
Configuration Manual

MSc Research Project

Cloud Computing

Ritesh Kumar Rout
Student ID: 21127069

School of Computing

National College of Ireland

Supervisor: Prof. Sai Ranjan Emani

www.ncirl.ie



National College of Ireland
Project Submission Sheet

School of Computing

Student Name: Ritesh Kumar Rout

Student ID: 21127069

Programme: Cloud Computing

Year: 2024

Module: MSc Research Project

Supervisor: Prof. Sai Ranjan Emani

Submission Due Date: 12/12/2024

Project Title: Configuration Manual

Word Count: 1497

Page Count: 10

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature: Ritesh Kumar Rout

Date: 12th December 2024

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). □
Attach a Moodle submission receipt of the online project submission, to
each project (including multiple copies).

□

You must ensure that you retain a HARD COPY of the project, both for
your own reference and in case a project is lost or mislaid. It is not sufficient to keep
a copy on computer.

□

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):



Configuration Manual

Ritesh Kumar Rout
21127069

1 Overview

This configuration manual provides step-by-step instructions for setting up and configur-
ing a secure Kubernetes environment using Amazon Elastic Kubernetes Service (EKS).
It is intended to ensure a production-grade setup that adheres to security best practices.

2 Prerequisites

• Active AWS account (https://aws.amazon.com/console/)

• AWS CLI

• Kubectl (Kubernetes CLI) (https://kubernetes.io/releases/download/)

• Docker (https://www.docker.com/products/docker-desktop/)

• Create an IAM role with the appropriate permissions for EKS operations to ensure
the cluster functions correctly.

• Networking configurations should be in place, including the creation of a Virtual
Private Cloud (VPC) with both public and private subnets.

3 Setting Up the EKS Cluster

Figure 1: Setting Up the EKS Cluster

1



1. In order to create the EKS cluster, the cluster name is specified, the proper Kuber-
netes version, and the cluster type, as seen Figure 1.

2. IAM roles granted to the EKS cluster for resource management. or the networking
configurations.

3. Setup a Virtual Private Cloud (VPC) with public and private subnets, route tables
and the internet gateways.

4. Checked with kubectl commands using ”aws eks –region region-name update-kubeconfig
–name cluster-name”.

4 Configuring EKS Cluster Policy

Figure 2: Create an EKS Cluster Policy

1. The IAM role created with the cluster has the AmazonEKSClusterPolicy, which
gives permissions needed for the EKS control plane figure 2.

2. This policy enables the Kubernetes control plane to delegate API calls from the
user to AWS services like the node management and workload scheduling feature.

3. Perform test Configuration ”kubectl auth can-i create pod”.

5 Setting Up Worker Nodes

1. Before configuring worker nodes for an EKS cluster, an IAM role for the nodes
needs to be created.

2. The IAM role gives the permission needed for the EC2 instance to communicate
via any other AWS Services, like pulling the container images from the ECR and
communicating with the other resources within the VPC.

3. After configuring the IAM role, you can now provision the node group. This means
choosing the correct instance types, and disk sizes, and checking that the Kuber-
netes version is supported.

2



4. Verify Node Command ”kubectl get nodes”.

6 Connecting to the EKS Cluster

Figure 3: Connecting to the EKS Cluster

1. AWS CloudShell Environment Data for EKS Cluster named ap-south-1 and the
output includes details about the cluster, the IAM role associated with it, its status
(”Ready”), and the version of the EKS control plane specified Figure 3.Command:
aws eks –region ap-south-1 update-kubeconfig –name secure-k8s-cluster

2. For configuring a policy for the EKS cluster, the AmazonEKSClusterPolicy should
be attached to the IAM role that is associated with the cluster.

3. This is actually a policy that allows the EKS control plane to talk to AWS services
on behalf of the user to manage resources such as nodes and schedule workloads in
a Kubernetes environment.

7 Implementing Role-Based Access Control (RBAC)

Figure 4: Enable RBAC (Role-Based Access Control)

1. Figure 4 displays information regarding an AWS CloudShell environment with the
example of an EKS (Amazon Elastic Kubernetes Service) cluster called ap-south-1.
To connect with cmd you need to provide these following information:

• bash : aws configure

3



• AWS Access Key

• AWS Secret Key

• Region

• Default Output Format: JSON

2. The IAM role of the cluster, status and EKS control plane software version are
present the use of a RBAC (Role-Based Access Control) configuration applied to a
Kubernetes cluster via kubectl command.

3. The IAM role of the cluster, status and EKS control plane software version are
present the other illustrates the use of a RBAC (Role-Based Access Control) con-
figuration applied to a Kubernetes cluster via kubectl command.

8 Securing Container Images

Figure 5: Securing Container Images

Figure 6: RBAC-config.yaml

4



1. The image 5 provides us details about an AWS CloudShell environment with info
for EKS (Amazon Elastic Kubernetes Service) cluster with name: ap-south-1.

2. It shows details like IAM role associated with the cluster, status, and version of
EKS control plane software.

3. The image 5 shows how a RBAC (RoleBased Access Control) configuration is ap-
plied to a kubernetes cluster with the kubectl command.

4. Specifically, it applies a file ”rbac-config.yaml” in YAML format. yaml” specifying
roles with their associated permissions and role bindings connecting users (or service
accounts) to those roles 6. ”Bash Command : kubectl apply -f nginx-service.yaml”

5. Figure 6, we are pushing a container image to the AWS Elastic Container Registry
(ECR) using the Docker CLI. It contains commands to log in to ECR, get token
and pushes the image to ECR Repo.

9 Deploying Applications

Figure 7: Nginx Deployment.yaml

Figure 8: Deployment YAML for the Nginx Image

5



1. The image 7 a YAML configuration file for deploying an NGINX application in a
Kubernetes environment. The key details include:

• API version: ”apps/v1”

• Kind: Deployment

• Metadata: Name, Spec, Replicas, Selector, Template (with app label and
container image)

• Port: Container port set to 80

2. The image 8 demonstrates the deployment and verification process using the Kuber-
netes CLI kubectl. It shows the following:

• Applying the ”nginx-deployment.yaml” file to create the deployment. ”Use
command kubectl apply -f nginx-deployment.yaml”

• Checking the deployments with their status and available/ready replicas. Use
Command ”kubectl get deployment”.

• Listing the running pods and their status. Using command : ”kubectl get
pods”.

• Port: Container port set to 80.

3. This YAML-based deployment configuration and the use of kubectl commands al-
low developers to manage the application’s lifecycle within the Kubernetes cluster,
ensuring consistent and reliable deployments.

10 Exposing Applications

Figure 9: Nginx Service.yaml

6



Figure 10: Expose the Nginx Deployment

1. The image 9 shows a YAML configuration file for a Kubernetes Service of type
”LoadBalancer”. The key details include:

• API version: ”v1”

• Kind: Service

• Metadata: Name is ”nginx-service”

• Spec: Selector is ”app: nginx”, with ports defined for TCP on port 80 and
target port 80.

• Type: LoadBalancer

2. The image 10 demonstrates the creation and verification of this Kubernetes Service
using the kubectl command-line tool. It shows the following:

• Applying the ”nginx-service.yaml” file to create the service. Command ”kubectl
apply -f nginx-service.yaml”.

• Listing the created services, which includes the ”nginx-service” with its as-
signed external IP address.

3. By defining the Service as a LoadBalancer type, the application running within
the Kubernetes cluster is exposed externally, allowing traffic to reach it through
the assigned public IP address. This enables users or other systems to access the
application from outside the cluster. Command ”kubectl get svc”.

7



11 Configuring Network Policies

Figure 11: Network-Policy.yaml

Figure 12: Enable Network Policies

1. The image 11 represents a YAML configuration file for a Kubernetes NetworkPolicy
with the API version as networking. k8s.

2. The apiVersion here is ”networking.k8s.io/v1” and the kind is NetworkPolicy. It
specifies the name as deny-all in metadata and namespace as default.

3. Here, the spec contains a blank podSelector, and set two policyType to Ingress and
Egress.

4. The second image shows the applied and verified NetworkPolicy based on above
NetworkPolicy using kubectl command line tool.

5. Figure 12 illustrates the use of the ”network-policy yaml” file for creating Network-
Policy and created NetworkPolicies (shown deny-all policy with nil pod selector,
age=5s. A NetworkPolicy can specify ingress and egress to either allow or deny
traffic, and by configuring a NetworkPolicy that deny ingress and egress can block
all communications to and from the pods.

8



12 Implementing Real-Time Monitoring

Figure 13: Real-Time Monitoring with Prometheus

Figure 14: Real-Time Monitoring with Prometheus

1. The image 13 provides the information of one AWS EKS (Elastic Kubernetes Ser-
vice) cluster, which we can verify also that one of, Node, Deployment and Pods are
running in that.

2. This includes information on node status, roles, versions, and the resource utiliza-
tion metrics.

3. The second image has more specific information about the cluster, including details
of individual pod and deployment.

9



4. It displays metrics such as CPU, memory for the individual pods and deployments
and various events related to the Prometheus operator that is being used to monitor
the cluster.

5. Figure 14 together shows Usage of Kubernetes tools and command to fetch the
state and performance of the EKS cluster.

6. The collected data may be utilized by administrators, for the purpose of keeping
track of the health and resource use of the Kubernetes environment, providing
increased operational visibility and visibility into any problems that may arise.

7. Commands:

• kubectl cluster-info

• kubectl get nodes

• kubectl get deployments

• kubectl top nodes

• kubectl get events

• kubectl get pods –watch

13 Troubleshooting

1. Logs are one of the most important things to check when troubleshooting a Kuber-
netes environment to identify any errors or unexpected behavior in the system.

2. If a pod crashes due to an error or some kind of misconfiguration, in the output
window you can only see the status of the pod and not what actually happens inside
the pod, so we can use the kubectl logs command to see what actually happened
inside the pod.

3. The other verification that is carried out is of the resources inside the cluster by
using kubectl get deployments and kubectl get pods, checking whether all the de-
ployment are running as expected and no pods are in a stuck or failing state.

4. Also, by checking network policies your cluster might have with kubectl get net-
workpolicies, it can reveal problems with network restrictions or misconfigurations.

5. The majority of problems can be solved with some level of efficiency by logging
systemically now to troubleshoot logs, resources and network settings.

10


	Overview
	Prerequisites
	Setting Up the EKS Cluster
	Configuring EKS Cluster Policy
	Setting Up Worker Nodes
	Connecting to the EKS Cluster
	Implementing Role-Based Access Control (RBAC) 
	Securing Container Images
	Deploying Applications
	Exposing Applications
	Configuring Network Policies 
	Implementing Real-Time Monitoring
	Troubleshooting

