time and the
duration of the function execution, represented as

funcStart time = Initial time + ∆t(end time− duration) (1)

JMeter requires a delay in milliseconds variable to calculate that variable difference
between the consecutive timestamps that have been carried out. From this dataset,
10 days of data were chosen for training the model, and the remaining days were chosen
randomly to carry out the simulation. Through this process, it ensures its suitability for
predictive modeling and subsequent performance testing of the SmartFasS framework.

3.3 Caching libiraies

In this study, caching frequently used libraries and their time taken to install will optimize
the cold start frequency to a greater extent. The strategy involves leveraging the .npm

folder, which is mounted onto newly created containers to ensure that cached libraries
are readily accessible. The SmartFasS first strips out all the packages that need to be
installed and checks the local cache in the .npm folder. If the library is found in the
cache, it will be installed using the command npm install package name --offline.
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This ensures that the package is installed from the local cache in an offline mode, avoiding
setup time. If the required library is not found in the .npm cache of the root machine, then
it will install from the npm repository. The downloaded libraries are then cached locally
for future use, and their install frequency is updated in Redis, ensuring that frequently
used libraries are available in the cache. This approach reduces the cold start latency
and potential overhead in serverless computing. According to Oakes et al. (2018), to
efficiently cache the frequently used libraries, the tsetup needs to be calculated.

tsetup =
n∑

i=1

(tdownload + tinstall) (2)

The SmartFasS calculates the tsetup through each and every execution and to all the
libraries present in the script. Therefore, the SmartFasS will treat a library that is
already in the cache as zero. However, comparing this to OpenWhisk necessitates a
slightly different approach, as OpenWhisk relies on actions that require constant creation
and invocation. OpenWhisk does not provide the actual time required to install the
dependent libraries. The caching algorithm preloads the frequently used npm packages
into the container before function invocation, this will reduce the time spent on loading
libraries during execution. The algorithm employs an LRU strategy to manage the cache.
Libraries that are least recently used are evicted first to make room for new ones, ensuring
efficient use of cache space.

3.4 Predictive Model

Predicting the function invocation time can effectively reduce cold start numbers by pre-
warming the containers efficiently and utilizing the cache algorithm. 10 days of data were
selected from the Azure dataset and used to train the model. The logs generated from
these function invocation events to further train the model. The continuous range of data
prompts the implementation of linear regression. This foundational method will offer a
comprehensive overview for predicting the invocation time. This method will provide
timestamp predictions in the form of a straight line while also maintaining a consistent
interval between executions. The linear regression will be a starting point for further
depth analysis and provide a statistical benchmark. The linear regression may not per-
form well on new data or the newly generated logs. This paper also explores the recurrent
neural network (RNN). First, the study explores the GRU (Gated Recurrent Unit); it has
reduced complexity and can be helpful for training the model. GRU performs well when it
comes to handling sequential data, they are specifiacly designed to do that making them
better choice for time series predictions in serverless computing. They are computaionaly
more efficient than other model that predicts time series such as Long short-term Memory
(LSTM) because of the fewer parameters.GRUs perform well on short to medium-length
sequences, which is often the case in serverless function invocation patterns.Additionally,
the memory requirment is also very less when compared to other predictive models.These
advantages make GRUs a suitable choice for the predictive modeling component of the
SmartFaaS framework.The main idea behind this is to retain and process previously used
data for better context in predictions.

Inputs X =

1 2 3 4 5
2 3 4 5 6
3 4 5 6 7

 Labels y =

6
7
8


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GRU is used to get the sequential pattern in data where predictions depend on previous
values. The row of X represents a sliding window of 5 consecutive invocation times,
and the y is the next invocation time. At each step it processes the input vector and
updates the hidden state. The GRU has multiple different hidden layers and predicts
the next step based on the window size. The optimal window size will provide higher
performance gains. Adding cyclic time features for the day, hour, and minute properties
of the timestamp will boost performance. These cyclic values will improve the accuracy
of the time feature using sine and cosine transformation.

Day of Week: xday = sin

(
2π · day

7

)
, cos

(
2π · day

7

)
(3)

These cyclic time features 3 were incorporated into the input matrix, enhancing pre-
diction by adding the temporal patterns. The model’s delay times as a wait period for
container creation and initialization.

3.5 Real-world Simulation and Evaluation Metrics

The cache algorithm and the predictive model were combined into the Node.js framework
to make it an end-to-end solution for mitigating cold start latency and frequency. The
main validation criteria are comparing the solution to base OpenWhisk instances to
reduce the cold start latency and frequency. The total execution time is analyzed with
and without the SmartFasS framework. For simulating real-world serverless behavior,
Apache JMeter is used along with the Azure Function Trace dataset. The test plan
includes looping through the CSV dataset, and threads were created with respect to
the rows from the dataset. From there, the SmartFasS framework is triggered on every
iteration.

Custom flow control actions were designed to pause the iterations. All the experiments
were set to run for a specific time frame to analyze the proper serverless workloads. This
approach allowed for a controlled environment to assess how well SmartFasS handled
varying workloads. Throughout the experiments, detailed log files were generated at
each stage, serving as key evaluation metrics. These logs were analyzed to assess cold
start patterns, latency improvements, and overall performance gains. The experiment
setup also involves stress testing scenarios to evaluate SmartFasS under high-concurrency
conditions. Furthermore, more resource utilization metrics were also analyzed to showcase
the efficiency of the framework. The dynamic workload adaptability is tested during the
course of the experiments, ensuring that the framework is providing a robust solution to
mitigate cold start.

3.6 Tools and Platform

An overview of the primary platforms and tools utilized in this study is provided in Table
3.

’
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Component Details
Virtual Machines Google Cloud Platform (GCP) Compute Engine
Operating System Ubuntu Server 22.04 LTS
Serverless Platform Apache OpenWhisk (1.2.0)
Kubernetes Cluster KinD (Kubernetes in Docker) for running OpenWhisk
Container Technology Docker (27.3.1)
Cache Manager Redis 6.0.16
Machine Learning Google Colab & Keras TensorFlow
Programming Languages Node js 20.18 & Bash
Performance/Load Testing Java (openjdk-11) & Apache JMeter 5.6.3
Docker Image node:20-alpine

Table 3: System Configuration

4 Design Specification

4.1 Experimental Setup

The various tools and platforms for this project are shown in 3. Two instances of
e2-standard-2 from Google Cloud Platform with 8 GB RAM and 64 GB SSD volume
storage. The OS for the experiment was Ubuntu Server 22.04 LTS, which provides long-
term support and stability and security. For serverless computing, Apache OpenWhisk
(1.2.0) was employed OpenWhisk (n.d.) in a Kubernetes KinD cluster for container
orchestration and management within a Docker environment for better Isolation and
Portability Zhao et al. (2024). For cache management, Redis (6.0.16) is used to store fre-
quently accessed data, reducing latency and improving performance. For machine learn-
ing and training the model, Google Colab and Keras TensorFlow were utilized Google
(n.d.), providing powerful tools for predictive analytics. The SmartFasS framework is
created using Node.js and Bash. The load testing tool Apache JMeter is used to create
a test plan for simulating real-world scenarios. The node:20-alpine docker image was
used during container invocation.

4.2 Architecture Diagram

The Figure 2 shows the overall structure of SmartFasS and vanilla OpenWhisk setup.

4.3 Algorithms

The SmartFaaS consists of two main workflows (Figure 3), which are orchestration flow,
which validates the runtime and checks for any warm container that is present; if not,
it will create a container and install the required packages and pause the execution for
certain milliseconds predicted from the machine learning model.

The Intiate workflows consist of checking for a warm container that is present; if
there is any warm container present, it will execute the node app inside the container
and create the log for evaluation. The Algorithm 1 explains how the framework checks
for any warm container present inside the virtual machine. If none are present, it will
create a new container and label it as cold. The Algorithm 2 explains how the cache
management works; first, it strips out all the required packages from the simple app and
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Figure 2: Project Architecture Diagram

checks whether it’s present in the cache or not. If not present, it will freshly install from
the npm registry and store them in the cache. The Algorithm 3 is the execution of a
simple app inside the warm container; upon completion, it will remove the container
from the virtual machine.These algorithms work together to preload and pre warm the
container for execution. SmartFasS has logging functionality that logs every thing on to
the container, two functions readCSVfile and writeCSVfile will handle all the logging
inside SmartFaaS.

Figure 3: SmartFaaS Execution Flow

5 Implementation

To install all the required software, a custom shell script was created that will automate
the process of installing all the dependencies (KinD, OpenWhisk, Node.js, and Docker)
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Algorithm 1 Check Warm Container

1: Input: runtime
2: Output: {executionType, containerName}
3: TRY

4: Execute a command to count the number of warm containers for the given runtime.
5: Parse the output to get the count of warm containers.
6: if there is at least one warm container then
7: Set executionType to ’warm’.
8: Execute a command to list the names of warm containers.
9: Sort the container names.
10: Select the first container name.
11: else
12: Set executionType to ’cold’.
13: Create a new cold container and get its name.
14: end if
15: Return the executionType and containerName.
16: CATCH(error)

17: Log the error.
18: Create a new cold container and get its name.
19: Return ’cold’ as executionType and the new containerName.
20: ENDTRY

Algorithm 2 Install Npm Package

1: Input: containerName, args
2: Output: Installation Status
3: TRY

4: Connect to the redis client.
5: Get the package names from the specified file.
6: Split the package names into an array.
7: for all npmPackage in the array do
8: Check if the package is available in the npm registry.
9: if the package is available then
10: Check if the package is cached.
11: if the package is cached then
12: Install the package offline.
13: else
14: Install the package online.
15: end if
16: end if
17: Store the package in the cache.
18: end for
19: Return ’success’.
20: CATCH(error)

21: Return.
22: FINALLY

23: Disconnect from the client.
24: ENDTRY
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Algorithm 3 Execute Container

1: Input: containerName, args, executionType
2: Output: {execOutput, executionTime}
3: TRY

4: Copy the specified file to the container.
5: Record the start time.
6: Execute the file inside the container.
7: Record the end time.
8: Kill the container.
9: Remove the container.
10: Return the execution output and execution time.
11: CATCH(error)

12: Return.
13: ENDTRY

Kubernetes SIGs (n.d.). The Helm package manager was used to manage the KinD
cluster. The helm chart provided the OpenWhisk templates to install the necessary de-
pendencies such as the controller, invoker, CouchDB, and Kafka. The linear regression
and Gated Recurrent Unit (GRU) models were created and trained on the Google Colab
platform along with TensorFlow. The SmartFasS is a node-based framework that has
two workflows, orchestrate and initiate, to mitigate the cold start problem. The initiate
function will be executed from Apache JMeter, and the orchestration will be along with
the prediction output from the machine learning models. Both SmartFaaS and Open-
Whisk were deployed on identical hardware setups and the same operating system to
ensure a consistent environment and eliminate OS-related performance variations. The
workloads for both the setups were identical; the same set of functions and invocation
patterns were used to simulate real-world serverless behavior. On both setups, a load
testing tool was used to create a test plan for simulating real-world scenarios, ensuring
that both frameworks were subjected to the same load conditions. Both frameworks were
equipped with monitoring and logging mechanisms to track performance metrics such
as latency and resource utilization. This data was used to ensure a fair and objective
comparison between SmartFaaS and OpenWhisk.

5.1 SmartFasS

The framework was created to mimic the behavior of serverless computing platforms
like OpenWhisk. The execution environments in the SmartFasS are managed manually
and carry out the tasks, such as checking if a warm container is present, caching, and
preloading the packages into the container. In contrast, OpenWhisk will abstract away the
infrastructure management and handle the provisioning by itself. That’s the limitation
in SmartFasS compared to OpenWhisk. The SmartFasS have been tested under heavy
workloads that handle multiple concurrent executions seamlessly and can handle high
concurrency.

The SmartFasS starting point is the main.js, where the main component gets initial-
ized; from there, all the command line arguments get parsed, and depending upon the
command line argument, it will execute either the orchestrate or initiate functions. The
initiate function retrieves the runtime and checks whether it is a JS environment or not.
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As of now, only this framework supports the JavaScript environment; in the near future
it will incorporate all the other programming languages, and then it uses the custom
functions like checkWarmContainer, installNpmPackage, and executeContainer. The
orchestrate function will create the container and label them warm or cold depending
upon the creation and install the required packages beforehand and make them readily
available for the execution. The Initiate function will execute the simple app inside the
pre-warmed container, and the output is logged for all the executions. For easier execu-
tion, all the scripts were added to the package.json file, and the available scripts are
shown in Table 4.

Scripts Description
orchestrate Runs the orchestration process using the main script and function.js
initiate Initiates the process using the main script and function.js
coldMitigation Runs the orchestration process and JMeter load script, logging outputs to respective log files
jmeter Executes the JMeter load script and logs the output
OpenWhisk Executes the JMeter script for OpenWhisk actions and logs the output
killall Kills all Docker containers with the name ”coldMitigation”
rmall Prunes all stopped Docker containers

Table 4: SmartFasS Scripts

The logs from the framework have been stored in the logs folder, which will be
used for evaluation and to compare the results with the OpenWhisk implementation. To
reduce the project complexity, the OpenWhisk implementation, which was also added
inside the smartFasS as a separate function, will get the compressed version of the simple
Node app and execute it in the OpenWhisk environment using the wsk CLI tool.

Timestamp Container Name Execution Type Duration (ms)
2024-11-16T12:43:21.151Z coldMitigation node 2bacb479-6971-47e0-a250-0f476154c5d2 cold 443.590
2024-11-16T12:43:51.348Z coldMitigation node a3ae5893-62e8-4699-a780-4e05f2fae0fa warm 353.429
2024-11-16T12:44:08.577Z coldMitigation node b87aa478-ea59-49a1-b780-bb66407c508c warm 286.520
2024-11-16T12:44:10.831Z coldMitigation node f1c81320-28fd-4195-8a41-92b02f59aaca warm 352.808
2024-11-16T12:44:46.889Z coldMitigation node 5d3f2620-8efb-4f19-94d1-516b267962b0 warm 298.784
2024-11-16T12:46:00.912Z coldMitigation node 85b31d00-0227-4417-9166-cb791df88a82 warm 375.696

Table 5: Logs from SmartFasS

5.2 Model Training

For creating the machine learning models, the Google Colab platform was used. By us-
ing that, it has provided a powerful set of tools on the fly, which is really helpful for
the study. First and foremost, this study explored the linear regression algorithm be-
cause of the continuous nature of timestamps. The usual train and test datasets were
created, which are used for predicting the function invocation time. The result provided
by the linear regression is quite interesting; the least-squares method showed very low
performance for the dataset, and the residual sum and the mean absolute error were also
pretty high. This may be caused by the length of the timestamp. Predicting an accurate
timestamp might be overkill for this algorithm. This algorithm showed slightly better
performance at changing the observations to inter-arrival times between requests. Then
this study explored the neural networks because it is widely used for time invocation pre-
dictions. Without LSTM we cannot progress in neural networks; the LSTM algorithm
was explored in the study to understand the predictions versus actual values, but this
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study didn’t include it because GRU (Gated Neural Network) provided better results.
Due to their specific nature, GRUs are better suited for time series predictions in server-
less computing since they perform well while handling sequential data. Because they
have fewer parameters, they are computationally more efficient than other time series
prediction models like Long Short-Term Memory (LSTM).In serverless function invoca-
tion patterns, short to medium-length sequences are frequently handled successfully by
GRUs.Furthermore, in comparison to other predictive models, the memory need is like-
wise quite low.GRUs are a good fit for the SmartFaaS framework’s predictive modeling
component because of these benefits In GRU this study has used a balanced window size
of 20; this provided the stability between the underfitting and overfitting data. First the
tanh activation function was used, and it resulted in poor performance; then the popu-
lar Relu activation function was used, which resulted in better computational efficiency.
Also, the bidirectional traversal influenced the predictions. Furthermore, a dense layer
was added to connect the neurons deeply; this resulted in a mean squared error (MSE) of
104.0309. The optimal model was found within the 5 epochs. The actual and predicted
values from GRU are shown in Figure 4. Finally, the delay time calculated from the GRU
and linear regression was considered for the final evaluation.

Figure 4: GRU Predictions

5.3 Apache JMeter

To create a real-world simulation of serverless computing, Apache JMeter was used along
with the Azure function trace dataset, which has the function invocation trace of two
weeks of data. This study encompasses a custom test script that will be running alongside
the SmartFasS framework. The workflow of the test plan is shown in the figure. The test
plan includes an OS system sampler, which will execute the SmartFasS function on each
iteration, and the test plan has two flow control actions that will execute the iteration
based on two conditions:

a) waitTime < total execution time

b) waitTime ≥ total execution time
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These conditions will decide the flow execution. if condition a is true, the thread will
move on to the next line; on the other hand, if the condition b comes true, it will pause the
execution for a certain period of time and resume the execution. The pause delay time is
calculated by the waitTime - total execution time From this, the delay variable
is set, and all the results from this are stored in a separate file under the logs folder.
For OpenWhisk implementation, a separate test plan was created using the same logic;

Figure 5: JMeter Test Plan

the only difference was in the OS sample. Instead of calling the SmartFasS function, the
script will execute the wsk command that will execute the simple node app and store the
results.

6 Evaluation

This section explains the in-depth analysis and evaluation done between smartFasS and
OpenWhisk. Total, this study carried out three experiments that all have shown provided
significant improvements over the vanilla OpenWhisk. In experiment 1, done to compare
the CPU and memory utilization between the two servers, the main experiments were
2 & 3, which emphasize the importance of SmartFasS and the significance of caching
and function invocation prediction. In experiment 2 demonstrate the need for robust
cache algorithm to improve the overlall performance of the system and reduced data re-
trieval times, leading to faster function execution. Experiment 3 shows the effectiveness
of function invocation prediction and importance of pre warming the conatiner before-
hand, SmartFaaS was able to preload necessary resources, thereby minimizing latency
and improving response times. The combined results of these experiments highlight the
superior performance of SmartFaaS over OpenWhisk, particularly in terms of resource
utilization, execution speed, and scalability.

6.1 Experiment 1

In this experiment, both systems were set to run in parallel to analyze the CPU, memory,
and disk performance for both systems. On both servers the experiment was set to run for
one hour, that is, 27/11/2024, 8 pm to 9 pm, by executing a node app with the resource-
heavy package lodash performing a simple text manipulation. Figure 6(a) shows the
CPU utilization between both the servers. Over the period of one hour, SmartFaaS util-
ized approximately 30% of resources, indicating handling tasks more efficiently, whereas
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(a) CPU utilization OpenWhisk vs SmartFaaS (b) Memory utilization OpenWhisk vs Smart-
FaaS

Figure 6: Resource utilization comparison between OpenWhisk and SmartFaaS

OpenWhisk consistently used higher resources, around 90%, indicating less adaptiveness
during workload. This indicates that SmartFasS is the more cost-effective solution.

The Figure 6(b) shows the memory utilization between both the servers at the same
period of time. The OpenWhisk server steadily maintained ( 60–80%), indicating higher
resource allocation, but on the other hand, shows consistent memory utilization of ( 30%)
throughout the testing. SmartFasS indicates resilience by reducing memory spikes, offer-
ing better resource utilization for production environments. These figures are obtained
from the GCP monitoring dashboard for observing instance activity.

6.2 Experiment 2

In Experiment 2, the machine learning model delays were used for pre-warming the con-
tainers using SmartFaaS. This experiment uses the linear regression model for predicting
the time of invocations. For comparison, the vanilla OpenWhisk setup was used. This
experiment also uses the same node app for execution on both the servers. The data-
set used for this experiment was a specific time frame from the Azure dataset, which
is 2021-02-01 10:00 - 14:00. The JMeter script will trigger the initiate function
on the SmartFasS, and the orchestrate function uses delay times from the machine
learning model. For the OpenWhisk, the Azure dataset was used to run the test script
with the same flow control configurations. The logs from both executions were stored
and analyzed in the Colab platform.

The logs have provided significant insights about the performance between the two
servers. SmartFaaS consistently maintains a lower execution time that is under 500 ms.
This occurs because of the container reuse and preloading the libraries into the container.
On the other hand, OpenWhisk showed a higher execution time between 1000 ms and
2500 ms, which is pretty high when compared to SmartFaaS. One thing to keep in mind is
that for OpenWhisk, for every iteration, it needs to create and invoke the action; this may
influence the latency, but to make the comparison fair between them, this approach was
implemented. The Figure 7(a) shows the average execution time between the SmartFaaS
and OpenWhisk. The initiator logs from the SmartFasS show the distribution between
the warm and cold starts held during the SmartFasS implementation; it shows over 63%
of executions were warm starts from pre-warming the container beforehand Figure 7(b).
This shows the efficient resource optimization over the vanilla OpenWhisk server.
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(a) Execution time between OpenWhisk and
SmartFaaS

(b) SmartFaaS - Warm vs Cold Distribution

Figure 7: Experiment 2 Analysis

6.3 Experiment 3

To analyze the proposed solution more effectively, another day was chosen from the data-
set, which is 2021-02-04 12-18, and the GRU prediction delays were used to orchestrate
the container by preloading the libraries and making it readily available for execution.
The lodash node app was used here for the two servers.The JMeter script will execute
the initiate function inside SmartFasS based on the flow control action. This exper-
iment was carried out two times, first for 6 hours and then next for approximately 70
mins. For evaluation, the second simulation was taken, and the logs from both JMeter
and SmartFaaS showed interesting results. The OpenWhisk execution logs from JMeter
were evaluated; Figure 8(a) shows that the X-axis represents the number of events that
were executed and the Y-axis shows the execution time of values between 500ms and
2500ms. The moving average was calculated; this helps to show the trends in latency
without any sudden spikes. The mean for all the events is shown in the red line, and
the standard deviation (std) in the green line indicates the variability or dispersion time
around the mean.

(a) Phase 2 - JMeter OpenWhisk Execution logs (b) Execution time between OpenWhisk and
SmartFaaS

Figure 8: Experiment 3 Analysis
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The Figure 8(b) shows the average execution. The SmartFasS execution time shows
huge improvements compared to the OpenWhisk platform. SmartFasS maintained con-
sistent execution time under 200 ms, emphasizing the benefits of preloading the libraries
and prewarming the container, reducing the setup overhead. whereas the OpenWhisk
server’s average execution time was around 1200 ms, indicating a drastically slower per-
formance and absence of preloading or prewarming the container. The performance gain
of over 70% indicates that SmartFaaS is more efficient in handling diverse workloads
under scenarios requiring high responsiveness.

6.4 Discussion

All the experiments have provided valuable insights on SmartFaaS efficiency. The Ex-
periment 1 shows the comparison between the resource utilization, cost-effectiveness, and
better adaptiveness from Figures 6(a) & 6(b). Still, the performance metric for that
experiment was carried out for 1 hour, which may not be valid for longer-term per-
formance metric calculation, and the only single application was tested throughout all
experiments; increasing the workload may provide interesting results. In Experiment 2,
we see the importance of cache and preloading the libraries into the container; Smart-
FaaS showed significant reduction in function execution times compared to OpenWhisk.
Figure 7(b) and the huge performance improvements over OpenWhisk. The cache hits
and misses weren’t monitored, which may affect the real-world scenarios, and introdu-
cing diverse workloads may bring newer challenges. Furthermore, the OpenWhisk setup
had to invoke and create every action for each iteration, which may influence cold start
latency. The third experiment, which showed the importance of the function invocation
prediction, SmartFaaS prediction accuracy provides better strategies for pre-warming the
containers beforehand, reducing the cold start latency, and this allows SmartFaaS to scale
more efficiently. Figure 8(b), as of now, SmartFaaS is being compared with OpenWhisk;
comparing it with all other solutions may bring valuable insights to improve SmartFaaS.
From the above experiments it shows that SmartFaaS reduces overhead from preloading
libiraies at runtime which leads to faster execution times. SmartFaaS shows optimized
resource allocation by dynamicaly allocating them based on the workload which reduces
resource usage at idle times. The system is designed to scale efficiently with increasing
workloads, maintaining performance levels even under high demand.The cache manage-
ment techniques to ensure that frequently accessed data is readily available, reducing
latency and improving performance. Finally, detailed monitoring and analytics, allowing
for real-time performance tuning and identification of potential issues. Furthermore, us-
ing other machine learning models may bring greater performance improvements, such
as classification algorithms instead of regression algorithms. The linear regression model
showed greater performance in warm and cold start distributions when compared to GRU.
The loading test tool helped to achieve the real-world simulation efficiently by defining a
proper flow control plan that pauses the execution, which remains crucial for the study.

The limitation of this study is that the current implementation of smartFasS is lim-
ited to Node.js applications which restricts its applicabilty to other programming envir-
onments. The evaluation was conducted using a sinlge node.js application with lodash

package, this may not accurately track the performance accross diverse workloads. Smart-
FaaS dosent monitor the cache hits and misses which are crucial for understanding the
the effectiveness of the caching mechanism.
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7 Conclusion and Future Work

Returning to the question posed at the beginning of this study 1.2, was addressed and sig-
nificant contribution in reduction of cold start was made. The primary goal of the study
is to develop a hybrid approach that combines predictive modeling to forecast function in-
vocation with adaptive caching to lower cold start frequency and latency. This has been
addressed. This study involves two servers, one running Apache OpenWhisk and the
other running the SmartFaaS framework. A Node.js app was used to simulate serverless
behavior, and custom JMeter scripts were created to generate serverless-like scenarios.
The SmartFaaS framework utilized predictive modeling and adaptive caching to reduce
cold start latency and frequency. The key finding from the study was that SmartFaaS
consistently used 30% of resource throughout all the experiments and the overall exe-
cution time were maintained under 200 ms compared to OpenWhisk 1200 ms showing
an approximate 83% reduction in latency. By Using the predictive model in SmartFaaS
only 37% of cold starts were recorded showing efficient reduction in cold start frequency.
Experiment 2 showed that SmartFaaS maintained execution times under 500 ms, while
OpenWhisk had higher execution times between 1000 ms and 2500 ms. Experiment 3
further highlighted the benefits of preloading libraries and prewarming containers, with
SmartFaaS maintaining execution times under 200 ms compared to OpenWhisk’s 1200
ms. The number of warm starts was also significantly high in both experiments. This
shows the importance of SmartFaaS for mitigating cold start latency.

The implications of this research are significant for developers and cloud service pro-
viders, as SmartFaaS offers a more efficient and cost-effective solution for mitigating cold
start issues in serverless computing. This research is evident in the substantial perform-
ance improvements observed in the experiments. This study’s shortcoming is that the
current implementation of smartFasS is confined to Node.js apps, hence restricting its
applicability to other programming environments. The assessment was performed util-
izing a singular Node.js application with the lodash package, which may not reliably
monitor performance across varied workloads. SmartFaaS does not monitor cache hits
and misses, which are essential for assessing the efficacy of the caching mechanism. Fu-
ture work could involve testing SmartFaaS with diverse workloads and comparing it with
other serverless solutions to gain more insights. Adding runtime environments other than
Node.js to get the performance insights. Exploring other machine learning models, such
as classification algorithms, may also bring greater performance improvements. Addi-
tionally, integrating SmartFaaS with commercial serverless platforms like AWS Lambda
or Google Cloud Functions could provide valuable feedback and potential for commer-
cialization. With this intergrations the comercial software could adapt similar strategies
like resource optimization, caching libiraies and pre warming technique. This also could
reduce the overhead and improve signifiacant performance. A follow-up research project
could focus on optimizing the predictive model and adaptive caching algorithm for dif-
ferent types of serverless applications, further enhancing the framework’s efficiency and
scalability.
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