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Deep Learning Techniques for Anomaly Detection in
Cloud Computing

Serena Santosh
x23246642

Abstract

Cloud computing, which enables on-demand access of computing resources over
the internet, is a paradigm that is undergoing a lot of changes. With a lot of or-
ganisations shifting to cloud, there is a vast amount of data and resources in cloud,
which needs to be protected. This research proposes the usage of GRU-BERT
(Gated Recurrent Unit - Bidirectional Encoder Representations from Transformers)
model with self-attention mechanism to detect anomalous behaviour in cloud which
is essential to increase the resiliency of the cloud. The possibility of using autoen-
coders with self-healing mechanism is also discussed in this research. The aim of
this project is to implement a solution that can increase the security in cloud with
increased performance in terms of cost, computational complexity, execution time,
and energy consumption. GRU-BERT model was evaluated based on performance
metrics and it outperformed LSTM (Long Short-Term Memory) in terms of cost by
46.55%. Optimisation of NAB (Numenta Anomaly Benchmark) by making use of
standard performance metrics for evaluation generated better results with regards
to reducing the false negatives. Bayesian optimisation technique was utilised to op-
timise the hyperparameters in GRU-BERT. This technique was implemented using
Hyperopt, producing great results with increased overall performance in terms of
validation loss.

1 Introduction

Cloud infrastructure is prone to different types of security issues that can be challenging
to the users and cloud providers. A security breach and the resulting downtime would
adversely affect cost, data, energy and labour and lead to huge losses. In this context, it
is of utmost importance to detect any anomalies in the cloud as and when they occur,
take appropriate measures to rectify them and also take the required steps to prevent
them. Deep learning techniques could be used to detect and resolve unusual behaviours
in the cloud efficiently and rapidly.

The computing resources are provided by the cloud service providers remotely, while
computing is done over the cloud. Disruption of services and loss of data are the major
issues here and hence strict measures have to be taken to strengthen the security of the
data (Singh and Chatterjee; 2017, pp. 88-115). End users and cloud providers are both
concerned about the security of their system. Virtualisation is a feature in the cloud that
is subject to security threats. This is because the VMs (Virtual Machines) that are not
properly isolated can be attacked easily. Multi-tenancy is another feature in the cloud
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that is susceptible to security issues since multiple users share the same cloud platform.
Hence, maintaining high security in cloud computing is extremely important.

1.1 Background and Motivation

Many organisations are transitioning to the cloud and there is an increased demand for
secured cloud services and solutions. There is great need for enhanced security for the
data and transactions in the cloud and this is the motivation behind this research. Better
processing power and security are provided by edge computing, but it is not cost effective
while deploying at a big scale. Cloud computing is relatively inexpensive while considering
the infrastructure requirement. Hence there is a huge amount of data on the cloud which
is susceptible to cyber threats and attacks (Khan and Al-Yasiri; 2016, pp. 485-490).
Since security is vulnerable on the cloud in connection with storage, virtualisation, and
network, there is a great need for a resilient system that is secure enough to withstand
such attacks.

Similar works in this direction were studied thoroughly and analysed critically. Though
deep learning techniques have been used to enhance the security in the cloud, there is
scope for improvement of the performance of the models used. It was identified that
an ensemble model with self-attention mechanism and self-healing mechanism would en-
hance the ability to detect anomalies in the cloud. The review of the literature also led
to the identification of the following research gap. Reduction of future security issues
in the cloud by taking preventive steps and corrective actions have not been addressed
adequately in the previous works.

1.2 Research Question

The above research problem motivates the following research question:

• How well can anomalies in public cloud infrastructure be detected by using the
GRU-BERT model with self-attention mechanism to improve cloud security and
protect end users?

• To what extent can autoencoders be used to predict patterns and reduce future
security issues in the cloud?

• What are the contributions made to enhance the overall resiliency and market value
by utilising self-healing mechanisms to automate processes in cloud security?

Identifying how well anomalies in public cloud infrastructure can be detected by using
the GRU-BERT model with self-attention mechanism is the primary aim of this research.
GRU, a variant of RNN (Recurrent Neural Network), is capable of handling large datasets
and can be used to study cloud behavioural patterns. BERT, a transformer-based model,
can effectively process and understand the meaning of data from multiple sources. For
non-textual data, a simulated BERT model can be applied. By using a self-attention
mechanism, the model can identify the most significant parts of the logs during analysis.
This can be further extended by using autoencoders with self-healing mechanism. This
would help in detecting any variations from the usual behaviour and also take necessary
action to prevent any loss to the users or the cloud providers.

The rest of this research proposal is organised into 7 sections with subsections for all
the sections. Related work is discussed in section 2, which is a critical analysis of similar
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works. Section 3 describes the methodology utilised in this study, where GRU-BERT
model with self-attention mechanism and autoencoder with self-healing mechanism to
detect anomalies in cloud (proposed methods) are discussed. Section 4 discusses the
design specifications, while section 5 presents the implementation of the proposed meth-
ods. Section 6 discusses the evaluation of the proposed methods, while conclusion and
future work are presented in section 7.

2 Related Work

This section provides a review of recent research within the past 10 years. The review
is structured into 4 subsections, with the first 3 focusing on specific research themes.
Subsection 4 discusses research gaps and compares the critically analysed papers. This
section ends with a conclusion that summarises the review and defines the research niche.

2.1 Methods

Many researchers have worked on identifying the best approaches for cloud anomaly de-
tection. Some have used self-attention mechanisms to effectively pre-process and classify
cloud logs (Hu, Cao, Ruan and Wu; 2023). Though this approach yields good results,
exploring combinations with other models can further improve classification accuracy and
reduce security risks.

CNN (Convolutional Neural Network), Bi-LSTM (Bidirectional- LSTM), attention
mechanisms and decision trees were successfully utilised to detect cloud anomalies (Gao;
2022, pp. 1-11). However, converting traffic data into images can impact performance
especially when large datasets or new anomaly types are encountered.

A modified LSTMmodel to detect internal attacks on cloud systems was also proposed
(Nathezhtha and Yaidehi; 2018, pp. 60-65). This approach effectively reduces false
positives. But the model’s complexity and memory requirements limit its scalability.
Transformer models like BERT could be used for a more efficient and scalable solution
for cloud anomaly detection.

Combining BERT with LSTM while considering both global and temporal cloud traffic
features effectively classifies anomalies with good accuracy (Shi et al.; 2023, p. 821). This
research suggests that a combined approach outperforms the use of BERT or CNN alone.
However, the computational complexity of LSTM, especially for large datasets can lead
to significant training time and cost. Hence, simpler and more efficient models like GRU
could be a better option for moderately sized datasets.

The 4 research papers reviewed various approaches to cloud anomaly detection. While
CNN, LSTM and Bi-LSTM models are commonly used, they may not be suitable for
large datasets due to computational limitations. Combination of transformer models like
BERT with efficient models like GRU provides a better and scalable solution for anomaly
detection. This approach can improve cloud security, protect end users, and increase the
market value of cloud-based products.

2.2 Solutions

A study on the classification of documents using a GRU model with more than 5000
citations has proven to be a good solution to classify textual data accurately and efficiently
(Yang et al.; 2016, pp. 1480-1489). An attention mechanism based on the hierarchical
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format of the documents is the backbone of this research. The GRU model is quite
efficient for classification without the requirement of much memory. This could be further
refined and used to detect and classify cloud anomalies. Combining GRU with BERT
can significantly enhance performance especially in the case of large datasets. Such
a combination would improve the cloud security through the insights received on the
detected anomalies.

An improved GRU model has been proposed for trajectory based anomaly detection.
Combining this model with a random forest algorithm gives better results than traditional
GRU and other RNNs in cloud anomaly detection (Guohao et al.; 2024, pp. 1-17).
Integrating an improved GRU with BERT can further enhance the performance. This
leads to a more efficient and quicker anomaly detection while improving cloud security
and user protection. In addition to this, the use of autoencoders helps in the identification
of anomaly patterns so as to provide valuable insights in preventing future security issues
in the cloud.

Use of autoencoders resulted in the generation of classified anomalies with good accur-
acy (Torabi et al.; 2023, pp. 1-13). Here errors are calculated based on a reconstruction
mechanism. The reconstruction error, which is a metric used for classification has led to
an improved performance when tested on CIDDS-001 (Coburg Intrusion Detection Data-
sets), but issues still persist in many practical scenarios. Hence, instead of depending on
autoencoders alone for the detection of anomalies, the combination of other models like
GRU, along with autoencoders would lead to better results and accurate classification
of anomalies in the cloud. The combination of autoencoder with self-healing mechanism
that automatically fixes the detected anomalies in the cloud is a better option that would
enhance the overall resiliency and market value.

The PIACERE project suggests a self-healing mechanism for cloud continuum ap-
plications (Alonso et al.; 2021, p. 308). This focuses on IaC ((Infrastructure as Code)
optimisation, self-learning, and self-healing using anomaly detection to identify issues at
the early stage itself. When anomalies are identified, corrective actions to restore it to
the original state without disrupting ongoing processes are initiated. While this research
focuses on cloud applications, the basic principles can be extended to identify and rectify
anomalies in cloud networks.

In the preceding section, the discussions based on 4 research papers focused on various
solutions to detect anomalies in the cloud. Though GRU and autoencoder models have
been effective for cloud anomaly detection, combination of multiple models would further
improve performance and efficiency. A self-attention mechanism can be integrated to
identify critical features and a self-healing mechanism for the automation of corrective
actions. This approach significantly improves the resilience and market value of cloud
based solutions.

2.3 Design and Architectures

Combination of sentence BERT and Bi-LSTM for cloud anomaly detection was explored
in a recent study (Hu, Sun, Dai, Zhang and Liu; 2023). While this model gives good
results, further improvements are required to handle logs from diverse sources and to
optimise pre-processing. Also, future research should focus on customising the design to
meet specific user requirements.

A GRU-BERT model to summarise multiple documents was also proposed recently
(Sana and Akhtar; 2023, pp. 503-507). This model can be modified to detect anomalies
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in cloud logs from various sources. The BERT model is used to identify semantic meaning
from the logs while the GRU model is used to analyse sequential patterns. Anomalies can
be detected by identifying deviations from the normal behaviour. Autoencoders can be
used to improve the system so as to provide deeper insights into the nature of detected
anomalies.

The 2 research papers discussed above focused on a critical analysis of the similar
works that relates to the design aspects of the research proposal. It was concluded that
for proper implementation of the proposed research, a very good cloud-based design is
required. All the necessary implementation details, as well as the requirements of the
end user and the specifications by the cloud provider are to be considered by this design.
Although the preceding designs provide useful insights and serve as a starting point for
the proposed research, they require modification to accommodate factors like efficiency,
dataset scale and composition, training duration, cost, and performance.

2.4 Gaps and Comparisons

Table 1 summarises the comparisons of the top 5 papers that were critically analysed.
The comparison was based on the methods used, the results obtained, identified gaps and
cloud-based design.
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Table 1: Gaps & Comparisons
Methods Results Gaps Cloud-based

Design
Authors

LSTM with
self-attention
mechanism

Binary clas-
sification as
abnormal and
normal with
great accuracy

Combination
of models for
multi-class
classification
of detected
anomalies

Only the archi-
tecture of the
network is spe-
cified

Hu, Cao, Ruan
and Wu (2023)

LSTM and
BERT

Classification
of malicious
traffic in the
cloud with
great accuracy

Consideration
of models
based on com-
putational
complexity,
training time
and cost

Only the archi-
tecture of the
model is illus-
trated

Shi et al.
(2023)

Optimisation,
self-learning
and self-
healing

Anomaly de-
tection and
corrective
actions in
cloud-based
applications

Usage of trans-
former based
models with
self-attention
mechanism for
effective anom-
aly detection

A 3 layered
design that
focuses on
optimisation,
self-learning
and self-
healing on IaC

Alonso et al.
(2021)

Autoencoders
with recon-
struction of
error mechan-
ism

Detection and
classification of
anomalies with
high accuracy

Combination
of autoen-
coders with
self-healing
mechanism
and trans-
former based
models

Only the model
architecture is
specified

Torabi et al.
(2023)

GRU-BERT Accurate sum-
marisation
of results
from multiple
sources

Application of
autoencoders
to further
analyse the
summarised
results

Architecture
of the GRU-
BERT model
is illustrated,
which would be
improvised for
the proposed
research

Sana and
Akhtar (2023)

The literature review revealed research gaps in cloud anomaly detection, particularly
concerning methodologies, results, and cloud-based design. The analysis indicated that
a hybrid approach combining GRU and BERT models with self-attention mechanism
offers a robust solution for detecting and classifying anomalies. Furthermore, using au-
toencoders with self-healing mechanisms can provide valuable insights into the detected
anomalies, improving system resilience and market value. This research aims to evalu-
ate the performance of the GRU-BERT model with self-attention mechanism to enhance
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cloud security and user protection. Another aspect being investigated is the potential of
autoencoders with self-healing mechanism to predict patterns in cloud logs and tide over
future security risks, thereby increasing market value.

The preceding section provides a critical analysis of existing research, examining meth-
odologies, solutions, designs, and architectures. Key contributions, limitations, and re-
search gaps were identified. Based on the literature review, the research niche was iden-
tified and the proposed contributions have also been discussed.

3 Methodology

There are various steps in the research methodology which contribute to the problem
being solved. These steps are explain under this section.

3.1 Problem Formulation

The first step is to identify the problem that is being solved. Based on thorough research
and critical analysis of previous works, it was found that ensuring the security in cloud is
extremely necessary. It was also concluded from previous research that the existing deep
learning models are not robust enough to withstand attacks and that there could be other
models that can improve the performance and accuracy of anomaly detection. Based on
further research, it was concluded that the GRU-BERT model with self-attention mech-
anism can be used for anomaly detection in cloud, with high accuracy and performance.
The observation that the usage of autoencoders with self-healing mechanism can be used
to take corrective actions and avoid the occurrence of such anomalies is something that
this research tries to implement as well.

3.2 Data Collection

The research makes use of the dataset that is collected from the official NAB GitHub
repository1. It consists of 58 time-series data files that help in anomaly detection in cloud.
The NAB dataset is publicly available to be downloaded and used freely for research and
academic purposes. This dataset contains logs from multiple sources including the clicking
rates of online advertisements, data with anomalies having known causes, traffic data in
real-time of a particular area, Twitter data of two large companies, artificially generated
data with and without anomalies, and AWS CloudWatch logs. The AWS CloudWatch
logs provide information on the network bytes coming in, CPU utilisation rates and, disk
read bytes. For the purpose of this research, only the AWS CloudWatch logs that give
information on CPU utilisation were used. This dataset has two labels, namely timestamp
and value, that show the value of CPU utilisation at a particular timestamp. The size of
the dataset was increased which resulted in lesser validation loss. Further pre-processing
steps were performed on the dataset before training it with the model, which is explained
in the later sections.

1https://github.com/numenta/NAB
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3.3 Tools Used

Google Colab made use of to implement this research because of the processing power
that it offers on cloud for free. Since Python was the programming language used, Google
Colab is a good choice of development environment. Versioning control, easy sharing, and
access are also some other reasons to choose Google Colab. Hyperopt, which is a Python
library, was made use of to perform hyperparameter optimisation. TensorFlow, which is
an AI (Artificial Intelligence) tool was used to implement the AI models. NumPy was
used to perform certain mathematical functions with the dataset. Pandas was used to
work with the dataset, mainly in cleaning and optimising the data. Various libraries in
Scikit-learn were made use of to produce better results. Matplotlib was used to generate
insightful results visually which can be further interpreted.

3.4 Algorithm Implementation and Integration

The algorithms used in this project involve the implementation of the GRU-BERT model
with self-attention mechanism and autoencoder with self-healing mechanism for anomaly
detection.

Figure 1: Anomaly Detection Using GRU-BERT and Autoencoder

As shown in Figure 1, the implementation and integration of the GRU-BERT al-
gorithm, along with autoencoder span across various steps. These are explained in detail
with the help of the block diagram given below.
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Figure 2: GRU-BERT and Autoencoder Implementation

As shown in Figure 2, the first step is to utilise the CPU utilisation data from the
NAB dataset and, optimise the dataset by increasing its size. Apply data pre-processing
techniques such as removing the missing values, removing the outliers using IQR (Inter
Quartile Range) technique, and splitting the dataset for training and testing purposes.
Perform hyperparameter optimisation using Hyperopt and use the optimised hyperpara-
meters to build the GRU-BERT model with self-attention mechanism. Train GRU-BERT
on the training set and then test it on the test set. Evaluate GRU-BERT based on per-
formance metrics mentioned in section 3.5 and using standard performance metrics, while
also making sure to compare it with LSTM.

Build the autoencoder model with self-healing mechanism. Train autoencoder the
training data and test it on the test data. Evaluate autoencoder based on standard per-
formance metrics. Include visualisations for better analysis and interpretation of results.

The NAB makes use of a sigmoidal scoring function to calculate the weights of the
anomalies detected (Singh and Olinsky; 2017, pp.1570-1577). This is dependent on the
anomaly window and application profile. This approach has some limitations such as
determining the size of the anomaly window and gaps in the scoring function. Hence,
NAB is optimised to make use of other standard performance metrics to evaluate the
model’s performance.
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3.5 Performance Metrics

The performance of GRU-BERT is calculated using the following parameters:

• Cost: Calculated using the value of the validation loss function (Binary Cross
Entropy) that measures how well the prediction of the model matches with the
actual target.

• Computational Complexity: Measures the efficiency of the algorithm based on the
number of parameters used in the model, thus calculating the computational com-
plexity of the model.

• Execution Time: Refers to the amount of time taken to train the model.

• Energy Consumption: Measured in terms of the power consumption based on CPU
usage and execution time.

3.6 Comparison with existing algorithms

The performance of the GRU-BERT model was compared with the LSTM model and
the results were analysed. LSTM, which is a type of RNN, is capable of learning and
retaining information over time. This feature helps in detecting anomalies in cloud using
LSTM efficiently. While both algorithms provide results with great accuracy, LSTM is
more complex, and prone to overfitting, while GRU is faster, less complex, and less prone
to overfitting.

4 Design Specification

The system requirements, techniques, architecture, and description of the GRU-BERT
and autoencoder model are presented in this section.

4.1 System Specifications

Table 2 shows the system specifications that was made use of to carry out this research.
Connection to the Python 3 GCE (Google Compute Engine) was made from Google
Colab to execute the code.

Table 2: System Specifications
Parameter Specification
System Architecture x64
Operating System Windows 11
System RAM (GCE) 12.7
Disk (GCE) 107.7
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4.2 Techniques

This section describes the major techniques used in this research project

• Optimise the hyperparameters: Automate hyperparameter optimisation using Hyper-
opt to choose the best parameters for training the models. The parameters chosen
are number of dropout rate, batch size, learning rate and, number of GRU units.

• Build GRU model, simulated-BERT model and integrate: Build the GRU model
with hidden states. Implement a self-attention mechanism to pay attention to the
relevant sections of the output from GRU. Build the simulated BERT model, which
is less complex and more suitable for non-textual data and integrate it with GRU
model. Add dense layers for optimisation purposes.

• Build autoencoder model: Build the autoencoder model that has an encoder that
decompresses the data and a decoder that reconstructs the data back to its ori-
ginal form. The self-attention mechanism helps in paying attention to the relevant
sections of the input data.

• Train and test the models: Train the GRU-BERT model using the optimised hy-
perparameters and analyse the results. Also train the autoencoder model. Test
both models on the test data and observe the output.

• Evaluate the models: Evaluate the GRU-BERT model by comparing it with LSTM.
Compare both algorithms based on performance metrics such as cost, computational
complexity, execution time and energy consumption. Also compare the algorithms
based on standard performance parameters such as F1 score, precision, accuracy,
and recall.

4.3 Architecture

• Bayesian optimisation: Bayesian Optimisation was performed using HyperOpt lib-
rary in Python. This is an automated way of finding out the best hyperparameters
that can be used to build and train the model. Finding the best hyperparameters
is essential to increase the performance of the algorithm. This will also help to find
a trade-off between F1 score and validation loss. Initially, more than 20 hyperpara-
meter combinations were searched. Each combination was evaluated on a validation
set, thus optimising the validation loss. The best parameters were extracted and
used to train the model for 20 epochs. The model was evaluated again based on
the performance metrics.

4 hyperparameters were considered for the GRU-BERT model: Units, which de-
scribe the number of GRU units, also known as hidden states. Learning rate meas-
ures the size of the steps that the model takes to update its weights. Dropout
rate which determines the number of neurons to be dropped while training, is a
technique to decrease overfitting. Batch size defines the total number of training
samples that are processed before the model updates its weights.

• GRU-BERT: The GRU model consists of various layers with each having a specific
purpose. The input layer was used to define the shape of the data given as input,
which is a single feature, scalar in nature. GRU model has units which refers to
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the number of GRU units, also known as hidden states. The GRU layer processes
the sequential data, while also making sure to not just return the output from the
final state, but also to save the hidden states. Lambda layer was made use of to
make the input dimension compatible with the GRU layer. The output from the
GRU layer consists of sequential features. The attention layer was utilised to focus
on the relevant parts of the output from the GRU. The reshape layer made sure
to flatten the output from the attention layer, making it suitable to be used in the
dense layers.

Simulated BERT model was implemented with dense layers and by utilising ReLU
(Rectified Linear Unit) activation function. Simulated BERT model was used in-
stead of an actual BERT model, because the actual BERT model is more suitable
for textual data. Since CPU utilisation data is non-textual, and less complex, a
simulated BERT model would produce better results than an actual BERT model.
The simulated BERT model learned and generated BERT embeddings (simulated)
from the input (single feature).

The GRU model and simulated BERT model were combined and dense layers with
ReLU activation function were added for dimensionality reduction. Dropout layer
was added to decrease overfitting. The output layer was added along with sigmoid
activation function, which is suitable for binary classification, thus returning a
probability between 0 and 1. The input layer and output layer was combined, thus
defining the model, and producing a binary classification output. Adam optimiser
was used for optimisation in this stage and BCE (Binary Cross Entropy) was used
as the loss function, which is suitable for binary classification.

• Autoencoder: An autoencoder model was utilised with self-healing mechanism to
reconstruct the error and fix it. The encoder decompresses the input data into a
lower dimension. The decoder reconstructs the original input from the encoder.
The input from the input layer was made use of by the encoder. Initially, the
dimension was reduced to 64 dimensions and later on to 32 dimensions. ReLU
activation function was used in this stage. An attention layer was utilised to pay
attention to the relevant sections of the input. The output from the encoder was
reshaped to make it compatible with the attention layer, and further reshaped back
to its original form to be suitable to be used in the further dense layers.

The decoder initially converted the input of 32 dimensions to 64 dimensions. ReLU
activation function was used in this stage. Then the decoder reconstructed the ori-
ginal input, while making sure to use sigmoid activation function. Finally all these
layers were combined and the autoencoder was returned. MSE (Mean Squared Er-
ror) was used as the loss function and adam optimiser was used for optimisation.
Self-healing mechanism was applied to fix the errors. The autoencoder tried to
reconstruct the original data, with the aim of producing error-free data. The pre-
dictions made by the trained GRU-BERT model and a threshold were made use of
to apply the self-healing mechanism. Thus, the errors were replaced by the healed
data produced by the autoencoder.
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4.4 Anomaly detection in cloud using GRU-BERT and Autoen-
coder

The pre-processed input data (CPU utilisation rates) was the input for the GRU-BERT
model. The input varies from 0 to 100, and values greater than 80 and less than 10 were
considered to be anomalous since values that are too high (above 80) and too low (below
10) are classified as anomalies in cloud. 80% of the data was used for training and 20%
for testing. Based on hyperparameter optimisation results, the GRU-BERT model was
created and optimised with 64 GRU units, and a batch size of 94. The dropout rate was
0.1946, while the Learning rate was 0.0173. Self-attention mechanism was used to pay
attention to the relevant sections of the output from GRU. After training and testing the
model on the data, the results were evaluated based on the standard performance metrics
which can be calculated by equations (1)(2)(3)(4) respectively for Accuracy, Precision,
Recall and F1 score.

Accuracy =
TN + TP

TN + FP + TP + FN
(1)

Precision =
TP

TP + FP
(2)

Recall =
TP

TP + FN
(3)

F1score = 2× Precision×Recall

Precision+Recall
(4)

The performance of the GRU-BERT model was also evaluated based on the BCE loss
function used, as shown in equation (5).

BCEavg =
1

N

N∑
i=1

− [yt × log(yp) + (1− yt)× log(1− yp)]

where N is the total number of samples, yt is the true label for each sample i

and yp is the predicted probability that the sample is part of the positive class (5)

The autoencoder was used to reconstruct the input without anomalies and self-healing
mechanism was applied to fix anomalies detected using GRU-BERT with the reconstruc-
ted input. The autoencoder model was created using different layers such as input, en-
coder, decoder, attention, dense and so on. The model was trained, tested, and evaluated
based on the MSE loss function as shown in equation (6).

MSE =
1

N

N∑
i=1

(yi − ŷi)
2 (6)

where

yi is the actual value for each sample i,

ŷi is the predicted value for each sample i,

N is the total number of samples.
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5 Implementation

The final stage of the implemented solution is presented here, along with the outputs
produced, tools and languages used, and key outcomes.

5.1 Development of GRU-BERTmodel with self-attention mech-
anism and Autoencoder with self-healing mechanism

The solution was implemented on Google Colab with Python as the programming lan-
guage used. The data used for implementation contains values of the CPU utilisation
rates, in between the range of 0 and 100. Pre-processing was performed on the data by
removing missing values and removing outliers using the IQR technique. The data was
split into training and testing sets, with 80% of the data for training and 20% for testing.

This data after reshaping, was input to the GRU and simulated BERT model. Hyper-
parameter optimisation was done using the Hyperopt library in Python to find trade-offs
between hyperparameters and use the ideal ones while training the model. GRU-BERT
was trained on the training set and tested on the test set, resulting in the classification of
logs as anomalous or non-anomalous. Execution time, CPU usage, energy consumption
and so on were measured to evaluate the model based on performance metrics. GRU-
BERT was also compared with LSTM model and the performance was analysed based on
performance metrics. The results were also visualised using bar graphs for better analysis
and interpretation of the results. An autoencoder model with self-healing mechanism was
implemented to fix the anomalies detected using GRU-BERT. The model was implemen-
ted with different layers, trained and tested. The training loss and validation loss were
observed. Self-healing mechanism was implemented and the original data and self-healed
data were observed. The autoencoder was evaluated based on various performance met-
rics, and the results were analysed.

5.2 Outputs Produced

The classification of logs as anomalous or non-anomalous by GRU-BERT and the gener-
ation of healed data by autoencoder are the two main outputs. This is described in terms
of the values of performance metrics, hyperparameters, and loss function.

5.3 Tools and Languages Used

• Google Colab: Google Colab was used as the IDE due to various reasons such as
free processing power up to a certain limit, easy access and sharing, compatibility
with Python and so on.

• Python Programming Language: Python was used as the programming language
due to the various libraries it offers, flexibility and ease of coding.

• TensorFlow: TensorFlow was used to implement and optimise the models, since it
makes it easier to implement the models and train them.

• Scikit-learn: Scikit-learn was made use of because of the various libraries that it
offers to split the dataset, measure performance and so on.
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• NumPy: NumPy was utilised because of the features it offers to compute mathem-
atical operations on the dataset.

• Pandas: Pandas was made use of to load the dataset, analyse and optimise it.

• Matplotlib: Matplotlib was made use of to create visualisations for better analysis
and interpretation.

5.4 Key Outcomes

• Optimisation of NAB: The NAB makes use of a sigmoidal scoring function to cal-
culate the weights of the anomalies detected. This is dependent on the anomaly
window and application profile. This approach has some limitations such as de-
termining the size of the anomaly window and gaps in the scoring function. Hence
this study optimised the NAB and made use of other standard performance metrics
to evaluate the model’s performance.

• Performance of GRU-BERT in terms of validation loss: GRU-BERT outperformed
LSTM in terms of the validation loss (BCE) indicating the robustness of the model
to detect anomalies in cloud. Hence making use of GRU-BERT would help in binary
classification with high efficiency.

• Optimisation of hyperparameters using Hyperopt: Bayesian optimisation by mak-
ing use of the Hyperopt library in Python, resulted in finding trade-offs between
hyperparameters, which was then utilised to train the model. This approach resul-
ted in achieving better results.

6 Evaluation

GRU-BERT model and LSTM were compared and evaluated based on performance met-
rics such as cost, computational complexity, execution time, and energy consumption.
Additionally, the two algorithms were also compared based on other parameters and
hyperparameters mentioned in section 4.2.

6.1 Peformance Metrics 1: Cost

Cost is an important criterion to determine the performance of an algorithm. The valid-
ation loss (cost) must be minimal to achieve high performance. If the validation loss is
high, the error in detecting anomalies is high, thus resulting in wrong predictions. This
will in turn lead to compromising the security in cloud, resulting in great loss for the
end users. The validation loss generated by GRU-BERT (0.0031) was lower than that
of LSTM (0.0058) as shown in Figure 3. This signifies the enhanced performance of
GRU-BERT when compared to LSTM in detecting anomalies in cloud.
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Figure 3: Cost (Validation loss) obtained from GRU-BERT and LSTM models

6.2 Peformance Metrics 2: Computational Complexity

Computational complexity refers to the complexity of the model that is based on the
number of parameters used. While, a complex model can be powerful in generating
better results, it can also lead to increased consumption of resources, and overfitting.
This would also affect the performance of the algorithm. The computational complexity
of GRU-BERT was 17153, while that of LSTM was 19009, which is higher than GRU-
BERT, as shown in Figure 4. It is highly essential to find a trade-off between complexity
and efficiency, in order to achieve the best performance.

Figure 4: Computational Complexity obtained from GRU-BERT and LSTM models
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6.3 Peformance Metrics 3: Execution Time

Execution time, which is an important measure of performance, refers to the time taken
to train the model. Complex models would require more execution time when compared
to less complex models. The execution time of GRU-BERT was 16.23 seconds while that
of LSTM was 16.94 seconds, as shown in Figure 5. Depending on the problem being
solved, importance has to be given to faster results efficiently or more powerful results
with a longer time duration.

Figure 5: Execution Time (in seconds) obtained from GRU-BERT and LSTM models

6.4 Peformance Metrics 3: Energy Consumption

Energy consumption, measured as a function of CPU usage and execution time gives
information on the resources consumed by the algorithms. While algorithms consume
significant energy, a high value can drain the resources and cause system failures, affecting
the end users. The energy consumption (in Joules) of GRU-BERT was 1186.42 while
that of LSTM was 1155.65, as shown in Figure 6. Even though GRU-BERT and LSTM
performed well in terms of energy consumption, the energy consumption of LSTM is
lower than that of GRU-BERT.
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Figure 6: Energy Consumption (in Joules) obtained from GRU-BERT and LSTM models

6.5 Discussion

Comparison between GRU-BERT and LSTM was done based on the parameters, as shown
in Table 3. Both GRU-BERT and LSTM performed well for almost all the parameters.
The recall of GRU-BERT is slightly higher, indicating that it has more robustness against
false negatives, which is highly crucial in anomaly detection in cloud.

Table 3: Parameters: GRU-BERT & LSTM
Parameters GRU-BERT LSTM
Accuracy 0.99 0.99
Precision 0.99 0.99
Recall 1.00 0.99
F1-score 0.99 0.99

Comparison between GRU-BERT and LSTM was done based on the hyperparameters,
as shown in Table 4. The batch size of both the models are moderate (96). The dropout
rate of GRU-BERT and LSTM are within the ideal range (0.1 - 0.5). The learning rate of
GRU-BERT is higher than that of LSTM, which is also one of the reasons for the higher
execution time in case of LSTM. This is because, as learning rate decreases, the time
taken to train the model also increases.

Table 4: Parameters: GRU-BERT & LSTM
Hyperparameters GRU-BERT LSTM
Dropout Rate 0.194 0.172
Learning Rate 0.017 0.009
Batch Size 96.000 96.000

Based on the results obtained, GRU-BERT model with self-attention mechanism has
proven to be an efficient algorithm to detect anomalies in cloud, enhancing cloud secur-
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ity. Ensuring security in cloud is highly crucial, especially considering the amount of
data and resources present there. Hence, GRU-BERT serves as an efficient algorithm
to detect anomalies. The significant reduction in the validation loss helps in making
accurate predictions. The good performance of the model with regards to cost, computa-
tional complexity, execution time and energy consumption makes it simpler to use, with
faster training times. Optimising the parameters using Hyperopt library resulted in gen-
eration of ideal hyperparameters, further increasing the performance of the algorithm.
Even though further research needs to be done to improve the energy efficiency and
computational complexity of GRU-BERT, its accuracy has improved well, overcoming
the limitations. The usage of autoencoders with self-healing mechanism was intended to
fix the detected anomalies. More work needs to be done on autoencoders to reduce the
training and validation loss, and it could be made use of to automatically fix the detected
anomalies. This would also help to increase the security in cloud.

7 Conclusion and Future Work

In this study, GRU-BERT with self-attention mechanism was utilised to detect anomalies
in cloud. Based on the findings from this study, it can be concluded that anomalies in
public cloud infrastructure can be detected using the GRU-BERT model efficiently, with
a low validation loss, enhancing the performance of the algorithm, thus improving cloud
security and protecting end users. The autoencoder model with self-healing mechanism
was made use of to fix the detected anomalies. Based on the results obtained, it was
observed that the extent to which autoencoders can be used to predict patterns and
reduce future security issues in cloud needs further research. It was observed that even
though significant contributions have been made to enhance the overall resiliency and
market value by utilising self-healing mechanisms to automate processes in cloud security,
the performance of these techniques needs to be improved.

Through this study, it was concluded that optimisation of NAB by making use of
standard performance metrics to evaluate the performance is better because of the lim-
itations of NAB. Also, it was found that GRU-BERT outperformed LSTM in terms of
validation loss (BCE), clearly showing the robustness of the model to detect anomalies in
cloud. Bayesian optimisation of hyperparameters by making use of Hyperopt resulted in
finding trade-offs between them, which was then utilised to build the models, train and
test them, producing better results.

7.1 Future Work

GRU-BERT with self-attention mechanism can be made use of to implement predictive
maintenance in cloud. This would help in the prediction of failures before they occur,
reducing the cost of maintenance, downtime, and so on. Also, this algorithm can be
used in practice to detect anomalous behaviour in cloud. Further research could be
done to improve the energy efficiency and computational complexity of GRU-BERT.
The performance of GRU-BERT could be evaluated on datasets from different industries
(e.g., healthcare, e-commerce) to ensure robustness and generalisability. Once further
research is done to reduce training and validation loss of autoencoder by techniques such
as hyperparameter optimisation and so on, autoencoder with self-healing mechanism can
be utilised to reduce false alarms in cloud logs caused due to noise, maintaining the
integrity of the data in cloud, its recovery and so on.
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This research has resulted in gaining insights on the usage of GRU-BERT, autoen-
coders and other deep learning techniques to enhance cloud security. It has also resulted
in a deeper understanding of future improvements to the algorithm, making it suitable
to implement in actual cloud computing scenarios.
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