~

"'—-
\ National
College

Ireland

Configuration Manual

MSc Research Project
Cloud Computing

Himavanth Raavi
Student ID: x23101083

School of Computing
National College of Ireland

Supervisor: Aqeel Kazmi

National College of Ireland National

Project Submission Sheet Col]ege of
School of Computing Ireland
Student Name: Himavanth Raavi
Student ID: x23101083
Programme: Cloud Computing
Year: 2023-2024
Module: MSc Research Project
Supervisor: Aqeel Kazmi
Submission Due Date: 03/01/2025
Project Title: Configuration Manual
Word Count: 419
Page Count: p|

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature: Himavanth

Date: 29th January 2025

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). O

Attach a Moodle submission receipt of the online project submission, to | [J
each project (including multiple copies).
You must ensure that you retain a HARD COPY of the project, both for | O
your own reference and in case a project is lost or mislaid. It is not sufficient to keep
a copy on computer.

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only
Signature:

Date:
Penalty Applied (if applicable):

Configuration Manual

Himavanth Raavi
x23101083

1 Introduction

All the requirements that are necessary for this research has been included in this config-
uration manual. The software and hardware requirements as well as the code required for
data importing, preprocessing, model building, and evaluation has also been included.

Section 2 discuss about the information about the environment used. The data col-
lection and loading are described in section 3. The next section explains about the data
preprocessing steps. Section 5 describes about the splitting of the data, model building
and the evaluation.

2 Environment

2.1 Hardware Requirement

Detailed information about the hardware and software requirements as been shown in
the table below.

Operating System | Windows 11
RAM 8 GB
Hard Disc 470 GB

Table 1: System Specifications

2.2 SoftwareRequirement

Programming Tools Google Colab
Web Browser Google Chrome
Other Required Software | Overleaf, Microsoft Word

Table 2: Software Details

3 Data collection and loading
This section explains the code for data manipulation and importing important libraries

required for data loading, cleaning and building model. Data were collected from network
intrusion detection systems (UNSW-NB15 network data set).

1

pd
rt numpy as np
rt matplotlib.pyplot as plt
rt seaborn

layers, models
rt plotly.graph C s go
rt plotly.express as px
rt pickle
imblearn.under_s ing import RandomUndersampler
tensorflow.keras import models, layers

df = pd.concat([df1, df2, df3, df4], ignore index=

print(df.head())

Figure 2: Data loading

4 Data Preprocessing

In this section the data preprocessing steps and the code used to plot the charts, removing
null and duplicate values.

missing values = df.isnull().sum()
print(missing values|[missing values > @])

Figure 3: Null Values

duplicates = df.duplicated().sum()

print("\nNun of duplicate r , duplicates)

Figure 4: Duplicate Values

df = df.drop duplicates()

duplicates = df.duplicated().sum()
print("Number of duplicate rows after rem ", duplicates)

Figure 5: Removing Duplicate Values

4.1 Feature Engineering and Data Balancing

Dropping highly correlated features, and encode categorical data. Apply under sampling
techniques to address class imbalance and save the balanced dataset.

[1 df text = df.select dtypes(exclude=[" number’])
label encoder = LabelEncoder()
for column in df_ text.select_dtypes(include=['object’]).columns:
df_text[column] = df_text[column].astype(str)

df text[column] = label encoder.fit transform(df text[column])

df_new = df_dropped.join(df_text, how="r

Ipip install imbalanced-learn
X = df_new.drop el’, axis=1)
y = df new['

under_sampler = RandomUnderSampler(random state=42)
X_resampled, y_resampled = under_sampler.fit_resample(X, y)

df_balanced = pd.DataFrame(X_resampled, columns=X.columns)
df_balanced['Label"] = y_resampled
print(df balanced['La '].value counts())

Figure 6: Under Sampling

feature_scores = selector.scores_[selected_indices]
Create a DataFrame for the selected features and their scores
feature_scores_df = pd.DataFrame({'Feature': selected features, 'Score': feature_scores})

Sort the DataFrame by score
feature_scores_df = feature_scores_df.sort_values(by='Score', ascending=False)

feature_scores_df

Figure 7: Feature selection

The feature_scores_df will show the features and score for each feature contributing
to the target variable.

4.2 Model Training

Train CNN, RNN, and Autoencoder models with the prepared dataset and evaluate their
performances

[1 cnn_model = models.Sequential([
layers.InputLayer(input_shape=(X_train.shape[1],)),
layers.Reshape((X_train.shape[1], 1)),
layers.ConviD(64, 3, activation="relu’),
layers.MaxPooling1D(2),
layers.Flatten(),
layers.Dense(32, activation='relu’

layers.Dense(1, activation="
D)

cnn_model.compile(optimizer="adam’, loss="binar ntropy ', metrics=[accu

cnn_history = cnn_model.fit(X_train, y train, epochs=18, batch_size=4, validation data=(X_test, y test))

Figure 8: Model Training

Model Evaluation and Comparison Compare the models based on accuracy, pre-
cision, recall, and F1-score to identify the best-performing model. In this case the best
model as CNN best performing mode

cnn_model.save('cnn model.keras")

Figure 9: Saving the CNN Model
5 Set Up and Connect to AWS EC2 Instance for
Deploying the Web Application

Launch an EC2 Instance

e Log in to AWS Management Console.

Navigate to EC2 — Launch Instance.

Choose Ubuntu 20.04 LTS AMI.

Select t2.micro or higher, based on app requirements.

Enable Auto-assign Public IP under network settings.

e Create a security group to allow ports 22 (SSH) and 5000 (Flask default port).
Download Key Pair

e Create and download a key pair.

e Save the key securely for connecting via SSH.

Connect to Instance Use SSH to connect: ssh -i "your-key.pem” ubuntu@Public-1P

Install the dependencies and application

e Update the instance and install dependencies

sudo apt update sudo apt upgrade -y sudo apt install python3-pip -y
Deploy Web Application

e Transfer application files to the instance:
scp -1 "your-key.pem" <local-app-folder> ubuntu@<Public-IP>:/home/ubuntu/app

e Navigate to the application folder and run the Flask app:
cd /home/ubuntu/app python3 app.py

Update Security Group to Allow Flask Port Add a rule in your EC2 security group
to allow inbound traffic on port 5000.

Access the Application
e Use your EC2 Public IP with Flask’s default port: http://<Public-IP>:5000

e The web app is now accessible, providing real-time IoT packet classification.

	Introduction
	Environment
	Hardware Requirement
	SoftwareRequirement

	Data collection and loading
	Data Preprocessing
	Feature Engineering and Data Balancing
	Model Training

	Set Up and Connect to AWS EC2 Instance for Deploying the Web Application

