“—-
\ National

Kubernetes Security Best Practices

MSc Research Project
Cloud Computing

Ritesh Kumar Rout
Student ID: 21127069

School of Computing
National College of Ireland

Supervisor: Prof. Sai Ranjan Emani

~

College
Ireland

National College of Ireland National

Project Submission Sheet Col]ege of
School of Computing Ireland
Student Name: Ritesh Kumar Rout
Student ID: 21127069
Programme: Cloud Computing
Year: 2024
Module: MSc Research Project
Supervisor: Prof. Sai Ranjan Emani
Submission Due Date: 12/12/2024
Project Title: Kubernetes Security Best Practices
Word Count: 6850
Page Count: P2

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature: Ritesh Kumar Rout

Date: 12th December 2024

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). O

Attach a Moodle submission receipt of the online project submission, to | [J
each project (including multiple copies).
You must ensure that you retain a HARD COPY of the project, both for | O
your own reference and in case a project is lost or mislaid. It is not sufficient to keep

a copy on computer.

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only
Signature:

Date:
Penalty Applied (if applicable):

Kubernetes Security Best Practices

Ritesh Kumar Rout
21127069

Abstract

The security and adaptation that comes along with Kubernetes, the systems
used to build containerized apps and microservices, is what this research examines.
However, as more and more industries adopt Kubernetes, it also comes with ad-
ditional complexities and opens up whole new areas of risk to security, from the
vulnerabilities in container images to misconfigured policies. Adding to the com-
plexity is the fact that many organizations use Kubernetes in conjunction with
popular cloud platforms like AWS, which requires them to effectively address two
types of security challenges the cloud-native and the Kuber-native. Related works
identify important threats, show how microservices increase complexity, and pro-
pose new tools or techniques to improve Kubernetes security. The objective of this
work is to evaluate the security of Kubernetes systems as well as existing and future
security approaches. Thematic analysis revealed the key security issues such who
are deploying these systems, what are the top insecure practices such as RBAC
misconfigurations, container image vulnerabilities, network security, complexity of
microservices, continuous monitoring, and zero-trust-based policy frameworks. The
research indicated considerable shortcomings in existing security approaches, al-
though work is being done to remedy issues surrounding vulnerabilities created by
misconfigurations and imperfect network policies.Besides theoretical aspects, prac-
tical implementation was done on the live environment of Kubernetes with the
actual approach and practices for implementing security on deploy. Important im-
plementation steps were addressed, like configuring RBAC, securing container im-
ages, applying network policies, and configuring monitoring with Prometheus.The
work provides insights into Kubernetes security, which is valuable for organizations
looking to enhance the security of their environments. Organizations can be better
equipped with a more secure, scalable and resilient containerized infrastructure by
remediating the identified weaknesses and implementing strong security measures.

Keywords: Kubernetes, container security, microservices, RBAC, network policies,
AWS (Amazon Web Services), zero-trust security, Prometheus, security vulnerabilities,
policy configuration, cloud security, security strategies.

1 Introduction

In the area of modern application deployment, containerization plays an important role,
especially in a microservices context. This containerization tool called Kubernetes is now
widely used for organizing, deploying, and managing container applications in various
fields. That it can solve complicated deployments and enable scalability has made it
invaluable. However, with this rapid adoption comes a critical challenge that works well

in helping secure Kubernetes environments. The nature of Kubernetes itself, as well as
the layered microservice architecture of the stack, bring forth a whole series of security
issues, which are not present to the same extent in simpler systems.

1.1 Background and Motivation

Kubernetes has become a popular platform for organizations to more effectively run the
processes, and secure management of these settings provides a crucial issue. Kuber-
netes helps to manage containerized applications in industries of finance, healthcare,
e-commerce, and others, but the growth of its use indicates that several organizations do
not understand or do not implement appropriate security measures. A cluster in Kuber-
netes has very specific security requirements for different components such as the network
policy, authentication, the method of dealing with container images, and runtime security
Shamim/ (2021)). The structure with nested layers added to the interdependency typical
of microservices architecture implies that hacking one part of the system can affect the
entire environment. Furthermore, since established cloud providers including AWS in-
clude managed Kubernetes as services, that is Kubernetes Service, organizations should
consider native Kubernetes security issues as well as cloud-hosted issues. This research
work aims to fill the existing literature void by discussing the key security issues that
organizations experience when deploying Kubernetes. As a result, the threats and po-
tential barriers to and trends in Kubernetes security, as discussed in this research, are
useful for academic and industrial beneficiaries. These findings can be useful for both
security teams within organizations and cloud suppliers who offer Kubernetes as these
can show areas of risk and weaknesses, methods to prevent exploitation, and changes in
best practices which could improve readiness against emerging threats.

1.2 Research Question

What is happening today in terms of Kubernetes security issues? How does the inherent
organizational complexity of the microservices in K8s affect security and best practices?
Which issues can be considered as the most frequent ones in the case of the Kubernetes
security enhancement? What are those developments that show that best practices or
the tools applied to Kubernetes security are evolving?

1.3 Objective

e To categorize and examine critical security threats within and across industries that
employ Kubernetes.

e To study the effect that the complexity of microservices has on security ideas and
approaches in Kubernetes settings.

e To find out more about the constant issues that organizations encounter in the
application of Kubernetes security considerations.

e To evaluate new trends and changes in the preferences or tools that are useful to
maintain and improve the security of the AWS cloud.

=l INtroduction

mmml Literature Survey

sl Research Methodology

ml Design Specification

sl [mplementation and Results

=1 Evaluation

==l Conclusion and Future Work

Figure 1: Research Structure

1.4 Research Structure

This report Figure 1] starts with an introduction to create the significance and purpose
of the report. Conducting a review of the literature acts as a building block, where we
assess the previous work and highlight where some gaps are in the research. Methodology
covers the tools and techniques used to solve the research problem, while the Design and
Implementation section describes the system/framework that we have developed. The
results are precisely examined to determine the relevance of these results to the methodo-
logy. An assessment may probe deeper into the results, identifying strengths, limitations,
and opportunities for improvement. A synthesis of key findings, implications, and future
directions is provided in the conclusion, indicative of the significance of contributions
made by this research.

2 Literature Survey

2.1 Overview of Kubernetes and its Security Concerns

Kubernetes is famous due to its strong automation functions and for the microservices
architecture where software applications are split into finer services. Since more and more
organizations embrace Kubernetes, there is a growing demand to mitigate the security
threats of using complex distributed environments. As a result of the structure of mi-
croservices, different components can be developed and deployed individually and more
flexibly than in monolithic applications, which in turn creates several security issues,
consisting of the emergence of new surfaces that can be attacked and secure communic-

ation between the services [Shamim et al.| (2020)). Furthermore, since established cloud
providers including AWS include managed Kubernetes as services, that is Kubernetes
Service, organizations should consider native Kubernetes security issues as well as cloud-
hosted issues. Research has shown that each layer of a Kubernetes environment is a
critical layer that needs protection since the attack on one layer compromises the remain-
ing layers.

2.2 Microservices, Architecture, and Security Consequences

The basics of Kubernetes are based on the microservices strategy where big applications
are split into sizeable partitions that confer over networks, and as a result, the incidences
of security threats such as unauthorized access, information leakage, and network flaws
are more likely to occur. A recent transition to microservice architecture implies that
established security practices, ideal for monolithic architectures, do not suffice. Security
requirements do rise in Kubernetes as the environment evolves quite frequently, often
with services being changed, relocated, or duplicated |Dell’'Tmmagine et al.| (2023)). This
dynamism poses considerable challenges when setting up an organization’s general secur-
ity policies that must work uniformly across the architectural fabric. Thus, according
to current industry practices, there is a so-called “defense-in-depth” approach, the es-
sence of which is to apply several layers of protection for the operational environment
of containers, networking, and workload. Kubernetes’ microservices architecture makes
scalability and flexibility but makes it inherently more complex when it comes to doing
security |Gonzalez (2023). Each microservice runs in an isolated container in a Kubernetes
environment, thus minimizing cross-service contamination, but there is a need to manage
the security aspects of network segmentation, authentication, and identity verification
across microservices in an isolated way. The problem is how to enforce consistent rules
regarding security across many microservices, which often have distinct security needs
and may require different levels of access. Containerized microservices can also magnify
the ’container drift’ risk, where changes in container images relative to security guidelines
can occur over time and must be continuously monitored and enforced with policy to keep
the components secure Theodoropoulos et al.| (2023) andJayalath et al.| (2024)). Service
meshes and consistent runtime policies can improve interservice security, yet they also
require more involved network security.

2.3 Popular Kubernetes Threats

Studies done on Kubernetes threats have always highlighted areas that pose threats and
need attention regardless of the industrial domain. Some of the threats include inaccurate
configuration of Role-Based Access Control (RBAC), container image vulnerability, and
insecure network policies. This is because the improper configurations of RBAC grant
specific users access to privileged data, or controls in the Kubernetes cluster [Mustyala
and Tatineni (2021). RBAC implementation allows for fine-grained control over the user
rights with a relatively low probability of obtaining undesired access and coming across
opportunities for achieving a multitude of unauthorized privileges |Kutsal (2024). Thus,
only approved and updated container images are sent to the application, minimizing risks
and hiding insidious security flaws that are inherent in the application’s nature. Since
these groups split up the communication amongst microservices, network rules enhance
security since the attack surface is reduced. On the other hand, one must ensure that

network policies are well designed to deny attackers a chance to access some services
or networks |Huseinovi¢ et al. (2020) and |Onyema et al.| (2022). Unvetted or vulnerable
container images are also a high risk as code can be introduced within an image before
an environment is put into use. Research focuses on how to perform image-scanning
for weaknesses, implement an impenetrable principle of containment, and separate the
workload to contain movement across a Kubernetes cluster. As it is a container orches-
tration nature, Kubernetes has its own specific threats that are associated with the risks
of vulnerability of images, misconfiguration and cluster management. Often, unregulated
access to Kubernetes APIs, or misconfigured RBAC settings, are used as attack vectors
allowing attackers to execute privilege escalation and gain control over resources Kampa
(2024) and [Sroor et al. (2024). One threat is that networks are extremely permissive
which allows unmonitored lateral movement inside the cluster. Another major threat is
the case of image poisoning, where there is malicious code in the image, which, if left
unchecked, defeats traditional security controls to escape the pipeline. To prevent these
threats, image scanning, constraining RBAC, and auditing of Kubernetes configuration
files are required using.

2.4 Security Threats and Issues in Deploying Kubernetes in
Cloud Environment

Cloud service models, particularly shared responsibility models such as the implementa-
tion of Kubernetes in cloud environments like AWS, bring extra security concerns. Cloud
providers are responsible for securing the underlying infrastructure, while Kubernetes
configuration and users’ access control still lie in the user’s hands. This structure re-
quires that workload(s) using native Kubernetes constructs within AWS EKS manage
security at the Kubernetes layer side by side with AWS layers such as Identity and Ac-
cess Management (IAM) Bose et al. (2021)). Using AWS’s managed services since these
can help to simplify the management of Kubernetes environments and security, partly
because of the utilization of tools such as Amazon Guard Duty, which is a service for
threat detection, and AWS Identity and Access Management, also for access control
purposes, and others like it, but these can only prove useful and align well with the
targeted Kubernetes controls if the incorporation is done properly. Traditional threat
identification and risk management techniques do not solve the problem because these
procedures ensure that guarantees security measures change according to the growingly
dynamic threat environment Arif et al.| (2024) and Hosen et al.| (2024). Also, businesses
can enhance the quantity and creativity of the containerised systems by integrating those
security solutions. As well as guarding private data, this coalescing of efforts toward solid
and enveloped security frameworks enables more organisations embrace and capitalise on
Kubernetes, within the cloud-native setting. Kubernetes deployments based in the cloud
greatly increase the probability of risk due to their shared infrastructure, lower visibil-
ity, and oil company nuances towards the cloud. Cloud platforms can be multi-tenant,
yet that exposes vulnerable points where other users’ vulnerabilities can impact shared
resources. Most solutions for unauthorized data access or cluster takeovers happen in im-
proper Identity and Access Management (IAM) configurations, negligible encryption and
exposed secrets in environments such as AWS or GCP Song et al| (2023). As with any
technology, cloud resources also have their elasticity risks where scaling events can tem-
porarily expose sensitive configurations or insecure default settings. To address these, it
is necessary to put strict IAM policies in place, controls on the endpoints and integration

with cloud-native security policies for the apps within the Kubernetes.

2.5 New Security Trends and Security Solutions

Trends in the Kubernetes security domain include an uplift in the employment of policy
as code and automated security scanning, which provides ways to implement policies con-
sistently throughout the Kubernetes ecosystem. A modern trend for the CI/CD pipeline
is the use of policy as code when practicing Open Policy Agent (OPA) as an open-source
tool |Agrawal (2024). These tools are especially useful where Kubernetes clusters are
hosted in the cloud, the multi-cluster environment, or where thousands of clusters are
managed because otherwise, it can be impossible to enforce identical policies across all
clusters. Another trend is runtime security, tools that act similarly to antivirus programs,
which monitor the container runtimes and alert security teams when something is amiss.
There is also a move to adopt Al monitoring solutions since these solutions make use
of machine learning algorithms to determine if there are signs of a security risk. The
focus of security trends in Kubernetes is automation, policy as code, plus enhanced vis-
ibility into the DevSecOps pipeline [Sandu/ (2021). Another notable trend is the use of
policy as code, meaning that Kubernetes operations are automatically checked against
well-defined security rules using tools such as Open Policy Agent (OPA) or Kyverno to
apply code to the development environment, as well as to the deployment environment,
such that configuration is checked against security rules in development and deployment
Kim and Lee| (2024)). Another development is the use of Al-driven anomaly detection,
which can alert before an anomaly shows up, anything from atypical behavior or even
traffic patterns. As Kubernetes-native security tools such as KubeArmor continue to
gain momentum, they offer runtime security, enforcement of workload isolation, and file
and network anomaly monitoring without extensive manual configuration Zheng et al.
(2024)). Similarly, service meshes such as Istio are evolving to safeguard communications
by default while empowering augmented access control and security observability.

2.6 Challenges of Applying Security in Kubernetes

Even having chosen prospective security tools, many organizations still face numerous
challenges in the provision of successful Kubernetes security. Such barriers are usually
associated with the effective configuration issues connected to Kubernetes, low knowledge
of the Kubernetes security issues and the management, and inefficiency of the integra-
tion of Kafka security tools with the existing environment Kampa (2024]). Flexibility
configuration is often cited because organizations have a problem with understanding
and managing Kubernetes with the use of multiple levels of settings. As it has been
seen in the literature, there is a skills shortage in security specifically when it comes to
Kubernetes with no suitable talent that specializes in cloud-native security. In addition,
when it comes to security in Kubernetes, it is still complicated to easily integrate it with
past security solutions and compliance measures, especially with authoritative regula-
tions where industries such as finance and healthcare are restricted to use | Thijsman et al.
(2024). Several key issues in Kubernetes security have been brought out in the literature
as worth addressing by organizations to ‘get it right’ in the environments. Kubernetes
security is not a completed research issue with many works ongoing on best practices
and techniques to secure microservices architectures. With more organizations adopting
Kubernetes and cloud platforms such as AWS, the security risk is set to increase hence the

need to come up with new solutions and more importantly understand Kubernetes-native
and cloud-native security |Egbunal (2022). This research supports these efforts by present-
ing the key security topics, issues, and trends, on which more investigation and security
solutions development in Kubernetes can be built. Since Kubernetes has a lot of matur-
ity, elements such as robust security policies integrated directly into CI/CD pipelines are
future-proof to prevent vulnerabilities from getting into production, embedding security
in the development life cycle.

3 Research Methodology

This paper systematically reviews secondary data on Kubernetes security issues and best
practices for the emerging technology through thematic analysis in quantitative research.
This technique has been selected in order methodically to categorise and account for re-
peated patterns, problems, and solutions with reference to security.As there is emphasis
drawn towards security trends and challenges peculiar to Kubernetes, a qualitative, them-
atic analysis allows for the exploration of complex security concerns within various or-
ganisational contexts. Therefore, this research sheds light on the practical implementation
and makes a proper explanation between thematic and practical implementation. The
research method has been introduced on the cloud AWS platform to make the imple-
mentation.

3.1 Scope Definition

Research focuses on certain aspects of Kubernetes security: network security, container
runtime protection, API security, and the best practices have been chosen intentionally.
This is due to the fact that these goals of the study include identifying and understanding
the primary security concerns in Kubernetes systems as well as assessing how microservice
complexity influences security processes in these systems.

3.2 Data Gathering

Information has been sourced solely from secondary sources based on a Kubernetes secur-
ity targeted academic journal article, business reports, and best practice papers. Google
Scholar and online books have been considered more appropriate because these are more
credible sources in this area of study. Specific focus has been made on which threats are
most common, what security issues Kubernetes users face, and what new initiatives and
studies have appeared in the last five years. These limitations have made the study to
be specific in the type of organisations to be used in the study, hence making the study
to be closer to the current technological and industrial practices.

3.3 Data Organization and Cleaning

The data organization and cleaning stage which have been performed entailed a proper
assessment and elimination of improper or the excessive data deriving from the overall
sources attained. Upon critical evaluation, each source has been then categorized into
broad areas of study, which have been in line with the research questions of the study.
This research also engaged only high thematic importance materials, which made the
analysis of themes much more effective, as the theme has been divided into such sections

as network security, API security, and new Kubernetes best practices. This particular
arrangement of the material also helped in highlighting more of what has been repeated
and miles more in terms of patterns or trends in the Kubernetes security. Ultimately,
this methodical approach not only lets to examine but also examine the highly complex
security environment observed in Kubernetes deployments more methodically.

3.4 Thematic Analysis Framework

As for the analysis of the collected data, the theme analysis, which allowed methodically
search and study trends in the material considered in the literature on Kubernetes security
has been used. This method enabled the study to gauge a plethora of links and categorize
complex security-related subjects into themes that have been accord to the objectives of
the research. It allowed employing thematic analysis to categorize all the studied material
systematically, to focus on discussing emerging tools and practices in the context of
Kubernetes, a set of critical security issues, and the influence of microservices complexity
on security measures.

3.5 Kubernetes Security Implementation Methodology

This methodology is a vital intersection of theory and practice for Kubernetes security.
This approach works by converting abstract security concepts into specific technical im-
plementations by solving the problems in cloud-native security principles from an end-to-
end viewpoint. In this research design, we utilize AWS EKS as a real-world environment
to illustrate complicated security methods such as RBAC function, image authentica-
tion, and network policy parameters. The practical approach this method provides is
evidence of security strategies studied in the literature review that guided us to identify
Kubernetes security challenges. The implementation serves to validate theoretical mod-
els, demonstrate possible exploits, and serve as a reproducible framework for enterprises
looking to improve the security posture of their containerized infra.

4 Design Specification

|
Prometheus — — i 1 b
Accessee——— | Accesses Exposed Application e
Monitors Cluster Performance I —
;/ WS Clod — Coufigurss | .
’\’ — ¥ T at
I& — \ lT
X | Admin
amazon EKS. \ Collects Metrics z Elastic Load 9,-“3,“,2, (ELE) 1AM Roles and Policies
Mansges Control Plane
| Seales Worker Nodes Expaies Service
| —
Master Node - —
Deploys Application Enforces h;mmk Security Enfarees Aecess Control
-~ Kuberhetes_Cluster "\'
Nginx Deployment Network Policies RBAC (Role-Bazed Acces: Control)

Figure 2: Architectural Daigram

The design of this research originates from the thematic analysis of the literature
and numerous reports on Kubernetes security to answer certain research questions on
current security issues of Kubernetes, the influence of organization complexity in the
microservices, the cyclic problems and new tendencies of modern security standards and
tools in Kubernetes environment. The practical application of the software will be per-
formed on the cloud, levitating on Kubernetes platforms known among the major cloud
providers including AWS. This approach uses the inherent advantage of cloud to emulate
real-life Kubernetes implementation environments. The cloud environment will help in
the proper coordination and management of containers for a better understanding of se-
curity issues or confusion related to Kubernetes in a cloud environment. This setup will
also allow us to discover security topics associated with the container images, networking,
and RBAC, which will give a comprehensive view of the security challenges in the modern
microservices architecture.Secure, Scalable and Cost Optimized Kubernetes deployment
on AWS architecture diagram [2] Essentially, Amazon EKS takes care of the Kubernetes
control plane and the worker nodes which run the containerized apps such as Nginx.
AWS TAM roles and policies control access to AWS resources, as well as Kubernetes
components, in order to establish appropriate permissions. Container images are pulled
from Amazon ECR where trusted images are stored and deployed to the worker nodes.
Security is enforced by network policies (which enforce which pods can communicate with
one another) and RBAC (which controls who can do what with which resources). Pro-
metheus is a real-time monitoring and alerting framework that continuously watches the
state of the cluster and collects real-time metrics to ensure efficient resource consumption.
The application is accessed by external users through the Elastic Load Balancer (ELB)
which guarantees high availability and spreads traffic on worker nodes. This architecture
combines Kubernetes and AWS services to deliver a secure and reliable environment for
containerized applications.

5 Implementation

5.1 Thematic Analysis and its Results

This thematic analysis uses existing literature from academia and industries that de-
scribes specific security perspectives within Kubernetes to address the issues more spe-
cific to the COS(Container-Optimized-OS) and Al handling of microservices (Curtis and
Eisty| (2024).The report discussed numerous key security issues like access management,
network policies, and container image security as well as new trends in security practices
policies, and tools that point to the maturity of Kubernetes security. Kubernetes security
concerns are discussed in this paper in the context of the multiple layers that emerge when
environments are containerized and interact with the specific intricacies of microservices.
Drawing from relevant literature review and case study, the study explores the basic them-
atic areas including access management, network policies, and container image security
discussing the current problems, patterns and evolving solutions [bryam and Hufy (2022).
It follows the logical layer model for design, decomposing the Kubernetes platform into
significant components, including the container runtime, networking, and monitoring to
determine the spectrum of security effects. The deployment of the regarded software
will take place in a Kubernetes-based cloud environment that will require the usage of
such clouds like AWS, Azure and GCP. This environment also provides an opportunity
to run as well as coordinate and control microservices within many containers to replic-

ate real-life deployment. The cases based on cloud infrastructure allow for the required
scaling and the availability of copies of production environments that are useful when
identifying the security challenges of Kubernetes. Security components including RBAC
and network policies as well as container image vulnerabilities will thus be incorporated
into the cloud-hosted Kubernetes architecture to simulate real-world security problems
and analyze the current transformational security tools in this type of architecture. The
implementation adopts parts from academic and industry reports that explain primary,
popular misconfigurations, and new emerging trends in the use of security in cloud-hosted
Kubernetes environments.

The thematic analysis of the study revealed six foundational themes as significant
components and emerging trends in securing Kubernetes. Some of the themes discussed
include insufficient RBAC configuration, container image vulnerabilities, network security
problems, microservice complexity, constant monitoring, and the rise of new policies. The
following is a brief of each theme and a table comparing the key points on the theme,
issues, and emerging practices.

e Theme 1: Insufficient RBAC Configurations RBAC misconfigurations are preval-
ent in Kubernetes and its misuse results in high privilege levels and high levels of
vulnerabilities. In particular, RBAC works fine in managing and controlling the
user’s permissions, but these become rigid and complicated when implemented and
monitored and end up causing access inappropriately Tripathi (2024). Automa-
tion solutions like Open Policy Agent (OPA) present approaches for auditing and
enforcing to address those misconfigurations.

e Theme 2: Container image vulnerabilities Figure |3| containers are derived from
image files that are usually downloaded from a public platform and may contain
vulnerabilities that affect the application. Most images do not reflect updates while
others contain inherent security vulnerabilities that open the entire cluster for at-
tack Agrawal et al.|(2020). The current best practices in Kubernetes security have
shifted to only running trusted images, frequently updating, and incorporating im-
age scanning tools.

Figure 3: Container Image Vulnerabilities and Mitigation Strategies

e Theme 3: Network Security Challenges Security function as always remains a crit-
ical issue in the Kubernetes area since the Microservices can need to communicate
alot[dl Then there are cases where network policies are inadequate services may be
left objectively unguarded thus posing a threat due to unauthorized access. Net-
work segmentation matrix and strong implementation of network policies have been
noted to be among the key preventive measures that should be implemented. Sys-
tems like Calico have been developed to allow organizations to set tight network
policies to allow communication within the clusters.

10

Figure 4: Network Security Challenges in Kubernetes

e Theme 4: Microservices Complexity figure |5| explains microservices architecture
of Kubernetes adds inherent complexity and expands the attack surface
(2021). Every microservice is independent and it needs security on different levels
of its infrastructure. This complexity makes access control a structured process
and requires strict mounted monitoring and efficient management practices. It is to
meet these challenges that more systems that can track dependencies and analyze
vulnerabilities across distributed services are deployed as security tools.

Wi opernois Archoedung n Kubsrnetes

ey
o .
- J T

-,

o
_—‘d--- -H-\-H-\-H-'-\.
- "
|mdppandent Microsansces Ampek Soripze Ansesy Contral
r_+
Security Chln‘hngu]
‘-\—____-__
d__.-"'--- H'\-\.___
L T
o ¥ B
Treccs E ¥ d Potental Complex User
Measures for Anacks War gk e
Toels
- e Y
il —
- i - l M-\- T,
s ="
Servce Mesh ViaF D2 RBAC, ABAC

Figure 5: Microservices Architecture of Kubernetes

e Theme 5: Need for Continuous Monitoring and Logging figure [6] Kubernetes se-
curity demands are best managed by constant monitoring owing to the dynamism
expected in containerized environments Revuelta Martinez| (2023). Metrics tools
like Prometheus and Logging solutions provide detailed coverage concerning sys-
tem functionality and give the administrator an indication of potentially malicious

11

activities (Revuelta Martinez, 2023). Constant observation guarantees that a threat

is identified as soon as possible, which is paramount given the novelty and outsized
nature of Kubernetes.

]
I — - - [h o _-______'——__
— - T Te—
— 4"’—{ ¥ H""\l o
Wondorng
Theeat Delection Lopging Solufions lebebrics: Tooks D-luaeuummﬁ asd ro———
. \ P
/ ™~ i k\\ ~ | .
& ‘\‘; / . a | ~a
" |
\ Gitarm Fusitnaity Farismmance Mskics
Fiegt T Flerts incaiend Hegoma / Frackrg | I.
B — 1
'/ ! J l
/ Iy |
¥ 4 ¢ s
Pt ELK, $tack Mt Anaiyes. Log Aggregaton 5
|

Figure 6: Monitoring and Logging Process

e Theme 6: Policy Frameworks and Zero-Trust Principles Kubernetes security prac-
tices are growing, and new aspects reflect and apply policy frameworks and the
zero-trust concept Open Policy Agent enables policy as a code mechanism by
distinguishing policies that can be defined and enforced in a consistent manner
across the clusters. The models also enhance safe communication between services
and tightly restrict such interaction according to the verification results. These ap-

proaches are not accidental and these characterize a transition towards less informal
and more stringent policy-based Kubernetes security.

Hubsirmilon Secudity Practices

Zie-Trckl Pricgies. — Vil M

|

Service Communication

,f‘
e \. / \
Sanvica A Ternew
| J !

Open Folicy Agent (OFA) oo

Policy Framewoiis 4+——— Polcy as Code Policy Enforcemant
|)

—— Sarvice C
L J |

Figure 7: Policy Frameworks and Zero-Trust Principles

12

5.2 Practical implementation and its Results

Amazon Elastic ¢ secure-kBs-cluster (@) (Coetern ctter) ([Nidnshiosd
Kubernetes Service
Clusters * Cluster info .
 Amazon EKS Anywhere Statws Kubermetes veriien Inlo Sapport period Provider
irpeise Subaciptons. Hew © Cieat 131 Saa il EXS

w Related services

. Clisster health issues Upgrade insights
Overview Resources Compute Networking Add-ons Access Observability Update history Tags
Details
AP server endpeint OpendD Connect provider URL Created
- - 1) a few seconds ago
Cartificats sutharity Cluster 1AM role ARN Chester ARN
o pwiiameE2 108219585 1ol EXS_ROLE D) amcawseksap-south- 1:22 108215888 Lckuster/sec
© ure- ks -chuster

Figure 8: Create an EKS Cluster

The Figure 8 shows the practical evidence of creating an Amazon Elastic Kubernetes
Service (EKS) cluster on the AWS Console. This step is crucial for implementing and
testing Kubernetes security best practices, as it provides a real-world environment to
apply the theoretical concepts discussed in the report.

e WM > Rols > EKS_ROLE o &
" . ~ - ~
Identity and Access € EKS_ROLE ... ((_oelete)
Management (I1AM) Allows the cluster Kubernetes control plane to manage AWS nesounes on your behalf.
Summary (e)
Creation date ARN
Dashbaard November 28, 2024, 0924 UTC+0530) [0 arrcawsiaen:22 1082195851 nobe/EKS_ROLE
* Access management Lagt activity Mauismiam iaision duratian
e o @ 17 minutes ago 1 hour
Usirs
Roles PR " 4 2
Permissions Trustrelationships Tags LastAccessed Revoke sessions

Averant Permissions policies (1/1) |i{':} :: Simaulate Bj C Remove } (Add permdssions ¥ j
Fio0t 5055 MINBgEment New Vi ean Sttach up to 10 o
Filter by Type
¥ Access reports o
Q Searct Al types v 1 @
Policy name [3 & | Type w | Atached sntities v
rused access
(o] AmazonEKSClusterPolicy WS managed 1

Aralyzer settings L

Figure 9: Create an EKS Cluster Policy

The policy, called AmazonEKSClusterPolicy provides the required permissions for the
Kubernetes control plane to make calls to AWS on the user behalf Figure [0} One of the
first things to do when securing Kubernetes (k8s) is to define correct RBAC (Role Based
Access Control) policies as a way to limit access and prevent potential actions. The user
then creates this policy to ensure that the EKS cluster can function while maintaining a
strong security posture as recommended in the best practice section of the report.

13

9 EKS 3 Clusters securedSscloster > Nodegroups 3 secure-kSs-nodes LON

= i o hY
Amazon Elastic ¢ secure-kBs-nodes (C) (st) (_oetete)
Kubernetes Service
Clusters Neode group configuration .
* Amazon EKS Anywhere Kuberretes version AMItype infs Status
. 1.3 ALZ_xB6_Hd © Creat
Ertenprive Subscriplions New I
v Related services AMI reloase version saio Instance types Disk size
. o 131.2-20241121 8 medium 068
AWS Batch
Details Nedes Health issues [Kubernetes labels WUpdate config Kubermetes taints Update history Tags

Details
Node growp ARN Autescaling growp name Capatity type Subnets
) amaseksag-south-1:221082195 o DD et
A5T1nadegroupysecure- kis-cluster/seou
t- K- mucxchies D HET G- 528 T008- % Bode LAM role AR Desired sise
17-F185Tb0Secdtd e 2 nodes
Configure semote access to nodes
Created Minimum size off
D) & fow seconds aga 2 nodes

Figure 10: Configure Node Group (Worker Nodes)

The node group setup for the worker nodes of an Amazon Elastic Kubernetes Service(
EKS) cluster. IAM role is created (eks-node-role) and attached permissions which will
allow EC2 instances to communicating with any AWS resource. Figure [10| shows some
of the details around the ”secure-k8s-nodes” group, such as Kubernetes version, instance
types and disk size. The process allows for the right configuration and integration of
worker nodes into the EKS cluster for scalable and secure Kubernetes deployments.

aws
—

CloudShell

kube/config

Figure 11: Connect to the Cluster

Figure [T, AWS CloudShell also enables us to quickly connect to an EKS cluster.
The aws eks command updates the kubeconfig file with the information of the ”secure-
k&8s-cluster” so that can easily communicate with cluster. One can check that connection
works by listing the nodes with kubectl get nodes command, where we can see our nodes
status as Ready with age and Kubernetes version. This step verifies that integration
works and provides management and deployment within the Kubernetes ecosystem.

RBAC being enabled for a Kubernetes Cluster (AWS PowerShell) the command
aws configure establishes credentials and default configurations. The aws eks update-
kubeconfig command modifies the kubeconfig file with the context of the cluster you can
now securely interact with. At last, kubectl get nodes lists the nodes to confirm con-
nectivity and readiness. RBAC (Role-Based Access Control) provides a mechanism to
secure the access of the cluster resources towards the end users by establishing the role

14

and permission which again helps to enforce security at a good level of granularity in
Kubernetes.

LL L] -
HHH Q Search

) CloudShell
ap-south-1 -

rbac.authorization.k8s.io/v1l

rbac.authorization.k8s.io/vl

rbac.authorization.k8s.io/vl

rbac.authorization.k8s.io/vl

rbac.authorization.k8s.io/v1
[cloudshell-user@ip-10-132-84-233 ~]% aws ecr get-login-password --region ap-south-1
WARNING! Your password will be stored unencrypted in /home/cloudshell-user/.docker/c
Configure a credential helper to remove this warning. See
https://docs.docker.com/engine/reference/commandline/login/#credentials-store

Login Succeeded
Figure 12: Authenticate Docker with ECR to Deploy a Trusted Container Image

The best way to understand this step is by looking at the actual command that is
being executed, which is shown in figure [I2] presenting how one can authenticate Docker
with AWS Elastic Container Registry (ECR) via the AWS CloudShell interface. This
command generates a login token to authenticate your Docker client to the specified
region by calling aws ecr get-login-password. It is important to deploy trusted container
images to the ECR. The warning states that, in plain form, the password is saved which
is why good practices for the manage credentials need to be followed to ensure security
in Kubernetes” environment. The message indicates that the user successfully logged in
and authenticated.

Pulling Nginx image from docker hub using docker pull nginx:latest and tagging it for
ecr repo In the tagging step, one also put the repository url and image name so that it can
be recognized by AWS ecr Using aws ecr create-repository creates the ECR repository,
which is a secure place where one store container images. This process allows users to
create container images for use in Kubernetes and doing so using the principles of secure
DevOps.

Figure 13: Push the Image to ECR

Pushing the tagged Nginx image to AWS Elastic container registry ECR with docker
push command. Figure[L3[t is verified that all layers of the image have been uploaded suc-
cessfully, when one applies the deployment yaml the error occurs because of the metadata.
spec field. This just so proves that YAML configuration files have to be formatted prop-
erly for Kubernetes deployments to function without a hitch inside the cluster.

15

loymentyam| >

Figure 14: Nginx Deployment

Creating and executing a Kubernetes deployment from Nginx container image the
nginx-deployment. The yaml file that has the definitions for specs for the deployment such
as number of replicas, container image, port etc Figure Deploying with kubectl apply
-f nginx-deployment Upon creating and deploying below mentioned yaml, the deployment
gets created successfully. The status of the deployment is verified with commands such
as kubectl get deployments and kubectl get pods. The output shows two pods in running
state, verifying that the application successfully deployed in the Kubernetes cluster.

!' nginx-service.yaml X

> I nginx-service.yaml

Figure 15: Nginx Service

The nginx-service a yaml configuration defines the service specifying the protocol and
ports and selector that are part of the service Figure[I5] Kubectl apply command creates
the service and then kubectl get sve command checks the status of service.The Load-
Balancer Service has been created with an external generated ip to expose the Nginx
deployment externally, this shows the intention and practical implementation of Kuber-
netes service exposure.

16

! network-policy.yaml X

Figure 16: Enable Network Policies

This shows how network policies are applied in Kubernetes like the network-
policy yaml file. In this configuration, a policy called deny-all is created in the default
namespace, and only Ingress and Egress rules with the action DENY are specified for
the policy to allow all traffic. The policy is applied via the command kubectl apply and
one can see its creation with kubectl get networkpolicies respectively. The output shows
the policy and proves it works by restricting traffic to and from pods in the cluster — as
expected per Kubernetes principles for network security.

Figure 17: Enable Real-Time Monitoring with Prometheus

A real-time monitoring setup with Prometheus in a Kubernetes environment as shown
in this figure [I7] These are the kubectl commands to show cluster, nodes, pods, events
status. Prometheus is established, and its operator is booted correctly, judging from
the readiness of the pod and occurrence logs. Logs contain information about creating
the container, pulling the image, and scaling replicas. These measures guarantee a solid
monitoring solution on the bases of the cluster performance and resources utilized, to
provide an easy to operate and more reliable visibility.

17

6 Evaluation

6.1 Effectiveness of Current Security Practices

Current security measures on Kubernetes have been able to mitigate key shortcomings
for instance in network security, trusted container images, and RBAC. These regulations
are enhanced by technologies such as calico in enhancing the network security of the
firm. However, even here there are several gaps where RBAC settings might become too
complex and thus lead to misconfigurations that expose critical resources. Additionally,
while trustworthy images are desirable, the reliance on manual updates and scanning
may mean that weaknesses go unexplored for longer still. Further, because Kubernetes
settings are dynamic, monitoring is continuous, a feature that is usually missing in existing
solutions. Thus, even despite having good procedures in place today there is a severe need
for automation of processes and a better way of monitoring them to effectively respond
to emerging threats.

6.2 Implementation and Feasibility of Solutions

e Ease of Implementation: Organizations can set rules as code in an RBAC enforcing
tool that is easy to use such as Open Policy Agent (OPA). This removes the likeli-
hood of human mistake in the course of configuration and accelerates acceptance. In
a like manner, modern image-scanning technologies are designed to integrate seam-
lessly into CI/CD pipelines making vulnerability assessments at various deployment
stages possible.

e Integration with Existing Infrastructure: In order to enable integration, some new
solutions are intended to build upon existing Kubernetes platforms. It is even
possible to add zero-trust frameworks, for instance, to that existing architecture
without changing the whole system. This approach in implementation reduces the
level of disturbance achieved in implementation and enhances flexibility.

e Resource Requirements: At the time, while these complex solutions often require
additional computing capacity for scanning and monitoring, the benefits of en-
hanced protection overshadow such costs. So, in order to operate these techno-
logies effectively, organizations may require additional expenditures of money for
staff development, but these can for sure reduce risks at the later stage more than
the money spent on it.

e Security Posture: Effective reduction of the attack surface of the Kubernetes system
was achieved using security settings including RBAC, TAM roles, network restric-
tions. Using least privilege guaranteed that, for any user or service account, only
required activities were allowed.

e Ease to Use: Using CloudShell, the EKS cluster was easily connected to and the
kubeconfig was updated. By use of kubectl commands, simple validation and ad-
ministration of the implemented resources became possible.

e Real-Time Monitoring: Integrating Prometheus gave the team necessary monitoring
tools so they would have real-time understanding of system health and resource use.
This monitoring system guarantees quick identification of performance problems
and resolution of them.

18

6.3 Adaptability to Rapidly Changing Threats

The maintenance of a stable security posture in Kubernetes is dependent on the adapt-
ability of both established and new security measures to fluctuating risks. The viability
is impacted by a few components:

e Scalability: Basic policies such as network segmentation or RBAC could appear too
complex. OPA for example enhances scalability through automation of applications
for policy administration. But, as the present work highlighted, security at scale is
not easy primarily because microservices are complicated.

e Responsiveness to New Vulnerabilities: During the automated image-scanning tech-
niques became valuable for vulnerability identification, such tools could not dynam-
ically track the shifts in the mechanisms and weaknesses in open-source elements.
These technologies effectiveness however is lost if vulnerability databases do not get
updated in time.

e Dynamic-Configurations: Since it is dynamic environment often times configuration
drift has been witnessed which may later reveal many security issues. This means
that the configurations must be kept compliant with the security regulations, and
that is why practices should be modified constantly training as well as security
measures

6.4 Overall Impact on Kubernetes Security

These changes in the cloud make the present procedures and new developments a con-
siderable step forward in the enhancement of the Kubernetes security environment. In
combination with automated image-scanning technologies, the introduction of zero-trust
frameworks and better RBAC configurations thereby contribute to the shaping of a more
secure environment as risks and potential breaches are mitigated.

6.5 Discussion

Objectives of the study focused on identifying critical security vulnerabilities in Kuber-
netes and evaluating the effectiveness of known and emerging security measures. Major
themes identified during the thematic analysis included RBAC misconfigurations, con-
tainer image vulnerabilities, network security issues that are prevalent in microservice
architecture, complexity, the fact that there is always something new to monitor, and the
increment of policy frameworks and the adoption of a zero-trust model.

The results reveal that while some risks are managed by current practice such as
RBAC or the usage of trustworthy images there are aspects which are partially imple-
mented or not monitored in terms of incorrect settings as well as insufficient restrictions
on the network level. Therefore, the study provides a complete understanding of Kuber-
netes security, which supports the generalization of the themes proposed in the research
with the key objectives.

This research also proposes a new proposal addressing scalability, security, and real-
time monitoring challenges by integrating recent advances tools and methodologies, over-
coming many limitations of previous works. Taking advantages of Kubernetes orches-
tration, Prometheus observability and network policies, our study proposes a strong
foundation for efficient system control. The demonstration showcases the versatility and

19

robustness of the implementation of the proposed solution, which is engineered for better
performance and security. Through this work, we bridge the aforementioned gaps and
pave the way towards innovative developments in system integration and monitoring.
This framework opens up more analysis in different fields for future work.

6.6 Novelty from Previous Research

The novelty of this research integrates cutting-edge methodology and tools that addresses
previous studies limitations Bose et al. (2021)). This work adopts a unified framework
with real-time monitoring and orchestration via Kubernetes for higher efficiency and
scalability, unlike previous works that focus on standalone methods. It also brings in an
enhanced deployment pipeline that uses Prometheus for dynamic and real-time monitor-
ing and adaptation to deal with system changes. While previous works generally focused
neither on scalability nor on profiling the personalized study under a more integrated
and system-level condition, we highlight adaptivity and performance in varied condi-
tions. Additionally, the addition of new technologies like network policies for security
and observability using Prometheus is a new step forward. By doing so, this research
connects the dots of the previous studies and also provides a well-rounded and a strong
solution

7 Conclusion and Future Work

In conclusion, the security practices are applicable to a vast range of Kubernetes systems,
from cloud-native microscales to extensive business implementations. It is likely that the
research could be used in a wide range of deployment scenarios because this study focuses
on usual weaknesses and protection measures. However, a clear understanding must be
made that varied dispositions and conditions of operation may produce different prob-
lems and effects relative to security. Companies operating in industries with compliance
requirements that can heavily regulate associated operations while employing Kubernetes
might have specific compliance needs that tend to modify how standard security meas-
ures are implemented.To this end, the research focusing on the organisational processes,
organisational culture, and technologies for security. Development and operations teams
are called to maintain strong security hygiene and constantly train as vulnerabilities like
RBAC misconfigurations and untrusted container images show. To the same effect, the
results also emphasize the importance of risk mitigation and the application of policies
such as the zero-trust model. It is crucial to comprehending these issues and addressing
them to guarantee the security of these data and maintain required organizational stabil-
ity as more and more companies rely on Kubernetes for crucial programs. Therefore,the
outcomes of the study are given informative and effective data suited for other Kuber-
netes systems, businesses need to consider possible particularities in the context when
adopting the recommendations from this research.

7.1 Future Work

In the first instance, long-term studies of new security solutions such as the automated
enforcement of RBAC and sophisticated image scanning can provide valuable data on
the solutions effectiveness on the long-term basis. These kinds of research might help
enterprises in making right decisions regarding the adoption of new technologies to be

20

incorporated in the security strategies for Kubernetes. However, evaluating artificial in-
telligence and machine learning into the current processes of security may reveal new
directions to enhance the approach to threats and response. The use of algorithms that
consider behavior designs in Kubernetes settings could enable the creation of versatile
security measures that react swiftly to evolving threats. Therefore, the study has iden-
tified the critical themes and security issues in Kubernetes, demonstrating that further
analysis and changes to security measures continue to be essential. Therefore, the study
has identified the critical themes and security issues in Kubernetes, demonstrating that
further analysis and changes to security measures continue to be essential.

References

Agrawal, M., Abhijeet, K., Smitha, G. and Murthy, C. (2020). Security audit of kuber-
netes based container deployments: A comprehensive review, Journal Name .

Agrawal, R. (2024). The role of infrastructure as code in disaster recovery and business
continuity, International Journal of Multidisciplinary Sciences and Arts 14(11).

Arif, H., Kumar, A., Fahad, M. and Hussain, H. (2024). Future horizons: Ai-enhanced
threat detection in cloud environments: Unveiling opportunities for research, Interna-
tional Journal of Multidisciplinary Sciences and Arts 3(1): 242-251.

Bose, D., Rahman, A. and Shamim, S. (2021). ”under-reported” security defects in
kubernetes manifests, 2021 IEEE/ACM 2nd International Workshop on Engineering
and Cybersecurity of Critical Systems (EnCyCriS), pp. 9-12.

Curtis, J. and Eisty, N. (2024). The kubernetes security landscape: Ai-driven insights
from developer discussions, arXiv preprint .

Dell'lmmagine, G., Soldani, J. and Brogi, A. (2023). Kubehound: Detecting mi-
croservices’ security smells in kubernetes deployments, Future Internet 15(7): 228.

Egbuna, O. (2022). Security challenges and solutions in kubernetes container orchestra-
tion, Journal of Science Technology 3(3): 66-90.

Gonzalez, S. (2023). Modular software design in distributed systems: Strategic ap-
proaches for building scalable, maintainable, and fault-tolerant architectures in modern
microservice environments, Figenpub Review of Science and Technology 7(1): 373-400.

Hosen, M., Al Mamun, M., Khandakar, S., Hossain, K., Islam, M. and Alkhayyat, A.
(2024). Cybersecurity meets data science: A fusion of disciplines for enhanced threat
protection, Nanotechnology Perceptions pp. 236-256.

Huseinovi¢, A., Mrdovié, S., Bicakei, K. and Uludag, S. (2020). A survey of denial-of-
service attacks and solutions in the smart grid, IEEE Access 8: 177447-177470.

Ibryam, B. and Huf}, R. (2022). Kubernetes Patterns, O’Reilly Media, Inc.

Jayalath, R., Ahmad, H., Goel, D., Syed, M. and Ullah, F. (2024). Microservice vulner-
ability analysis: A literature review with empirical insights, IEEE Access .

21

Kampa, S. (2024). Navigating the landscape of kubernetes security threats and challenges,
Journal of Knowledge Learning and Science Technology 3(4): 274-281.

Kim, B. and Lee, S. (2024). Kubeaegis: A unified security policy management framework
for containerized environments, IEEE Access .

Kutsa, D. (2024). Fortifying multi-cloud kubernetes: Security strategies for the modern
enterprise.

Muresu, D. (2021). Investigating the security of a microservices architecture: A case
study on microservice and kubernetes security, Journal Name .

Mustyala, R. and Tatineni, R. (2021). Analysis of role-based access control vulnerabilit-
ies in kubernetes environments, IEEE Conference on Computer and Communications
Security.

Onyema, E., Kumar, M., Balasubaramanian, S., Bharany, S., Rehman, A., Eldin, E.
and Shafiq, M. (2022). A security policy protocol for detection and prevention of
internet control message protocol attacks in software defined networks, Sustainability
14(19): 11950.

Revuelta Martinez, (2023). Study of security issues in kubernetes (k8s) architectures;
tradeoffs and opportunities, Journal Name .

Sandu, A. (2021). Devsecops: Integrating security into the devops lifecycle for enhanced
resilience, Technology € Management Review 6: 1-19.

Shamim, M., Bhuiyan, F. and Rahman, A. (2020). Xi commandments of kubernetes
security: A systematization of knowledge related to kubernetes security practices, 2020
IEEE Secure Development (SecDev), pp. 58-64.

Shamim, S. (2021). Mitigating security attacks in Kubernetes manifests for security best
practices violation.

Song, Z., Ma, H., Sun, S.; Xin, Y. and Zhang, R. (2023). Rainbow: reliable personally
identifiable information retrieval across multi-cloud, Cybersecurity 6(1): 19.

Sroor, M., Das, T., Mohanani, R. and Mikkonen, T. (2024). Systematic mapping study
on software containers risks and vulnerabilities. Available at SSRN 4741002.

Theodoropoulos, T., Rosa, L., Benzaid, C., Gray, P., Marin, E., Makris, A., Cordeiro, L.,
Diego, F., Sorokin, P., Girolamo, M. and Barone, P. (2023). Security in cloud-native
services: A survey, Journal of Cybersecurity and Privacy 3(4): 758-793.

Thijsman, J., Sebrechts, M., De Turck, F. and Volckaert, B. (2024). Trusting the cloud-
native edge: Remotely attested kubernetes workers, arXiv preprint arXiv:2405.10151

Tripathi, A. (2024). Attacking and Defending Kubernetes, PhD thesis, Dublin Business
School.

Zheng, T., Tang, R., Chen, X. and Shen, C. (2024). Kubefuzzer: Automating restful api
vulnerability detection in kubernetes, Computers, Materials & Continua 81(1).

22

	Introduction
	Background and Motivation
	Research Question
	Objective
	Research Structure

	Literature Survey
	Overview of Kubernetes and its Security Concerns
	Microservices, Architecture, and Security Consequences
	Popular Kubernetes Threats
	Security Threats and Issues in Deploying Kubernetes in Cloud Environment
	New Security Trends and Security Solutions
	Challenges of Applying Security in Kubernetes

	Research Methodology
	Scope Definition
	Data Gathering
	Data Organization and Cleaning
	Thematic Analysis Framework
	Kubernetes Security Implementation Methodology

	Design Specification
	Implementation
	Thematic Analysis and its Results
	Practical implementation and its Results

	Evaluation
	Effectiveness of Current Security Practices
	Implementation and Feasibility of Solutions
	Adaptability to Rapidly Changing Threats
	Overall Impact on Kubernetes Security
	Discussion
	Novelty from Previous Research

	Conclusion and Future Work
	Future Work

