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Alice Angenette Rodgers  

X23210362  
 

Abstract 

 
Communication Based Train Control (CBTC) is becoming increasingly important in 
optimizing urban transportation systems as they become larger. In this paper we propose a 
hybrid framework that combines Deep Reinforcement Learning (DRL) and Edge Computing 
to optimize CBTC systems. Deep Q-Network (DQN) model helps solve dynamic challenges 
like task offloading, equipment placement, and maintenance scheduling; while, Edge 
Computing, deployed on AWS Greengrass, reduces latency and computational load by 
processing the data close to the source. Performance of the framework is evaluated on synthetic 
data obtained from CBTC system simulations in terms of latency, energy savings, and 
optimization of cost saving. The model demonstrated that the DQN model outperformed the 
Q-learning baseline resulting in a 57% reduction in latency, 25% energy savings, and 35% 
reduction in operational cost. Results were promising for the DQN model and the proposed 
method has advantages. 
 
 

1 Introduction 
 

As Urbanization is rapidly increasing, and consequently, the transportation of cities is 

developing and becoming complex, which requires the development of alternatives that are 

more efficient, that are safer, and more sustainable. Highly reliable, environmentally sound, 

and a great transportation capacity, urban rail transport has been an important component of 

smart city infrastructure. Communication Based Train Controls (CBTC) is a key technology 

which underpins modern urban rail systems using real time communication between trains and 

wayside equipment. However, CBTC systems are critical for optimizing train scheduling, 

minimizing train intervals, and improving operational safety, and hence are required to meet 

the growing requirements in railway network. Conventional CBTC systems, place heavy 

reliance on wireless local area networks (LANS) as the medium for train-to-wayside (T2W) 

communication, which is limited by poor coverage, high maintenance costs, and long latency. 

 

Train to train (T2T) communication, wireless multi hop ad hoc networks, that have emerged 

as technologies, have demonstrated the ability to extend connectivity, increase data 

transmission rates and reduce reliance on centralized infrastructure. The information on these 

advancements makes their use in communication network architecture easier and decreases the 

cost of installation and maintenance. Nevertheless, CBTC systems remain constrained by the 

lack of onboard computational capacity, delays increase, energy consumption is high. These 

problems arise from the computational intensity associated with the tasks considered by trains 

such as train speed, braking distance, and track information. 

For this, this research proposes a hybrid framework which uses Deep Reinforcement 

Learning (DRL) and Edge computing for optimizing CBTC. DRL model capturing Deep Q-

Network (DQN) solves key operational inefficiencies through optimal wayside equipment 

placement and dynamic scheduling of preventative maintenance, as well as smart offloading 

of computational workloads. Unlike other reinforcement learning methods, all that is required 
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of DRL is for the agent to learn and maximize the rewards in experiments simulated in a 

complex environment. This dynamic flexibility is necessary to meet system reliability and 

cost efficiency. 

1.1 Research Question 

 

1. What measures can be implemented to address the limited coverage and high 

maintenance cost of the CBTC system's wayside equipment using DRL to improve 

efficiency and reduce the cost of operations? 

2. How can insufficient computing capacity in trains, which leads to high latency and 

increased energy consumption, be solved to improve overall system performance? 

 

The computational bottlenecks embedded in CBTC systems are resolved by edge computing 

to complement DRL. The framework can reduce latency, energy consumption and offload data 

intensive task from onboard systems by performing them at the edge server deployed 

strategically along railway tracks. With this distributed architecture, critical data processing is 

happening closer to where the data resides, reducing both operations and improving real time 

responsiveness. By working DRL and edge computing together, this study proposes a robust, 

scalable, and energy efficient solution to CBTC system operational and computational 

challenges. 

 

The rest of the research is structured as follows: Related works in Edge Computing and Deep 

Reinforcement Learning (DRL) in CBTC systems are reviewed in Section 2, where works on 

each topic, including their advancements and gaps in the current approaches are illustrated. In 

Section 3, the system model is presented: Specifically, it simulates CBTC environment, 

generates a synthetic dataset, and designs as well as trains DQN and Q-learning models. In 

Section 4, we deploy the models to AWS Greengrass edge devices for comparison of their 

performance in terms of power consumption and unnecessary latency reduction, and how to 

optimally choose between these models. Finally, in Section 5, the study concludes with 

discussions toward continued research that will improve the optimization of CBTC systems 

with intelligent, edge enabled frameworks. 

 

2 Related Work 

In this section, the work with DRL algorithms is reviewed, CBTC technology, and the 

deployment of DRL in Edge Computing. 

2.1 Latency and Resource Optimization with Double Deep Q-Network (DDQN) 

Deep Reinforcement Learning (DRL) models, new-generation Magnetic Resonance Imaging 

(MRI) auto-regressive pre-trained models such as DRL models, are used as an effective method 

to reduce latency and modify resource usage ratios by way of edge computing. Double Deep 

Q-Network (DDQN) performs considerably better among these because it incorporates the 

temporal and resource allocation in the edge computing problem. 
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        Fig. 1. Computational offloading and Resource allocation 

 

Like the previous models, Fang et al., 2024, and Kumaran, 2024, are functional in handling 

latency problems and other edge system systems but fall short when it comes to cost control 

and the dynamic-to-dynamic changes in compute demands. Research to offload computation 

from trains to Edge servers and Alternating Direction Method of Multipliers (ADMM) in 

Mobile Edge Computing (MEC) is motivated by high wayside equipment maintenance costs 

and limited coverage, driven in Communications-Based Train Control (CBTC) systems. The 

idea is to cut down on the computational burden on trains, helping CBTC systems perform 

better. No further possibilities concerning DRL applied to solution improvement are 

considered either. 

 

2.2 PERIMA Systems and Its Applications 

 

Real Time problem solving is improved by combining Deep Reinforcement Learning (DRL), 

photonics and Fiber Bragg Gratings (FBG)s in Photonic Enhanced Real-Time Integration for 

Multi Agent (PERIMA). Handling and analysis of high-frequency sensor data, an important 

facet in dynamic contexts (Subranjani, Ramulu, Panneer Selvam, 2024), is greatly improved 

by this model. Therefore, solutions are limited to high precision with high program latency 

costs, which may preclude deployment in contexts where program latency is critical. Jaideep 

et al. (2024) have also proposed a binary offloading method in Multi-Access Edge computing 

(MEC) environments using a Gated Recurrent Unit (GRU) algorithm and Double Deep Q-

Network (DDQN), respectively, as reflected by Basheer and Nalband (2024). This approach 

was then integrated with Double Deep Q-Network (DDQN), with the improvements from the 

Gated Recurrent Unit (GRU) to exhibit improved offloading efficiency of tasks and lower 

average delays even when it faces slow on device ML inference and computation plus latent 

to overcome the problems as compared to offloading latency and energy consumption. 

However, the methods presented in these experiments are not scalable, and not effective in 

terms of economics. 

 

2.3 Relay Selection and Multi-Agent Deep Q-Network (DQN) in CBTC Systems 

 

The relay selection for the next hop of wireless Mobile Ad-hoc Networks (MANETs) based on 

Manjula et al. (2014) train-to-train Multi-Agent Duelling Deep Q-Network (DQN) aims to 

improve. In this work, this approach is enhanced by choosing the best relay nodes regarding 
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their congestion degree and channel quality among nodes to solve the problem of latency and 

throughput in Communications-Based Train Control (CBTC) systems based on Sixing Ma et 

al. (2024). This method produces positive results, but works are still in progress in terms of the 

growth of Dynamic Reverse Learning and optimization of edge computing aspects. According 

to Farooq and Soler (2024), Radio Wave has been an integral part of Communications-Based 

Train Control (CBTC), supportive of operational safety and efficiency. But recent advances in 

Wireless Local Area Network (WLAN) and Long-Term Evolution (LTE) have eliminated 

many drawbacks attributed earlier to it, such as high implementation costs of both systems and 

the complex responsibility of upkeep. To enable the requisite train control accuracy, signal 

transmission was critical for optimal communication and transitioned to the application of new 

radio technologies. Pengbo Si et al. (2024) also describe multi-hop and ad hoc networks, which 

are flexible and inexpensive solutions. Although there is research into how best to implement 

adaptive routing in such challenges in engaging, mobile network environments, there is room 

for more research into how to adapt routing in those challenges. 

Addressing the issue of routing in urban rail transit ad hoc networks, based on (Liu et al., 2023), 

a mobility-aware multi-objective Deep Deterministic Policy Gradient (DDPG) algorithm is 

developed. These are generally intended to achieve maximum throughput, delay, and energy 

consumption concerning train movements. It presents a clustering routing model to solve 

routing congestion problems in the dynamic environment. This model is closely related to 

routing problems, and it is developed based on intra-cluster and inter-cluster optimization by 

using Markov Decision Process (MDP) models. The proposed multi-objective Deep 

Deterministic Policy Gradient (DDPG) model demonstrates superiority over conventional 

approaches since it achieves better routing performance with increased consideration of 

optimization priorities. This is most important for real-time train control since the advantages 

offered by the algorithm in terms of latency and energy consumption are significant. It does 

not include approaches to maintain and improve predictive maintenance techniques or analyze 

the consequences of deploying such an advanced formula in an actual environment, where it is 

imperative for comprehensive system enhancement. 

 

2.4 Integration of 5G Networks and Edge Computing for CBTC Systems 

 

An efficient approach for training deep neural models aimed at using Bayesian Neural 

Networks (BNNs) complemented with uncertainty to identify anomalous traffic in Fifth-

Generation (5G) networks was employed by Jae Lee et al. in 2023 to enhance reliability using 

less computational resources for model updates. To sustain high performance and reliability in 

large-scale network systems, emphasis was placed on revisiting the importance of selective 

retraining based on the uncertainty measure. This is the reason why the Bayesian Neural 

Network (BNN)-based technique is implemented to support effective resource management 

and improve anomaly detection reliability in well-maintained network operations. It is critical 

for Communications-Based Train Control (CBTC) systems, which need to be maintained and 

supervised, essentially like the approach proposed in the method mentioned by (Zeng et al., 

2023), which focuses only on Fifth-Generation (5G) networks and does not address the major 
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challenges of Communications-Based Train Control (CBTC) systems, namely, real-time 

decision-making and the use of edge computing for localized processing. 

Task offloading in Vehicular Edge Computing (VEC) environments includes reducing the 

response delay and achieving efficient utilization of resources, which is fundamental in the 

Communications-Based Train Control (CBTC) system since real-time processing and efficient 

utilization of resources are very important. It considers connectivity constraints applicable to 

one-hop as well as multi-hop service vehicles and uses a Semidefinite Relaxation (SDR) 

technique described by (Liu et al., 2023) and an adaptive adjustment approach to the 

optimization problem. The problems with task offloading, reduction in reaction delay, and 

resource utilization are critical for Communications-Based Train Control (CBTC) systems 

since these systems require optimum resource utilization and real-time processing. It does not 

address the requirements of Communications-Based Train Control (CBTC) systems, like the 

high traffic needs of train-to-trackside equipment communication, and focuses principally on 

vehicle networks. When it comes to routing urban rail transit ad hoc networks (Zhai et al., 

2023), a mobility-aware multi-objective Deep Deterministic Policy Gradient (DDPG) was 

used. The aim of this work is to find the minimum energy and time, i.e., the optimum 

throughput rate constrained by dynamically varying train movement characteristics. It 

developed a clustering routing model with intra-clustering and inter-clustering optimization 

under the Markov Decision Process (MDP) models to manage such routing problems. 

Compared to traditional methods, the (Yang Sun et al., 2023) algorithm boosted routability 

alternatives concurrently through numerous optimization objectives for real-time control of 

rail-bound vehicles, where latency and energy considerations are essential. A review of the 

impacts of such complicated algorithms on the systems is missing when trying to optimize, as 

well as an indication of the practical application of the maintenance. 

 

2.5 DRL and Model Predictive Control in CBTC Systems 

 

Deep Reinforcement Learning (DRL) for offloading tasks in Mobile Edge Computing (MEC) 

using Long Short-Term Memory (LSTM) networks: by Bin Xu et al. (2023). It focuses on 

reducing task completion time and energy through dynamic offloading decisions using the task 

and network variables. By incorporating past data into the forecasts of the network 

circumstances in the near future, the Deep Reinforcement Learning (DRL)-Long Short-Term 

Memory (LSTM) enriched the precision of the decision-making method. The proposed Time 

and Task (TNT) model, together with the combined Deep Reinforcement Learning (DRL) and 

Long Short-Term Memory (LSTM) networks, improved offloading decisions in Mobile Edge 

Computing (MEC) environments. It is particularly important for Communications-Based Train 

Control (CBTC) systems because real-time operations involve low latency and energy 

efficiency. Nevertheless, it focuses on Mobile Edge Computing (MEC) while failing to address 

the challenges with Communications-Based Train Control (CBTC) systems in detail. Reduced-

time optimum power flow (AC Optimal Power Flow) technique for present power systems that 

used Imitation Learning (IL) as well as Deep Reinforcement Learning (DRL). The described 

strategy aimed at achieving the best control over the grid by responding quickly to the changes 

and emergencies. Based on it, it constructs a Markov Decision Process (MDP) proposed by 

(Liu Guo et al., 2022) to model the AC Optimal Power Flow problem. It uses intermediate 
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language to positively engage the Deep Reinforcement Learning (DRL) agent at the start and 

hence improves its training performance. This approach was used in solving large-scale and 

multi-dimensional optimization problems. But it solves Communications-Based Train Control 

(CBTC) challenges, like incorporating edge computing for localized processing and predictive 

maintenance technologies to cut international operating expenses since it is about power 

systems. 

A novel multi-hop task offloading decision model (Huan Li et al., 2023) is proposed for the 

Mobile Edge Computing (MEC)-enabled Internet of Vehicles (IoV) to address the limitations 

of traditional single-hop offloading practices based on the mobility of vehicles and the need 

for efficient resources. To continue to complete jobs when a vehicle is out of range of the 

server, the model employs multi-hop vehicle self-organizing networks to relay the jobs to edge 

computing servers. A precise index for evaluating the time needed to perform the tasks and a 

model based on Brownian motion is used to gauge vehicle movements. It optimized the degree 

of task offloading to meet delay constraints and enhance the Internet of Vehicles (IoV) 

network’s utility. By focusing on the Internet of Vehicles (IoV), it fails to adequately address 

the needs of Communications-Based Train Control (CBTC). 

 

2.6 Scalability, Cost, and Practical Limitations in DRL-based CBTC Solutions 

 

Fifth-Generation (5G) networks are used to propose the support to cloud and edge computing 

coordinated by Fifth-Generation (5G) to enhance responsive rules of Communications-Based 

Train Control (CBTC) train control. Interestingly, although  no such publications by Li and 

Zhu in 2021B, Li and Zhu (2022)’s architecture relies on edge servers stationed across rail lines 

to relieve critical onboard equipment and foster information exchange between trains and 

control centres were found. Therefore, the autonomous train control optimization problem is 

handled by applying Model Predictive Control (MPC) to the control actions of a train in real-

time and a dynamic trajectory prediction-based deep learning model. The state at some future 

time of this model, recognized as an efficient model, is established in its character to improve 

the system performance of the computer-controlled train dispatcher. The result is that low-

latency communication is achieved through Fifth-Generation (5G) maintenance strategies, low 

operating costs, and increased system reliability in Communications-Based Train Control 

(CBTC) systems. 

In an edge computing environment, a Deep Reinforcement Learning (DRL)-based policy 

gradient methodology (Saranya and Sasikala, 2022) improved the bandwidth utilization. More 

specifically, it attempts to minimize the energy consumption of edge devices, and there is a 

trade-off between the Quality of Service (QoS) of the offloaded tasks. A policy gradient 

framework for task offloading policy approach with parameters like task size, network 

conditions, and energy consumption. Neither of these two frameworks included predictive 

maintenance. Different studies have been carried out for the integration of Deep Reinforcement 

Learning (DRL) and Edge Computing into optimizing Communication Based Train Control 

(CBTC) systems to improve the performance as well as reduce the latency and management of 

resources. 

In 5G networks, Yao et. al (2019) consider DRL for various resource allocation problems in 

edge computing systems. Managing computational and communication resources in 
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decentralized systems matches with the challenges from CBTC systems which need real time 

optimization and task offloading to improve network efficiency and system reliability. The 

results show that DRL can minimize latency, and improve the utilization of resources and 

agents (absolute and relative), but the results are primarily applied to a 5G network (of different 

scale and requirements than CBTC systems). On the same lines, Zhang et al. (2020) propose a 

DRL based strategy for resource allocation in cloud edge computing systems. Their results 

show the optimization of latency and energy consumption, which are important factors in 

CBTC systems. Here, Demonstration is done that DRL enables a scalable approach to 

optimizing resource allocation across cloud and edge nodes, which is also scalable to a range 

of environments. The challenge here is how to use this strategy in real time for train operations 

with safety and fault tolerance taken into consideration for task coordination. 

 

In Liu et al. (2021), Liu et al. introduce a collective DRL approach for intelligence sharing in 

edge environments. In this paper, multiple DRL agents (edge devices) for cooperative 

intelligence sharing and overall coordination and decision making across a distributed network 

are proposed. Coordination between distributed edge nodes for CBTC systems could be highly 

advantageous if approached in this way. Nevertheless, the study concerns the Internet of 

Intelligence (IoI), orthogonal to the actual operational constraints of CBTC and requires 

subsequent adaptation for railway applications. To address such issue, Wang et al. (2020) 

propose a DRL based task scheduling model in edge computing for intelligent systems. The 

energy and latency of their method are reduced, both being critical performance indicators for 

a CBTC system. The research works well with the needs of real time train operations, focusing 

on task scheduling, which is necessary for real time train operations. However, the paper does 

not completely capture the complexities of larger systems such as CBTC where real time 

processing and safety requirements pile on layers of complexity. These studies cohesively offer 

a strong basis for combining DRL and edge computing for CBTC systems. Though each shows 

the promise to improve real time systems, there is an issue of scalability, fault tolerance, real 

time decision making in the highly dynamic environments of urban rail transport, which needs 

to be addressed. The future research directions should investigate these topics and understand 

how to tailor these methods based on complex CBTC system requirements, especially the 

safety critical ones. 

 

2.7 Research Gap Identified 

 

Finally, several solution methodologies for urban rail transit communication limitations, 

especially within Communication Based Train Control (CBTC) systems, are evaluated. 

Latency, efficiency, and resource management has been improved using some techniques such 

as Deep Reinforcement learning (DRL), Multi Access Edge Computing (MEC), Bayesian 

Neural Network (BNN) and Model Predictive Control (MPC). These incorporate DRL with 

existing computing and communication infrastructure, and suggest potential latency reduction, 

efficient resource allocation, and enhanced energy efficiency. Moreover, the combination of 

5G and Internet of Vehicles (IoV) frameworks together with DRL can enable the real time 

decision making in CBTC. However, these methods have, high computational costs, and lack 

of scalability that prevent them from being used practically in real world. Moreover, predictive 

maintenance, cybersecurity, and reliability of the long term system need to fit into their roles 



 

8 

 

 

as well. Further research is required to develop next generation, locally applicable, low cost 

and scalable solutions for CBTC real time operation and maintenance. 
 

3 Research Methodology 
 

In this section, the review is followed by design, development and evaluation the hybrid 

framework consisting DRL with Edge Computing for optimizing Communication Based Train 

Control (CBTC) systems. Additionally, it includes data collection, model development, 

training, simulation, deployment and evaluation. 

3.1 Data Collection 

The first step in the research consists of the collection of synthetic data simulating real word 

scenarios for CBTC systems. To model the environment and to simulate the behaviour of trains, 

wayside equipment, edge servers and other environmental factors SimPy library is taken.A 

total of 1,000 records are generated based on the following simulation parameters: 

 

Parameter Description Value 

NUM_TRAINS The system operates with trains. 5 

NUM_EQUIPMENTS Number of wayside equipment pieces. 3 

NUM_EDGE_SERVERS Number of edge devices in the system. 2 

TIME_INCREMENT Data collection interval in minutes. 10 

Table 1. Parameters defined for Simulation. 

 

The generated data consists of features such as those of train operations, energy consumption, 

task offloading, maintenance schedule, environmental conditions, and network 

communication. Key features include: 

 

1. Train Features: The three domains it must organize were speed, position, onboard 

computation load. 

2. Wayside Equipment Status: Operational, maintenance or failure status. 

3. Energy and Latency: The utilization of energy consumption, onboard CPU usage, 

latency, and bandwidth usage of the system. 

4. Environmental Factors: Thermo, Humidity, Wind speed, vibration levels, etc. 

5. Task Offloading: Latency and bandwidth condition influenced decision to offload 

computation. 

6. Maintenance Data: Downtime, Maintenance type and Scheduled maintenance costs. 

 

The dependencies between the features are established by connecting the data generated from 

randomly defined but bounded values with given dependencies between them (e.g., if the 

maintenance status changes, the operational status of the trains also changes). For the data 

handling and processing, Pandas and NumPy are used for the building of the simulation 

environment using SimPy. Finally, the data is stored in a CSV file so this data can then be used 

for further preprocessing or be used to train the model on the data. Constraints for the simulated 

dataset moved to configuration manual. 
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3.2 Data preprocessing and splitting 

 

Synthetic data is first collected and pre-processed so that in can be used in model training. 

Secondly, data is cleaned by removing missing or out of range data and transforming them 

where necessary in order to ensure that it remains consistent and quality of the data. 

The following steps are taken during preprocessing: 

 

1. Normalization: Features with different units, as an example, train speed in km/h or 

energy consumption in kWh, are made comparable by scaling the data. 

 

2. Feature Selection: Model training is performed only on relevant features. The train 

status, onboard equipment status, onboard computation load, energy consumption and 

the onboard environmental conditions are considered as the features. 

 

3. Splitting: train_test_split form the scikit learn library is used to divide the data set into 

training (80%) and testing (20%) sets to see that the model can be tested on the unseen 

data. By going through this process, the quality of dataset that is used for training is 

assured and evaluating and that the models will be able to generalize well on new data. 

 

3.3 Model Development: Integration of DRL with Edge computing 
 

This research develops a hybrid framework by unifying Deep Reinforcement Learning and 

Edge Computing for optimizing the CBTC system. The following steps outline the model 

development process: 

 

3.3.1 CBTC Environment (Gym Environment) 

 

First, the CBTC system is modelled using an OpenAI Gym environment to allow testing of 

Reinforcement Learning (RL) agents. The state space is defined by the environment which 

consists of key features like train status, equipment status, latency, energy consumption and 

environmental factors. 

 

a. State Space: The state space of the CBTC environment is features that are chosen 

during preprocessing. 

 

b. Action Space: The discrete actions that the DRL agent can take constitutes actions. 

These are actions of deploying equipment, maintenance scheduling, and balancing 

onboard computation with edge devices. 

 

c. Reward Function: The design of the reward function aims to steer the model towards 

an optimal solution in terms of key metric performance including latency reduction, 

energy savings, and maintenance cost reduction. 

 

3.3.2 Model Architecture 

 

Due to its huge state space and complex decision-making environment, Deep Q Network 

(DQN) model is chosen. The DRL model’s stability and performance in dynamic environments 

are also explored using a variant of the Double Deep Q-Network (DDQN) based model (Van 

Hasselt et al., 2016). In this paper, implementation of the models is done with TensorFlow, and 
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the architecture comprises of a neural network with 2 fully connected layers (with 256 neurons 

on each). 

 

3.3.3 Edge Computing Integration 

 

To deploy trained DRL onto the smart edge devices is done on the AWS Greengrass platform. 

To offload computation from onboard train systems to nearby edge servers, edge computing is 

considered. This alleviates the computational burden from the trains, reducing latency, energy 

consumption and additionally improving the system efficiency. 

 

3.3.4 Training the Model 

 

Trained the DQN and Q-Learning models on training data using the stable-baselines3 library, 

provides a set of pre-built RL algorithms. Optimized learning rate, discount factor, and the 

exploration fraction during training, and similarly target network update frequency, for 500,000 

timesteps. The tensor board tool generates training logs to visualize. 

3.4 Model Evaluation 

 

The results are later tested and evaluated on the models after training. The evaluation process 

involves the following steps: 

3.4.3 Key Metrics 

Some key metrics evaluated over the models are: 

 

1. Latency Reduction: A model is presented to minimize communication delays 

between trains and wayside equipment. 

2. Energy Efficiency: The task offloading and equipment utilization optimisation 

capability of the model to minimise energy usage. 

3.  Cost Optimization: Minimizing maintenance cost through intelligent equipment 

placement and task scheduling. 

3.4.3 Evaluation Procedure 

Using the trained DQN model, performance tests over a number of episodes are conducted in 

the CBTC environment from which the performance metrics are averaged. The performance is 

compared with a baseline Q learning model to see the improvements realized by DRL. 

3.4.3 Statistical Analysis 

To verify that observed differences in performance between the DRL models and the baseline 

Q learning model are statistically significant, used statistical significance tests such as t-test 

and ANOVA analysis. 

 

4 Design Specification 
 

This section provides details of the design and architecture of the hybrid framework that uses 

Deep Reinforcement Learning (DRL) communications in conjunction with Edge Computing 

for the more efficient use of a Communication Based Train Control (CBTC) system. Besides 

that, there is a design specification that describes the key components, algorithms and 

techniques used and the requirements of the implementation therein. 
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4.1 System Architecture 

 

Given that, the system architecture is designed as an offloaded hybrid distributed model that 

combines both cloud and edge computing components. It integrates the following layers: 

 

1. CBTC System Layer: It includes train systems, wayside equipment and the general 

infrastructure for communication and control. The goal is to make the system work 

perfectly across trains, wayside equipment and edge devices. 

 

2. Edge Computing Layer: It has the capability to offload computational tasks away from the 

train systems across edge servers that sit near to the rail network, using AWS Greengrass. 

The processing of data in edge devices near source offers small latency as the edge devices 

provide real time task allocation and resource management. 

 

3. Communication Layer: Multi hop ad hoc networks for reliable communication between 

trains, edge servers and wayside equipment are considered in the model. It both supports 

train to train (T2T) and train to wayside (T2W) communication to enhance data 

transmission reliability and speed. 

 

4. Model Interaction: Using the architecture of this, algorithms such as Deep Q Network 

(DQN) is integrated to aid real time decision making in CBTC systems. It is essential to 

model task offloading, equipment placement and scheduling for an efficient rail system so 

the models considered here take care of such things. 

 

          Fig 2. System Design 

 

4.2 Proposed Algorithm 

 

Deep Reinforcement Learning (DRL): Using Q learning and its improved version Deep Q 

network (DQN) to optimize policy in dynamic environment, the core of the model derives from 

this. The DRL models are for learning of the most performing (action) based on experience 

(state-action pairs) for the CBTC system. The DQN model then uses a neural network to 
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approximate the Q values so that the optimal actions can be selected for different states of the 

system: train speed, equipment status and maintenance scheduling. 

 

The DQN algorithm updates the Q-values based on the Bellman equation. Here's the core 

formula for Q-learning 

 

𝑄(𝑠_𝑡,  𝑎_𝑡 )  ←  𝑄(𝑠_𝑡,  𝑎_𝑡 )  +  𝛼 [ 𝑅_(𝑡 + 1)  +  𝛾 max_(𝑎′) ∙  𝑄(𝑠_(𝑡 + 1),  𝑎′) 

−  𝑄(𝑠_𝑡,  𝑎_𝑡 ) ] 

Where: 

 

• 𝑄(𝑠_𝑡,  𝑎_𝑡 ): The Q-value for the state-action pair at time t 

• α: The learning rate (controls how much new information overrides old information) 

• Rt+1: The immediate reward received after performing action at at state st 

• γ: The discount factor (determines the importance of future rewards) 

• max𝒶^′ 𝑄(𝑠_(𝑡 + 1),  𝑎’): The maximum Q-value over all possible actions a′ at the next 

state st+1 

 

Edge Device Deployment and Real time Optimization: 

 

Real-time optimization of the CBTC system is achieved by deploying the trained DQN or 

DDQN models to AWS Greengrass edge device. Hybrid metaheuristics are used to solve this 

optimized scheduling problem by integrating an off-line search and an on-line planner to deal 

with different tasks of equipment placement, maintenance scheduling, and task offloading on 

edge devices strategically placed along the rail network. Real time incoming data is processed 

by the edge servers, so that optimal decisions can be made without relying on centralized cloud 

computing resources. 

 

The task offloading decision is made when the latency and energy efficiency is involved in 

edge computing. The task offloading decision 𝑡𝑜𝑓𝑓𝑙𝑜𝑎𝑑 can be defined as: 

 

𝒕{𝒐𝒇𝒇𝒍𝒐𝒂𝒅} =  {
𝟏 𝒊𝒇 𝑳𝒂𝒕𝒆𝒏𝒄𝒚 > 𝑻𝒉𝒓𝒆𝒔𝒉𝒐𝒍𝒅 𝒂𝒏𝒅 𝑩𝒂𝒏𝒅𝒘𝒊𝒅𝒕𝒉 < 𝑻𝒉𝒓𝒆𝒔𝒉𝒐𝒍𝒅

𝟎  𝑶𝒕𝒉𝒆𝒓𝒘𝒊𝒔𝒆
 

Where: 

• Latency: The time it takes for a task to be processed, typically measured in milliseconds 

(ms). 

• Threshold: A predefined value for latency and bandwidth below which task offloading 

is not necessary. 

• Bandwidth: The communication bandwidth available for data transfer. 

 

Another benefit of the edge layer is that not only does it reduce latency by sending data up the 

stack to be processed before transferring it over the network, but it also pushes data processing 

to the trains or wayside equipment they generate, making the whole system more efficient and 

scalable. 
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5 Implementation 
 

This research implemented, with focus on the development, training, and evaluation of hybrid 

models of Deep Reinforcement Learning (DRL) and Edge Computing for the purpose of 

optimizing Communication Based Train Control (CBTC) systems. Below is a complete 

description of the outputs and tools that used at every stage in the implementation process. 

5.1 Transformed Data 

 

The research then simulated and prepared a comprehensive dataset that closely resembled real 

world CBTC system scenarios. Synthetic data generated using SimPy and Pandas with 

different CBTC parameters including train status, equipment status, environmental factors, 

energy consumption and network performance metrics e.g., latency and bandwidth. To assess 

model performance this dataset split into training and testing subsets. 

 

5.1.1 Tools Used: 

 

1. Python for scripting 

2. Simulation of CBTC scenarios by the program SimPy 

3. Data handling and preprocessing using Pandas and NumPy 

 

5.1.2 Outputs: 

 

• combined_data.csv: A dataset of 1,000 (transformed) records, with many features 

pertaining to CBTC system parameters. 

• train.csv and test.csv: Pre-processed datasets for model training and evaluation 

5.2 Code Written 

The implementation involved writing extensive Python scripts to: 

 

1. Simulate CBTC data using synthetic data. 

2. Define the CBTC environment using the Gym library for reinforcement learning. 

3. Train the DQN model using the Stable-Baselines3 library. 

4. Hyperparameter tuning of the Q-learning model for performance comparison. 

5. Deploy the trained models on AWS Greengrass to simulate edge computing and evaluate 

performance in a real-world edge environment. 

5.2.1 Tools and Libraries: 

 

1. Gym: Contains the definition of a custom CBTC environment with features, states and 

reward mechanisms. 

2. Stable-Baselines3: Used the DQN model for implementation. 

3. Scikit-learn: For train test split and data preprocessing. 

4. TensorFlow: to define the neural network architecture and train DQN. 

5. AWS Greengrass: For edge deployment and edge simulated environment performance test. 

5.2.2 Outputs: 

• cbtc_dqn_model.zip: The final trained DQN model 

• cbtc_q_table.npy: Baseline Q learning model Q table 
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• Logs of model performance metrics (e.g., rewards, losses) during training 

5.3 Models Trained and Developed 

5.3.1 Model Training 

• Loading the Training Data and Initializing the Environment: Loaded the pre-processed 

CSV file of simulated CBTC system data as training data. The reinforcement learning 

environment modelled using CBTCEnv class for initialization of the environment. 

 

• Logger Configuration: A logger to log training progress and to store its logs in CSV, in 

TensorBoard and stdout. With this visualized key training metrics such as reward, loss 

and Q value updates. 

 

• DQN Model Configuration: A 2 layer 256 sized MLP policy to initialize the DQN 

model. A learning rate of 0.0001, discount factor of 0.99, and several hyperparameters 

were used to tune the agent’s exploration exploitation balance to train the model. 

 

• Training the Model: Model trained by letting agent interact with the environment, 

observing the current state, take actions, receive rewards, and update its policy for 

500 000 timesteps. 

 

• Saving the Trained Model: After training, saved the model and it can be used or 

deployed later. The trained weights and parameters are saved to .zip file named 

saved_model.zip. 

 

• Model Progress: As the training completed, the logs of the progress were safely logged 

to pass after the training completed successfully and ready for deployment. 

5.3.2 Models Implemented 

• Deep Q-Network (DQN): Equipped to learn from state-action-reward mappings to 

best offload tasks, deploy equipment, and schedule maintenance. A multi-layer 

perceptron (MLP) policy with 2 hidden layers and trained for 500,000 timesteps using 

the DQN model. 

 

• Q-learning: It served as a baseline reinforcement learning like the current CBTC 

system approach for comparison in a non-discretized state space which imposes high 

computational complexity. 

 

5.3.3   Outputs: 

• Model evaluations performed that demonstrate improved latency, energy savings and 

cost efficiency. 

• The comparative performance metrics indicating that the DQN model performed vastly 

better than the Q learning model. 

5.4 Deployment on AWS Greengrass 

 

The trained models are then deployed to AWS IoT Greengrass edge devices, simulating real 

world Communication Based Train Control (CBTC) systems. Then migration decisions on 
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task offloading from the master node to an edge deployment and achieved reductions in 

latency and increased computational efficiency. 

 

• Local task processing leading to reduced latency. 

• Offloading and distributed computing for optimized resource utilization that avoids 

prohibitive application latency to the end device. 

• Improved scalability in using CBTC systems for operation decision making in 

complex environment. 

5.5 Key Performance Metrics 

Deployment of the DQN model on AWS IoT Greengrass resulted in substantial performance 

gains over running it without edge deployment. When deployed on Greengrass, the model 

produced an average reward of 48,719.64, compared with 44,737.21 previous to 

deployment.  

 

Outputs: 

• DQN model Average Reward: 48719.6400 

• Performance increase: 8.9% 

 

6 Evaluation 
 

The performance of the Q-learning model and the Deep Q-Network (DQN) model for 

optimizing the Communication Based Train Control (CBTC) systems is evaluated in this 

section in a comprehensive manner. It examines the outputs of the models, earns a bearing of 

their results, visual representations of results, and the academic and practical implications of 

the models. 

6.1 Performance Metrics and Results 

The performance of the models assessed using several key metrics: 

• Q-Learning Model: Average Test Reward: 18,580.33 

The model is challenged to achieve minimal optimization as reflected through the  test 

reward. However, because it relied on a discretized state space, it did not handle the 

dynamic state–action scenarios well. Splitting of tasks resulted in suboptimal task 

offloading, inefficient equipment deployment and poorly planned maintenance 

scheduling. 

• DQN Model: Average Test Reward: 44,737.21 

DQN model greatly outperformed the Q learning. The results demonstrate that the 

continuous state action mapping handled with greater ability by the DQN model than by 

taking the Q learning model to use the discrete approach by achieving: 

 

1.Effective task offloading 

2.Real time decision making for latency reduction 

3.Notable energy savings, operational cost reductions 



 

16 

 

 

6.2 Statistical Analysis 

Statistical techniques were used to validate the performance difference between the two 

models. 

• Paired T-test: Compared the average rewards of the two models using a t-test, with a p-

value < 0.01 reinforcing the statistical significance of the DQN model outperforming 

Q-learning. 

• Analysis of Variance (ANOVA): When tested by the ANOVA test, study found a 

statistically significant variability of the results for latency reduction, energy savings 

and cost reduction for the different CBTC traffic scenario cases (p < 0.05). This shows 

the hybrid framework is robust to a variety of operating conditions. 

6.3 Discussion 

 

Experiments results show the benefits in integrated DRL with Edge Computing to optimize the 

performance of Communication Based Train Control (CBTC) systems. The following points 

outline the key findings: 

Fig 3. DQN and Q-Learning Reward Comparison 

 

• Latency Reduction: The DQN model reduced the average latency by over 57% 

compared to Q learning model. The model is able to reduce wireless traffic thanks to 

efficient task processing and offloading to edge devices, allowing the system's decisions 

to be made in real time and communications' optimization. 

 

• Energy Savings: The Q learning model performed worse than the DQN model 

delivering 25% less energy savings. With effective task distribution between onboard 

systems and edge devices, energy consumption in computational tasks was minimised 

to facilitate this optimization. 

 

• Cost Optimization: Intelligent deployment and maintenance equipment scheduling of 

the DQN model reduced operational and maintenance costs by 35%. The DQN model 

was able to reduce the overall cost of CBTC system operations by optimally allocating 

resources and by minimizing the need to perform more frequent maintenance 

interventions. 
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Finally, these findings emphasize the ability of DRL and EC for improving CBTC system 

performance in terms of both efficiency, energy conservation, and cost effectiveness. 

6.3.1 Critical Analysis of Findings 

Experiments with Deep Q-Network (DQN) and Q-learning based models used to optimize 

Communication Based Train Control (CBTC) systems illustrate the potential as well as the 

limitations of applying reinforcement learning to railway operation. After performing 

continuous state–action mapping, the DQN model exceeded the Q learning baseline, with an 

average test reward of 44,737.21 against the Q learning model with negative reward of 

18,580.33. This demonstrates that traditional reinforcement learning is insufficient to deal with 

the dynamic and complex CBTC environment. Results of this work agrees with prior studies, 

e.g., Zhang et al. (2020) and Liu et al. (2021), which highlight the benefits of Deep 

Reinforcement Learning (DRL) for resource optimization, task offloading, and real-time 

decision making. The proposed method has optimum performance at the same time the DQN 

model has a computational overhead while training that the Q-learning did not. 

6.3.2 Advantages of the Experimental Design 

In terms of experimental design, the evaluation of the models presented there were the result 

of several positive features. The synthetic dataset was designed very carefully to replicate real 

world CBTC scenarios, including train speed, position, energy consumption and maintenance 

schedules. This enabled the models to be tested in controlled conditions, without losing sight 

of the complex dynamics of a CBTC system. Furthermore, comparisons between the model 

and the Q learning baseline also proved very effective at demonstrating the strengths of the 

advanced model using a comparative approach. 

6.3.3 Weaknesses and Limitations 

A major limitation is using synthetic data. The dataset created to emulate CBTC scenarios that 

are realistically possible but is constrained in its ability to model the full complexity and 

variability of real railway systems. System reliance and app offloading might differ from the 

synthetic data, thus low reliability could be presented in real world data, such as unexpected 

network disruptions or hardware failures. Additionally, training of the DQN model is quite 

slow computationally. However, at the scale of a large ship class train system, training deep 

reinforcement learning models is a high cost computational exercise. This is particularly 

predictable in an environment that has limited computational resources. It is future research 

direction to investigate optimization ways of the model, e.g. model pruning or transfer learning, 

to balance computational burden with performance. 

6.3.4 Recommendations for Improvement 

Several modifications of the experimental design are suggested to improve the results and to 

overcome the limitations. Second, the results with real world data would be more valid and 

generalizable. Live CBTC systems can provide data on how the models operate with real 

operational data which could reveal some new challenges not present in synthetic 

environments. The DQN model hyperparameter tuning in another area of improvement. 

However, this performance was achieved at the expense of hard dependence on fixed 

hyperparameters that may have prevented the model from being adapted to diverse dynamic 
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environments. By performing the model across a wider range of CBTC scenarios, applying 

adaptive hyperparameter optimization algorithms, such as Bayesian optimization could 

improve the model’s ability to fulfil. Moreover, well known multi objective optimization can 

be introduced to the framework. The current model is an energy consumption and task 

offloading optimization based model however for reality every aspect of real time railway 

operations is important like ensuring the safety of train to make as little disruption during 

operation. The CBTC optimization is a multi-objective problem; hence, it could benefit from a 

holistic solution approach by optimizing through a multi-objective framework, which would 

accommodate several factors to evaluate and have an impact on CBTC performance. 

 

7 Conclusion and Future Work 
 

To address optimization issues in CBTC systems, a hybrid framework combining Deep 

Reinforcement Learning (DRL) and Edge Computing was developed and evaluated. The 

potential of this framework in task offloading, costs reduction of maintenance, and energy 

efficiency was very significant, illustrating that it is feasible to perform real time optimization. 

The objectives of the study were achieved, with the DQN model outperforming the Q-learning 

baseline in latency reduction by 57%, energy savings of 25% and operational cost reduction of 

35%. Using dynamic state action mappings, the DQN model was able to adapt to system 

condition variations for the DRL and Edge computing based intelligent transportation system, 

proving the usefulness of DRL and Edge computing in intelligent transportation systems. The 

results improve the understanding of how AI and Edge Computing can work together to 

optimize CBTC operation. However, these achievements are limited by the study's reliance on 

synthetic data, which may not encode the detailed characteristics of real systems. Moreover, 

the DQN model requires high computational requirements that scale poorly in the resource 

constrained environments. The research is limited further by lack of validation against real 

world CBTC systems. 

 

Future work will be to focus on validating the framework with real-time train data to expand 

its applicability and reliability. We also need to reduce the computational effort of the DQN 

model, e.g. by model compression or transfer learning, to scale the framework. Decision 

making across a network of trains and edge devices can be explored in multi agent systems, 

and prediction of maintenance techniques can help increase system reliability and also reduce 

cost. Bolstering the model to be applicable for larger networks, along with adding safety critical 

metrics, will allow the model to be more practical (and scalable) for broader deployment. The 

same system could be used to optimize existing CBTC systems, improving performance while 

reducing costs and also support multi agent reinforcement learning requiring coordinated 

decision making by trains, wayside equipment, and edge servers which can enhance task 

scheduling and resource allocation in large scale networks. 
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