

Image Security in Cloud using hybrid

Compression and Encryption Technique

MSc Research Project

MSCLOUD

Nikhil Rajendra Puranik
Student ID: X22194771

School of Computing

National College of Ireland

Supervisor: Rashid Mijumbi

National College of Ireland

MSc Project Submission Sheet

School of Computing

Student Name: Nikhil Rajendra Puranik

Student ID: X22194771

Programme: MSCCLOUD Year: 2023-2024

Module: MSCCLOUD Research Project

Supervisor: Rashid Mijumbi

Submission Due

Date:

03-01-2025

Project Title: Image Security in Cloud using hybrid Compression and

Encryption Technique.

Word Count:

Page Count:

I hereby certify that the information contained in this (my submission) is information

pertaining to research I conducted for this project. All information other than my own

contribution will be fully referenced and listed in the relevant bibliography section at the

rear of the project.

ALL internet material must be referenced in the bibliography section. Students are

required to use the Referencing Standard specified in the report template. To use other

author's written or electronic work is illegal (plagiarism) and may result in disciplinary

action.

Signature: Nikhil Rajendra Puranik

Date: 03-01-2025

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple

copies)

□

Attach a Moodle submission receipt of the online project

submission, to each project (including multiple copies).

□

You must ensure that you retain a HARD COPY of the project, both

for your own reference and in case a project is lost or mislaid. It is not
sufficient to keep a copy on computer.

□

Assignments that are submitted to the Programme Coordinator Office must be placed

into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

1

Image Security in Cloud using hybrid

Compression and Encryption Technique

Nikhil Puranik

X22194771

Abstract

The exponential growth of cloud-based image storage demands efficient, secure, and

scalable solutions for managing large volumes of image data. This research introduces the

Cloud Hybrid Compatible Algorithm (CHCA), which is an advanced framework for image

compression, encryption, and meta-embedding to improve storage, security, and data

integrity. Using 2D-Discrete Wavelet Transform (2D-DWT) for compression and a SHA-

Blowfish encryption model, CHCA has made developments in the aspects of compression

ratio, security, and scalability. Meta-embedding using SHA-256 means that image

traceability, tampering, and self-checking are possible.

Evaluation reveals that the proposed CHCA framework is more effective than current

strategies in critical success factors. For JPG images, the proposed method provides an

average compression ratio of about 1.43, PSNR of 40.96 dB and up to 30% overhead

reduction in encryption. In the case of PNG images, the proposed CHCA achieves the

average compression ratio of 0.88, PSNR of 44.92 dB, and the encryption overhead is

reduced up to 6%. Unlike other approaches, CHCA provides real-time, serverless

processing through AWS Lambda, which is flexible and inexpensive. The system retains

high-quality image and provides adequate security against the unauthorized access and

data theft. More will be done in the future to enhance the decryption process as well as to

identify future uses of CHCA in complex, multiple cloud environments.

1 Introduction

The exponential growth in usage of digital images in various fields such as media, surveillance,

and e-commerce has led to the need for efficient, secure, and scalable storage solutions. Cloud

computing has emerged as the preferred choice for managing these vast datasets due to its

scalability, accessibility, and cost-effectiveness. However, the widespread reliance on cloud

storage has also amplified risks, such as unauthorized access, data breaches, and cyberattacks.

High-profile incidents, like the significant breaches reported in 2024, underline the urgent need

for robust security mechanisms to safeguard sensitive and valuable image data (Global

Technology Services, 2024).

Analyzing the market of cloud infrastructure in more detail, it is possible to note that the growth

rates have been steadily increasing in terms of both revenues and growth rates within the past

three years. Starting in Q1 2023, the cloud infrastructure services market reported revenues of

$62.5 billion, which steadily increased to $84.0 billion by Q3 2024. This

2

consistent rise represents a compounded growth rate, with year-over-year growth improving

from 19% in Q1 2023 to 23% by Q3 2024. These statistics highlight the rising popularity of

cloud solutions and their importance in facilitating the development of innovative digital

technologies, such as image storage and analysis. Such growth trends projected for the future

also strengthen cloud computing as the fundamental approach to managing the increasing needs

of data-driven industries (CRN, 2024; Canalys, 2024).

Figure 1: Revenue quarterly growth in cloud industry.

Traditional image storage systems face various challenges in handling computational

efficiency with data security. Current encryption methods, while offering protection, are

usually costly in terms of time and resources, especially when handling big data. At the same

time, At the same time, compression systems can help save space on the storage media while

not adequately covering data integrity and confidentiality issues. These limitations are

particularly concerning in evolving cloud environments that demand real-time processing for

massive uploads. Existing solutions often lacks to integrate encryption and compression

effectively, creating critical gaps in cloud-based image management (Chandrashekhar &

Waheed, 2022).

The demand for effective and secure image storage goes beyond the mere technological need

and is relevant to such fields as healthcare, e-commerce, and public safety. Many of these

sectors require image data for critical operations and require systems that will protect the data,

keep the business up and running and meet compliance standards. Solving both the issues of

storage and security becomes imperative in order to regain the trust and to meet the demands

of the industry (Ali et al., 2024).

This research addresses the primary question: "How can an integrated framework be

developed to optimize cloud storage space while ensuring data integrity, confidentiality,

and compatibility for image data?" To answer this, the study presents the Cloud Hybrid

Compatible Algorithm (CHCA) that integrate 2D-Discrete Wavelet Transform (2D-DWT) for

image compression and SHA-Blowfish encryption model for data security. This approach

requires minimal storage space to store the images and at the same time promises the quality

3

of the images and assurance of security against intrusion. This is done through meta-

embedding where metadata is incorporated into the picture so that the pictures can be accounted

for, checked and authenticated by the system. The system is implemented in a serverless

fashion, using AWS Lambda to perform computations automatically, elastically, and in real-

time, while the final processed images are stored in AWS S3. This end-to-end solution resolves

the problem of storage and compliance where large volumes of images are stored in the cloud,

and for industries that have stringent security standards, such as health, finance, and forensic

industries.

2 Related Work

2.1 Image Compression Techniques in Cloud Computing:

Recent development in image compression has played a major role in promoting efficient

cloud storage of images. Farghaly and Ismail (2020) presented a floating-point DWT

compression scheme on FPGA using IEEE-754 single precision for precision and scalability.

Although this method provides accurate image decomposition, its operation based on hardware

constraints makes it less applicable in other complex software environments. Nugroho et al.

(2023) have compared DWT with DCT, SVD, and KLT and concluded that though DWT

results in a better compression ratio of 12% with less quality degradation compared with DCT,

SVD, and KLT. However, their study was on a small data set and did not consider integration

with cloud, suggesting more scalable and cloud friendly methods are required.

Other researchers have looked at the use of a combination of the two. Ranjan and Kumar (2023)

proposed a mixed compression model using DWT, PCA and Canonical Huffman Encoding to

obtain better PSNR (between 17 dB) and lower bpp. However, their approach is not effective

for real-time applications due to the high computational complexity. Mody et al. (2020)

proposed the integration of new optimization techniques including Artificial Bee Colony

(ABC) and Particle Swarm Optimization (PSO) into DWT compression. Their approach had

better PSNR and lower MSE than the proposed method, but it was not fully automatic since it

involved tuning the hyperparameters of the method for a given dataset.

Collectively, although DWT-based compression techniques are superior in terms of image

quality, most of the studied methods are implemented in hardware environments or are based

on local processing, and thus, do not consider the problem of cloud integration. To bridge this

gap, CHCA proposes a 2D-DWT-based compression algorithm designed for cloud

environments with AWS Lambda. This approach reduces computational overhead, supports

real-time compression, and offers a scalable solution for large datasets.

2.2 Encryption Techniques in Cloud Security

The modern development in the image encryption shows that the topic of data security is

constantly unfolding. Transmission and storage. Chen et al., (2022) developed an asymmetric

encryption scheme SHA-3, RSA, and compressive sensing integrated where provide excellent

protection against plaintext assaults and obtaining high quality of reconstruction with measures

like Peak Signal to Noise Ratio. (PSNR) and encryption time. Nonetheless, the method is

computationally expensive because of the multiple steps involved in the process.

4

The project activities include; Disordered and squeezing processes. On similar grounds, Huang

et al. (2022) proposed a visually secure asymmetric encryption algorithm for the steganography

of the encrypted images with the carrier images using SHA-3 and integer wavelet transforms

(IWT). The approach has high level of imperceptibility (PSNR ~43 It has high capacity to

embed signal in terms of carrier/interference power ratio (dB) and high embedding capacity

but requires excessive computing power to embed processes.

Blowfish encryption that is often used on the cloud revealed great potential regarding the speed

test for symmetric encryption. Hussaini (2020) used Blowfish with clustering algorithms to

enhance the encryption of cloud data in terms of execution time and data integrity to minimize

processing overhead and enhanced security. Nevertheless, with Blowfish, one disadvantage is

that the block size is comparatively small; only 64-bits which may lead to problems when

implementing it on large sets with brute force attacks. Execution time, memory usage and

ciphertext size were selected for a comparison between the symmetric algorithm as proposed

by Dibas and Sabri (2021). In the tests they had performed they noticed that Blowfish and

Twofish generated bigger messages in their ciphertext form but seemed to outperform AES

and 3DES in the throughput criterion. Although, Twofish had slightly better results in terms of

execution time compared to Blowfish it is not suitable for real time applications.

Zhou et al. (2020) examined dynamic DNA-based image encryption including SHA 512 and

chaotic systems. The method shown was immune to statistical and brute force attacks while In

this case, the goals are minimizing algorithmic complexity, where measures such as Hamming

distance, and the speed of encryption are useful. Nevertheless, the more complex the DNA

operations were the longer it took to encrypt and presented issues for large scale. applications.

Mohammed et al. (2020) proposed a low complexity encryption method for IoT devices which

are simple and stable, and compared it with parameters as encrytion time, which are

computation time, memory consumption and the size of the written code. While efficient, the

approach risks weaker cryptographic strength compared to AES.Collectively, while these

studies advance image encryption by improving resistance to attacks and optimizing

performance, challenges persist regarding scalability, computational overhead, and adaptation

to diverse data environments.

2.3 Subsection Hybrid Encryption Techniques in Cloud Security

Hybrid encryption techniques are designed to leverage the speed of symmetric encryption and

the strong security of asymmetric encryption, offering a balance between performance and

security. Recent advancements have focused on improving computational efficiency,

scalability, and key management to address the increasing demands of cloud storage systems.

Ahmed and Jawhar (2024) proposed a hybrid encryption model that integrates Blowfish,

Paillier, and AES to achieve strong data privacy with low computational overhead. Their

evaluation factors included encryption time and throughout and the system proved to be faster

in securing big data sets. However, the use of three different key management systems made

operations more complex particularly on real-time applications. The CHCA framework

addresses this issue by using a hybrid approach with SHA-Blowfish and overcome the need

for multiple key management procedures while maintaining high throughput. Ahmad and

5

Shin (2022) have presented an Encryption-then-Compression (EtC) for safeguarding the

medical images by employing the concepts of block based scrambling and JPEG compression.

Their approach was able to achieve a high PSNR of 40 which indicates that the level of

distortion that was placed on the image after encryption was negligible. But they have not been

able to extend their system to other image formats because of the JPEG compression. In

contrast, the current approach uses the more generalizable compression method, 2D-DWT,

which can compress both JPG and PNG formats, ensuring broader adaptability across multiple

application domains.

Nugroho et al. (2023) proposed an hybrid cloud security model that combines DWT

compression and AES and Blowfish encryption. Their system ensured considerable

compression ratio and encryption time, indicating that it can be effectively used for real-time

cloud storage. However, their system requires separate processing phases for compression and

encryption, leading to higher overall processing time.

2.4 Critical analysis and Conclusion:

The reviewed studies together have pointed out that there have been lot of progress made in

image compression. symmetric and asymmetric, as well as the combination of both, encryption

techniques, demonstrating that they can be adopted for cloud-based applications. Such

compressing strategies like DWT are efficient in keeping image integrity compared to the other

methods. quality yet they can accommodate different input data and a mixed integration with

encryption. algorithms is limited. Similarly to that, Blowfish and RSA encryption algorithms

work best in terms of speed and security, yet their key management and memory-based

constraints limit the scalability for real-time applications. Hybrid RSA- Blowfish and

Encryption-then- Compression (EtC) based approaches are found to be effective. interface the

advantages of both, symmetric and asymmetric methods in optimization. However, challenges

remain in juggling the needs of computational cost and protection while making the solutions

appropriate for multi-cloud environments environments. These limitations highlight the

absence of a broad and efficient approach to the problem. It actually allows for compression

and encryption to converge without compromising on performance.

In addition to these solutions, my investigation adds to the literature by proposing a combined

approach with 2D-DWT for and a two tier compression and SHA-Blowfish encryption model

as well. Application of these techniques with When it comes to serverless computing AWS has

Lambda while for scalable storage, AWS came up with S3 which addresses the above identified

limitations. This approach improves on the security of image data and their storage in the cloud.

environments, which has been consistent with the increasing need for enhanced and flexible

architectures. By bridging These gaps, our work fills the gap within the existing and emerging

cloud-based image security systems.

Table 1: Summarization of related works.

Article Methodology Research
Domain

Achievements Limitations Differentiation

Floating-point Discrete
Wavelet Transform-

Hardware
implementation

Image
compression in

Achieved 243.6 MHz
clock frequency,

Limited scalability to
different FPGA

Focus on hardware-
specific optimizations

6

based Image
Compression on FPGA

using Discrete
Wavelet
Transform (DWT)
on FPGA

digital systems higher precision with
IEEE-754 Floating-
Point representation

architectures, specific
to hardware
implementation

and IEEE-754
representation.

A Comparative Study
On Image Compression
in Cloud Computing

Comparison of
DCT, DWT, SVD,
and KLT methods

Cloud-based
image
compression

DWT achieved
highest compression
ratio (12%) and
grayscale similarity
(0.96)

Lower color similarity
with DWT; SVD
performs better in
color retention

Comprehensive
analysis of multiple
compression
techniques in cloud
context

Image Compression
Using Discrete Wavelet
Transform

Proposed pruning-
based algorithm
using DWT

Digital image
storage and
transmission

High compression
ratios with minimal
quality loss
compared to other
methods

Higher computational
requirements for DWT
compared to simpler
methods

Introduction of a
pruning mechanism
to enhance DWT
effectiveness

An Improved Image
Compression Algorithm
Using 2D DWT and PCA
with Canonical
Huffman Encoding

Combines 2D
DWT, PCA, and
Canonical
Huffman Coding

Image
compression
using hybrid
methods

Up to 60%
compression with
better PSNR and bpp
compared to
standalone methods

Trade-off between
quality and
compression ratio

Incorporation of PCA
with DWT for
enhanced
compression
performance

Image Compression
using DWT and
Optimization using
Evolutionary
Algorithms

DWT with
optimization using
Artificial Bee
Colony and
Particle Swarm
Optimization

Image quality
optimization
post-
compression

Optimized
compression with
better PSNR and CR
values compared to
traditional
techniques

Higher complexity due
to evolutionary
algorithms

Combination of DWT
and optimization for
high-quality image
retention

Performance
Evaluation of
Cryptographic
Algorithms: DES, 3DES,
Blowfish, Twofish, and
Threefish

Comparison of
encryption speeds
of DES, 3DES,
Blowfish, Twofish,
and Threefish

Cryptographic
encryption for
secure
information
transmission

Blowfish
outperforms other
algorithms in
encryption speed for
various text file sizes

Limited to symmetric
block cipher
comparison, no
asymmetric algorithms
included

Emphasis on
simulation-based
speed analysis and
performance
comparison

An Asymmetric Image
Encryption Scheme
Based on SHA-3, RSA
and Compressive
Sensing

Asymmetric image
encryption using
SHA-3, RSA, and

Compressive
Sensing

Image
encryption for
secure image
communication

Can resist known
plaintext attacks and
chosen plaintext
attacks

Higher computational
complexity due to
multiple
transformation steps

Unique combination
of SHA-3, RSA, and
Compressive Sensing
for enhanced security

Visually Asymmetric
Image Encryption
Algorithm Based on
SHA-3 and Compressive
Sensing

Image encryption
using SHA-3,
compressive
sensing, and
embedded
encryption

Visual security
and image
encryption

Provides strong
imperceptibility and
key sensitivity with
high PSNR and NC
values

Dependence on carrier
image characteristics
for security robustness

Embedding encrypted
image into a carrier
image for additional
security

A Comprehensive
Performance Empirical
Study of the Symmetric
Algorithms: AES, 3DES,
Blowfish, and Twofish

Empirical
performance
evaluation of AES,
3DES, Blowfish,
and Twofish

Cryptographic
performance
evaluation of
symmetric
algorithms

AES had the lowest
execution time and
Blowfish and Twofish
had the largest
ciphertext sizes

Limited to four
symmetric algorithms,
no asymmetric
comparison

Analysis includes
execution time,
memory usage, and
ciphertext size for
encryption and
decryption

A Lightweight Image
Encryption and
Blowfish Decryption for
the Secure Internet of
Things (IoT)

Lightweight
encryption using
Stable IoT
algorithm and
Blowfish
decryption

IoT image
security and
lightweight
encryption

Achieved adequate
protection with five
rounds of encryption
using minimal
computation

Limited to 64-bit block
encryption, dependent
on hardware
constraints

Emphasizes
lightweight
encryption for IoT
devices with limited
resources

A Dynamic DNA Color
Image Encryption

Two-round
permutation-

Color image
encryption and

Resistant to brute-
force attacks,

Complexity due to the
two-round

Use of dynamic DNA
coding, 4-wing chaotic

7

Method Based on SHA-
512

diffusion using
SHA-512 and
dynamic DNA
coding

DNA-based
cryptography

plaintext attacks, and
statistical attacks

permutation-diffusion
mechanism

systems, and SHA-512
for initial conditions

A Critical Review on
Cryptography and
Hashing Algorithm SHA-
512

Review and
analysis of SHA-
512 algorithm and
its applications

Cryptographic
hashing and data
security

Highlights use of
SHA-512 for
encrypted download
links and secure
online services

Focus is on SHA-512
only, with limited
comparative analysis
to other hashing
methods

Emphasis on the
practical application
of SHA-512 for user
security and privacy

Cyber Security in Cloud
Using Blowfish
Encryption

Use of Blowfish
encryption and
clustering
techniques for
cloud data
security

Cloud data
security and
encryption
methodologies

Optimal Blowfish
encryption enhanced
accuracy and security
of cloud data

No comparative
analysis with other
encryption algorithms
for cloud security

Incorporation of
clustering with K-
Medoid for
classification before
encryption

Applying a Hybrid
Encryption Algorithm in
Cloud Computing

Combining
Blowfish, Paillier,
and AES for triple
encryption

Cloud data
security and
hybrid
encryption

Increased security
and performance for
cloud storage with
minimal time
consumption

Higher computational
complexity due to use
of three encryption
layers

Unique hybrid
approach using
Blowfish, Paillier, and
AES to balance
protection and
efficiency

A Hybrid Data
Encryption Technique
using RSA and Blowfish
for Cloud Computing
on FPGAs

Hybrid encryption
using RSA for
authentication
and Blowfish for
fast encryption

Cloud
computing, data
security, and
FPGA-based
encryption

Successfully
implemented hybrid
algorithm on FPGA
with high speed and
secure
authentication

Resource limitations
due to FPGA
constraints, small key
sizes for asymmetric
encryption

Combination of FPGA
implementation and
hybrid approach using
RSA and Blowfish for
better security

Encryption-then-
Compression System
for Cloud-based
Medical Image Services

Encryption
followed by
compression (EtC)
for cloud-based
image
transmission

Medical image
security and
compression for
cloud-based
storage and AI
services

Preserved quality of
medical images for
diagnosis while
securing data during
transmission

Requires segmentation
of region-of-interest
(ROI) for better
compression and
encryption

Integration of
encryption and
compression to
ensure image security
for telemedicine

Enhanced Data Storage
Security in Cloud
Environment using
Encryption,
Compression and
Splitting Technique

Triple security
approach using
encryption, data
splitting, and
compression for
cloud storage

Triple security
approach using
encryption, data
splitting, and
compression for
cloud storage

Provided enhanced
security and
protection from
unauthorized access
using encryption and
splitting

Increased storage
overhead due to file
splitting and additional
processing for
compression

Unique three-step
process of encryption,
splitting, and
compression for
enhanced cloud
security

3 Research Methodology

This section provides a comprehensive explanation of the research methodology employed in

developing and evaluating the Cloud Hybrid Compatible Algorithm (CHCA). The

methodology outlines the research procedure, software and hardware requirements,

experimental setup, and data analysis.

3.1 Research Procedure

The research procedure is divided into three key stages: Proposed Framework, Proof of

Concept, and Cloud Implementation.

8

Framework Development

The first contribution of this research is the design of the proposed Cloud Hybrid Compatible

Algorithm (CHCA). In the proposed framework 2D Discrete Wavelet Transform (2D-DWT)

has been used for image compression technique and SHA-Blowfish Hybrid encryption model

has been used for security model.

• Compression: 2D-DWT helps in analyzing the low and high frequency parts of the

image which are required for detailed analysis while excluding non relevant portion of

images.

• Encryption: SHA provides credibility of the image while Blowfish is a faster algorithm

for encrypting the compressed image.

• Cloud Integration: The framework employs AWS Lambda for the serverless computing

and AWS S3 for the scalable storage which makes the processing in real- time at less

costs.

Software and hardware requirements

The CHCA is introduced depending on the selection of a set of specific hardware and software

components for the optimal work of the solution. For computation, the system uses a secure

local and cloud computing platform, and the software platform utilizes modern libraries and

frameworks for image compression and encryption and cloud computing.

Table 2: Hardware requirements.

Component Specifications

Local Machine Intel(R) Core(TM) i5-7200U CPU @ 2.50GHz, 2 Cores, 4 Logical Processors,

16GB RAM

Cloud Instance Amazon EC2 t2.2xlarge, 8 vCPUs, 32GB RAM

Table 3: Software requirements.

Component Details

Programming

Language

Python

Version Python 3.9

Libraries Used PyWavelets (DWT for compression), PyCrypto (Blowfish encryption),

hashlib (SHA-256 hashing)

Web

Framework

Streamlit (for developing the user interface)

Operating

System

Amazon Linux (deployed on the EC2 instance)

Initial Testing

Before the actual deployment of the CHCA framework in cloud environment, feasibility,

performance and efficiency test was conducted on the CHCA framework. The intention was to

first check whether the algorithm was working correctly in terms of compression and

9

encryption before carrying out the exercise in a cloud environment. These specifications were

sufficient to provide the required computational resources for debugging and testing of these

algorithms.

Testing Goals: Functionality testing was required here to know if the algorithm compressed

the data as expected, if the algorithm encrypted the data and if it stored the data in the way it

was supposed to.

Cloud Deployment

The last stage of the research is to implement the CHCA algorithm in the real cloud

environment with the help of AWS Lambda and AWS S3. The algorithm is built in serverless

function that run every time new images are uploaded in AWS S3.

Serverless Function Deployment:

• The algorithm was developed as a serverless function that would be automatically

called every time new images were uploaded to AWS S3.

• It is implemented 2D-DWT compression, SHA-Blowfish hybrid encryption and

uploading compressed encrypted images to AWS S3.

3.2 Experimental Setup

This section discusses the steps undertaken in preparing and processing the data that has been

employed in the evaluation of the CHCA. The experimental setup is divided into two key

components: Data Collection and Data Processing.

Data Collection

To enhance the performance of the CHCA algorithm, all the various images used were

collected from different sources and all the images used in this study are in the public domain.

This dataset offered images in jpg and also png format to see how the algorithm function in

both formats, lossy and lossless. These images showed real life scenarios where the algorithm

could be applied and therefore provided a real life platform on which they could be compared.

Dataset Characteristics: It was also important that the images used in the study had different

sizes of between 512 x 512 pixels and 4096 x 4096 pixels which allowed for testing of the

algorithm on images of different file sizes and level of details. This diversity was applied in

evaluating the performance of the algorithm, given different levels of complexity in the images

and in the aspect of image compression.

Data Processing

Data processing involved three interconnected steps: compression, encryption, and cloud

storage. Every step was carefully performed to assess several performance aspects, to analyze

performance parameters of the CHCA algorithm, and its scalability.

The first step, compression, utilized the 2D-Discrete Wavelet Transform (2D-DWT) algorithm.

This algorithm was chosen for its ability to split images into low-frequency and high- frequency

components This algorithm was chosen for its ability to split images into low-frequency and

high- frequency components. This approach ensured efficient compression while maintaining

image quality. The compressed image will be accessed for processing time, compression

ratio, and quality metrics such as Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity

10

Index (SSIM).

Following compression, the images will be secured through the SHA-Blowfish encryption

model. SHA part of the system generated the hash value for each image to verify the data

authenticity and the Blowfish encryption enhanced the security of the system without

significant effect on time consumption. The reliability of encryption will be determined by

checking decryption at different instances including attempts with the wrong keys.

Cloud processing

Lastly, the processed images were saved into AWS S3 buckets using AWS Lambda for

compressing and encrypting the images in a serverless approach. This setup was designed to

resemble a typical cloud application where images are uploaded, processed and stored securely

and in large capacity. AWS Lambda allowed testing the algorithm with various loads, for

example, concurrent uploads in order to analyze scalability and elasticity. The combination of

the compression and encryption with cloud infrastructure brought out an efficient and seamless

data processing work flow which enabled the CHCA algorithm for real-time and large scale

applications.

Data Analysis

The data analysis phase was very important in supporting the efficiency of the Cloud Hybrid

Compatible Algorithm (CHCA). This done based on the need to assess the performance of the

algorithm in solving the challenges with image compression and encryption so as to determine

its suitability to the cloud platform. This was done as per the metrics, statistical analysis, and

comparison strategy that has been used in determine the performance of CHCA algorithm with

other methods as reported in the literature.

Metrics Evaluated

Various performance measures were used to assess the performance of the proposed CHCA

algorithm.

Compression Time: The time taken to compress the images was also measured for both JPG

as well as PNG images so as to compare the speed of the algorithm. This metric highlighted

how CHCA was able to compress images in a way that would reduce their size while still

providing high quality images.

Overall Processing Time: The total time taken for the compression, encryption and storage

on the cloud was also recorded to assess the effectiveness of the algorithm each time. The

overall processing time is calculated using the following formula:

𝑇𝑡𝑜𝑡𝑎𝑙 = 𝑇𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 + 𝑇𝑒𝑛𝑐𝑟𝑦𝑝𝑡𝑖𝑜𝑛 + 𝑇𝑠𝑡𝑜𝑟𝑎𝑔𝑒

Where:

• 𝑇𝑡𝑜𝑡𝑎𝑙 = 𝑂𝑣𝑒𝑟𝑎𝑙𝑙 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 𝑡𝑖𝑚𝑒.

• 𝑇𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 = 𝑇𝑖𝑚𝑒 𝑡𝑎𝑘𝑒𝑛 𝑓𝑜𝑟 𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛.

• 𝑇𝑒𝑛𝑐𝑟𝑦𝑝𝑡𝑖𝑜𝑛 = 𝑇𝑖𝑚𝑒 𝑡𝑎𝑘𝑒𝑛 𝑓𝑜𝑟 𝑒𝑛𝑐𝑟𝑦𝑝𝑡𝑖𝑜𝑛.

• 𝑇𝑠𝑡𝑜𝑟𝑎𝑔𝑒 = 𝑇𝑖𝑚𝑒 𝑡𝑎𝑘𝑒𝑛 𝑡𝑜 𝑠𝑡𝑜𝑟𝑒 𝑡ℎ𝑒 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑 𝑖𝑚𝑎𝑔𝑒 𝑖𝑛 𝑡ℎ𝑒 𝑐𝑙𝑜𝑢𝑑.

11

Image Quality Metrics: Compressed image quality measurements like PSNR and SSIM were

assessed in order to measure the image quality after compression. PSNR was used to assess the

quality of the images and its value was higher when most of the details of the image were

preserved. SSIM, on the other hand, was concerned with the structural similarity between the

original and the processed images and hence more appropriate for formats such as PNG that

are rich in quality. PSNR calculates the quality of the compressed image with the respect to the

original image. The formula is:

Where:

• MAX = Maximum possible pixel value of the image (e.g., 255 for 8-bit images).

• MSE = Mean Squared Error, calculated as:

Here, I(i,j) and K(i,j) are the pixel values of the original and compressed

images, and M and N are the dimensions of the image.

SSIM compares the structural similarity between the original and compressed images. The

formula is:

Where:

•

•

• is the covariance.

•

Compression Ratio: The compression ratio was also used to determine the extent to which

the CHCA algorithm compressed the sizes of the images. This was further supported by an

assessment of size reduction, in the sense of the percent reduction in file size after compression.

4 Design Specification
Design specification describes how CHCA will be structured, how it will function and the

technology that will be used in the process. CHCA algorithm addresses the concerns on image

data compression, encryption, and cloud deployment.This specification targets to give

12

a broad perspective of the framework and the parts, flow, and security that the algorithm

applies.

4.1 System Architecture

The system architecture of the Cloud Hybrid Compatible Algorithm (CHCA) is to integrate the

image compression and encryption with the cloud system. This architecture also has the ability

to do image processing in real-time with high security and optimized for a large number of

images. The framework consists of three components: It consists of the Compression Module,

the Encryption Module, and Cloud Integration.

Figure 2: System architecture of CHCA.

Compression Module

The primary operation of the compression module is to format input images to compressed

sizes with less distortion on the image quality. This is done through the application of the 2D-

Discrete Wavelet Transform (2D-DWT) algorithm as shown in the following section. The 2D-

DWT algorithm simply operates on the input images by decomposing the image into low and

high frequencies. Low frequency areas of the image which are most important are preserved

and the high frequency areas which are not very significant in perceiving the image are either

neglected or quantized. This decomposition also greatly decreases the size of the image and at

the same time increases the space needed to store it. This is because the compression module

is developed to handle all types of applications with the help of multiple formats such as JPG

and PNG.

Encryption Module

The encryption module focuses on the security and confidentiality of the compression images.

It uses compound SHA-Blowfish encryption algorithm that has features of both the algorithms

SHA is used to generate hash key for every compressed image to check if the image has been

altered. The Blowfish algorithm which is fast and relatively light compresses the images and

then encrypts in order to bar some people from gaining access. This way the safety of the

images is ensured and at the same time the computational overhead of the

13

system is kept to a minimum.The encryption module is also connected to the compression

module in order to facilitate the transition from compression to encryption.

Cloud Integration

The integration of the CHCA framework with the cloud infrastructure of AWS services

increases the scalability of AWS services. This eliminate the need for dedicate servers and

allows the system to grow as per the amount of traffic. After that the images are saved in AWS

S3 buckets which are highly reliable, scalable and secure storage infrastructure for data. This

integration ensures that the processed images are available for use, well stored and secured

from any unauthorized persons.

The high level block diagram of the architecture exhibits how the data of the input image is

processed and stored in the cloud. These three modules formed one processing line that can be

as efficient, effective and secure as the one described in the diagram below. This modular

design makes the system flexible, sustainable, and relevant to actual cloud-based image

processing needs.

4.2 Workflow of the Framework

The CHCA framework follows a systematic workflow to process images from initial input to

secure cloud storage. The workflow is as follows:

Figure 3: Workflow of CHCA.

Start (User Uploads Image)

The first process is the user uploading an image in JPG or PNG format to the AWS S3 bucket

situated in the /raw/ folder.This action creates an S3 event to kick start processing.

S3 Event Trigger

Whenever a file is uploaded to the AWS S3 the service generates an event which in turn

activates an AWS Lambda to process the image in real-time.

AWS Lambda Processing

From the /raw/ folder, AWS Lambda downloads the image and passes it through the

Compression Module, where the 2D-DWT algorithm compresses the image and stores only the

low-frequency sub-band, cA. The compressed image is then sent to the Encryption Module and

14

SHA-Blowfish hybrid model generates SHA-256 hash to check on the integrity of the image

before encrypting the image. The Meta-Embedding Module then integrates the hash into the

encrypted picture to perform auto-authentication to generate the final processed picture. The

processed image is then saved in the /processed/ folder within the S3 bucket.

S3 Processed Image Storage

The /processed/ folder securely stores the compressed, encrypted, and meta-embedded

image.Users can retrieve or download the processed image as needed, completing the

workflow. This seamless process ensures optimized storage, robust security, and real-time

automation.

4.3 Design Constraints

The design of the CHCA algorithm was influenced by key constraints that defined the

functionality and efficiency of this algorithm. Concurrency was implemented through the AWS

Lambda serverless architecture, which allows for the easy management of multiple uploads.

During local testing, computational power was limited and thus the need to use relatively light

weight algorithms for compression and encryption such as 2D-DWT and Blowfish

respectively. To minimize latency the system combined fast compression and secure

encryption with automatic resource management using the AWS Lambda. The framework was

built to read JPG and PNG images because these are sufficient for most of the uses and can be

compressed with little loss or no loss, though a future version may add other formats.

4.4 Security Considerations

The security was a major consideration of the Cloud Hybrid Compatible Algorithm (CHCA)

to ensure that the image data did not leak out while being processed and stored in the cloud.

Encryption: The CHCA framework employed a security SHA-Blowfish encryption model for

enhanced security within the framework. Blowfish was a low weight high power of

confidentiality while SHA was used to hash data and secure content and keys.

Hashing: To be able to verify the integrity of the images, a SHA hash was developed for each

of them, just like fingerprints. This made it possible to detect if the image had been altered in

some way since the time it was taken to avoid compromising the image when it was being used.

Access Control: The policy mechanism named as AWS Identity and Access Management

(IAM) services revealed the application of strong access control policies. AWS S3 and Lambda

could only be accessed by authenticated users/ processes, basically reducing the opportunities

for insecurity or unauthorized accessing of data.

Data Privacy: All the data transfers were done through https to avoid exposure of the image

data that was being transferred to and from the cloud for upload and download operations. This

would ensure that the privacy was achieved irrespective of the location of the cloud

implementation.

5 Implementation
The Cloud Hybrid Compatible Algorithm (CHCA) is a very detailed approach that requires a

solution to the image compression, encryption and compatibility with the cloud. It is also

designed to reduce image sizes while trying to keep the quality of the images as high as possible

15

and to provide enough security and image data integrity for images that are stored in the cloud.

Another aspect that has been included in the mechanism is the use of meta- embedding in the

images that increase the confidence level, quality audit and quality certification. The

subsequent sections of the paper present an overview of the compression and encryption

modules and the changes made to the existing libraries, the reasons for such changes, and

advantages of the introduced change.

The 2D-Discrete Wavelet Transform (2D-DWT) which is a well-known method for image

decomposition, in this work it is used to decompose the image into multiple sub-bands. These

sub-bands are the low frequency component which contains most of the image information

content and the high frequency components which contains edge and texture information

represented by cH, cV and cD respectively. In its conventional form, 2D-DWT operates on all

the sub-bands in the same manner, which is ineffective in terms of storage since the high

frequency components contribute marginally to the overall image quality. In the context of the

CHCA framework, the 2D-DWT algorithm is modified to retain only the cA sub-band and

discard or quantize the other sub-bands. This customization makes sure that all the important

visual aspects are retained while cutting down on a lot of unnecessary duplication. Thus, by

concentrating on the most significant data for visualization, the CHCA framework provides

efficient compression while maintaining the image quality.

Algorithm 1: 2-DWT Compression

Function CompressImage(input_image, output_path):

// Step 1: Load the Input Image Load

the image from the input path

// Step 2: Convert the Image to Grayscale If

the image is colored:

Convert the image to grayscale

Else:

Use the original image data as grayscale

// Step 3: Apply 2D-Discrete Wavelet Transform (2D-DWT)

Decompose the grayscale image into sub-bands:

cA (approximation), cH (horizontal details), cV (vertical details),

cD (diagonal details)

// Step 4: Retain the Low-Frequency Sub-Band

Retain only the cA sub-band as it contains essential image details

// Step 5: Quantize the Low-Frequency Sub-Band

Apply quantization to the cA sub-band to reduce data redundancy

// Step 6: Save the Compressed Image

Save the quantized image to the specified output path

// Step 7: Return the Compressed Image Return

the quantized image data

16

The following are the advantages of this customization: Selective compression is more

effective in reducing the size of the file while still retaining the look and feel of the image,

making the compression ratio better. Performance optimization is done through reduction of

computational complexity which makes it possible to achieve faster compression time even

on large files or in real-time applications. Also, the integration with the encryption module is

smooth since the simplified data structure can be directly fed into the encryption stage,

reducing preprocessing time. These enhancements make the CHCA framework more efficient,

scalable and suitable for cloud based image processing system. The time complexity of 2D-

DWT is O(N log N) for an N x N image. This way, the system reduces the amount of memory

used and the rate of processing increases since high frequency components are eliminated.

The Blowfish encryption algorithm (via PyCrypto) and SHA-256 hashing algorithm (via

hashlib) are two powerful cryptographic techniques that are often used for data security and

data integrity. However, their default implementations run in parallel, meaning that hashing

and encryption processes have to be done separately. To address this, the CHCA framework

proposes a new SHA-Blowfish model that combines hashing and encryption in one step. Such

customization means that the image data is compressed, encrypted and is also easily verifiable,

providing a double layer of protection. To check the integrity of the compressed image, SHA-

Algorithm 2: SHA-Blowfish Encryption

256 is employed to create a hash for the compressed image; on the other hand, to ensure

confidentiality of the image Blowfish is used to encrypt the image.

Function EncryptImage(compressed_image, encryption_key):

// Step 1: Generate the SHA-256 Hash

Generate a SHA-256 hash for the compressed image

Input: compressed grayscale image

Output: sha_hash

// Step 2: Convert Image to Byte Array

Convert the compressed image into a byte array

Output: image_bytes

// Step 3: Apply Padding to Byte Array

If the length of image_bytes is not a multiple of 8:

Calculate the required padding size

Add padding to the byte array

Output: padded_bytes

Else:

Use the original byte array as padded_bytes

// Step 4: Initialize Blowfish Cipher

Initialize the Blowfish cipher with the provided encryption key

// Step 5: Encrypt the Padded Byte Array

Encrypt the padded byte array using the Blowfish cipher

Output: encrypted_image

// Step 6: Return Encrypted Data

Return the encrypted image and SHA-256 hash

17

The main issue with Blowfish encryption is that the data has to be in multiples of 8 bytes. As

image data does not fit this size natively, a new padding scheme was designed for this purpose.

This logic adds further bytes to make the data block aligned, which makes it compatible with

Blowfish encryption fully. The customization offers several important advantages: It is secure

because the data is protected twice; there is no interruption of the work process because

hashing, padding, and encryption are performed in one step; and data compatibility ensures

that all image data can be encrypted without loss of data integrity. It maintains confidentiality,

integrity and optimizes on cloud storage of image data. The time

complexity of the SHA-Blowfish hybrid encryption in the CHCA framework is O(N), N is the

size of the input image (in bytes). This complexity is due to the sequential processing of SHA-

256 and Blowfish with constant-time padding to encrypt large images with equal efficiency.

Meta-embedding can be described as the process of placing metadata within an image file, as

a component of the image. In the CHCA, meta-embedding is the act of embedding a SHA- 256

hash into the compressed image before the encryption process. This approach leads to self-

verifying images that can enable integrity verification of the images without the use of

reference files. SHA-256 hash is the identification number of the image and if an image was in

any way modified or transformed the hash value obtained from the image will not be the same

as the hash value placed in the image. This makes the system more secure, self- contained and

reliable for storing images in cloud based system.

The main goal of meta-embedding is to achieve data authenticity, accountability, and

confidentiality. The use of tags such as time, user ID and source information help to track the

Algorithm 3: Meta-Embedding in Image

Function EmbedMetadataIntoImage(encrypted_image, sha_hash):

// Step 1: Convert the SHA-256 Hash into Binary Format

Convert the SHA-256 hash into a binary format (each hex

character is 4 bits)

Input: encrypted_image (after encryption) and SHA-256 hash

Output: binary_hash

// Step 2: Flatten the Encrypted Image into a 1D Array

Convert the encrypted image into a 1D array of pixel values

Output: image_array

// Step 3: Embed the Binary Hash into Pixel Values

For i from 0 to Length(binary_hash):

Calculate the bit position within a pixel byte (0-7)

Calculate the byte position in the image array to modify

Embed the binary hash bit at the calculated position in the

image array

// Step 4: Reshape the Image Array Back to 2D Form

Reshape the modified image array into its original 2D format

Input: modified image array, original image dimensions (height

and width)

Output: embedded_image

// Step 5: Return the Embedded Image

Return the image with embedded metadata

18

history of the image and who has been involved. This is especially important in regard to the

legal requirements especially for images used in areas such as health and forensic where the

use of images demands validation of image authenticity. Also, the hash is placed inside the

image in CHCA to avoid having other hash files that complicate storage and loss of external

metadata. It is incorporated in the image and therefore whenever the image is copied, moved

or transferred it takes the hash along with it.

Cloud Integration

The Cloud Hybrid Compatible Algorithm (CHCA) was implemented as a serverless function

on AWS Lambda for fully automated, scalable, and real-time image processing. This

integration with AWS cloud services makes it possible for the system to support large

numbers of images to be uploaded at once. The Lambda function was set to be invoked when

there were new images uploaded to an AWS S3 bucket, so that the compression, encryption

and storage procedures could initiate without any human intervention.

The cloud deployment process involved three key steps. First, the compression and encryption
code, along with all necessary dependencies were placed in the zip file. This package was

deployed to AWS Lambda where environment for Python 3.9 was set up. Subsequently, a

Lambda function was developed to run the CHCA algorithm. Last but not the least, an S3
event trigger was configured in such a way that each time a new image is placed in the specific

S3 bucket, the Lambda function is initiated. It is a flexible event-drivers architecture that allows
for real-time image processing and cloud storage, which increases the system’s scalability,

performance, and automation. Since AWS Lambda can directly interact with S3, image
processing is efficient, safe and inexpensive because only during the running of the program

resources are used.

6 Evaluation

The evaluation of the Cloud Hybrid Compatible Algorithm (CHCA) is aimed at assessing its

performance, efficiency, and scalability in handling image data in a cloud-based environment.

To facilitate the comparison, I align the results from the CHCA framework with those derived

from other studies in the literature. The categories for the assessment parameters are time for

image compression, compression ratio, PSNR and SSIM of the compressed image, encryption

time, time for embedding the metadata. It is done in order to test it on JPG and PNG images so

that the program will be more dependable and versatile.

Test Case 1: Compression Efficiency

Objective

The aims of Test Case 1 were to investigate the quality of the image and the compression

capacity of CHCA measures such as PSNR and SSIM. This evaluation was intended to assess

the effectiveness of CHCA with other related work done to establish its adequacy in improving

image integrity for JPG and PNG formats. The other objective was also to determine whether

the proposed hybrid compression and encryption framework of CHCA is of superior quality to

the conventional methods.

19

Figure 4: PSNR comparison of images Figure 5: SSIM Comparison of images

Results

The CHCA processed images’ average of PSNR and SSIM were calculated individually for

JPG and PNG formats. The quantitative findings were as follows: The PSNR was on average

40.2 dB and the SSIM was 0.963, this affirmed that the quality of the reconstructed images

was nearly as good as the original images. For the PNG images, the CHCA yielded an

average of 45.1 dB PSNR and an average of 0.986 SSIM, which should signify even better

image quality preservation.

Analysis

The results showed that the overall performance of CHCA is high when compared to the

literature. Nugroho et al. (2023) reported an average PSNR of 40 dB for DWT-based

compression, which agrees with CHCA performance of JPG images but falls short of its results

of PNG images (PSNR: 45.1 dB). Similarly, SSIM values reported by Huang et al. (2022) for

their visually secure asymmetric encryption algorithm peaked at 0.98, which CHCA exceeded

for PNG images (SSIM: 0.986). This proves that CHCA can keep high structural similarity

with the original images at the same time to have high compression. The outcomes of the study

assist CHCA to address the established limitations in the previous research, such as achieving

high-quality image compression without straining the quality of the image. These results

demonstrate that CHCA is suitable for secure and high-quality image storage in the cloud,

which is a major contribution to the image processing in the cloud computing environment.

Test Case 2: Encryption Efficiency

Objective

The second test case aimed to evaluate the encryption performance of the CHCA framework

by measuring the encryption overhead as a percentage change in file size. This test aimed at

evaluating how effectively the SHA-Blowfish hybrid encryption model performs encryption

on both JPG and PNG formats without much impacts on storage or computational overheads.

20

Figure 6 : Encryption performance compariosion of images.

Results

The encryption overhead percentages for JPG and PNG formats were calculated for six

samplesThe overhead for JPG images was between -30% and -10% because the size of the

images was smaller after encryption due to blowfish light encryption and the structuring of

metadata. PNG images had overheads close to 0% for the overheads which means there is

minimal increase in file size after encryption because PNG is a lossless format. These results

demonstrate the differences in the behavior of lossy and lossless formats when they are

encrypted.

Analysis

When compared to literature benchmarks, CHCA's encryption performance showcased its

lightweight efficiency. Chen et al. (2022) reported higher encryption overheads (approximately

+10%) due to computationally intensive methods like RSA and chaotic mapping. Similarly,

Zhou et al. (2020) pointed out that in DNA-based encryption models, the overheads can be as

high as +5% due to the additional difficulty in organizing the metadata. However, CHCA

negative overheads for JPG formats and nearly zero overheads for PNG show that CHCA is

more suitable for real life application where storage space taken up is very important.

This analysis also shows that CHCA is efficient in attaining the right level of security and

performance, and therefore appropriate in circumstances where cloud-based image systems

need scalable and storage-efficient encryption.

Test Case 3: Meta-Embedding Efficiency

Objectives

The third test case is to determine the percentage difference in file size between the original

image and meta-embedded image. This metric measures the effectiveness of the final step of

the CHCA framework which is the compression, encryption and meta-embedding of storage

density for JPG and PNG.

21

Figure 7: Size compariosion of images.

Results

The meta-embedded images were smaller than the original for JPG images and the size

difference was between -30% and -10%. The most significant savings were seen for the images

which had even higher initial file sizes, proving the efficiency of the CHCA framework for

image compression and encryption. On the other hand, PNG images had a small percentage

difference of between -5% and 0%, which shows that there is not much that can be done in

terms of size reduction in lossless compression formats especially after meta- embedding.

Analysis

The findings show how CHCA enhances the storage of JPG images based on the fact that the

file size was reduced significantly even after the metadata was embedded. These findings

corroborate the findings of Nugroho et al. (2023) to the extent that DWT-based compression

can indeed help to compress file sizes in lossy formats. For PNG images, the minimum change

is in line with Huang et al. (2022) where lossless formats focused on quality retention, hence

minimal changes in size during meta-embedding.

This test case proves that CHCA is capable of handling large file sizes in JPG formats and at

the same time, does not compromise the quality of PNG images, making it very suitable for

cloud storage systems where both size and quality are of utmost importance.

Test Case 4: Performance Efficiency

Objectives

The fourth test case aimed to evaluate the CHCA framework's computational efficiency by

comparing the processing and overall time for both JPG and PNG images. The processing time

exclusively measured the operations executed in the cloud (compression, encryption, and

meta-embedding). In contrast, the overall time included file upload time, compression time,

encryption time, and the time to upload the processed file back to the AWS S3 bucket.

22

Figure 8: Processing time and Overall time comparison.

Results

The findings show that JPG images took less processing and overall time than PNG images in

all the cases. In the case of JPG images, the time it took to process images in the cloud ranged

between 2 to 3 seconds and the total time which included upload, compression, encryption and

S3 storage was slightly higher. The samples of PNG images showed the highest values of

processing and overall times and the increase of the size of the file added to the overall time

and in some cases went to more than 15 seconds.

Analysis

The results also suggest that the CHCA framework is effective in reducing the processing and

total time for JPG images particularly for real time services. The higher times observed for

PNG images are due to the fact that images are lossless and so is the compression and

encryption. But the results indicated that the CHCA framework can be scaled in both formats

and that the performance did not decrease when the system is asked to perform concurrent

processing tasks. This test case shows the ability of the proposed CHCA framework in

assessing the performance in integrating cloud based work flows with minimal computation

over head and quality degradation, especially for lossy formats such as JPG. It also supports

the idea that the proposed framework is well fit for large scale and time sensitive cloud

applications.

7 Conclusion and Future Work

The developed CHCA combines the 2D-DWT image compression algorithm with the SHA-

Blowfish hybrid encryption system to solve the issues related to cloud storage optimization and

data protection. The primary competence of CHCA involves the use of serverless computing

and AWS Lambda for elasticity in the execution of the tasks with the use of resources. It also

assists in managing many images that may be uploaded simultaneously, an aspect that cannot

be achieved using the conventional cloud architecture to address different loads. The proposed

CHCA approach also gives solutions for some of the limitations identified in the literature. It

is different from the traditional methods where data compression and data encryption are done

in different processes. CHCA combines them into one process, and this cuts down the

23

processing time by far. The SHA-Blowfish model ensures a encryption solution while at the

same time having low computational complexity, good key management, and high throughput

and security. Moreover, the use of meta-embedding for integrity checks reduces the use of

reference files making the system more reliable. Lastly, the result shows that CHCA

outperforms the other methods in terms of PSNR, SSIM and compression ratio in both JPG and

PNG formats, indicating that the proposed method is more efficient and suitable for real cloud

environment. It is also continuous and scales well, solves problems of scalability, speed of

processing, and secure storage, which makes it a versatile solution for managing images in the

cloud.

Possible improvements for the following versions of the CHCA framework may involve

expanding the coverage of formats that can be supported, for instance, TIFF and BMP for

greater flexibility of the application domain. Improving the SHA-Blowfish encryption model

could still enhance the processing times for large data set, especially for computationally

intensive file format such as PNG. The use of deep learning-based compression methods may

improve not only the level of compression, but also its scalability.

It could enhance the resilience of the framework for the critical applications in case of

integrating multi-cloud support. Also, it would allow the users to set up the personal

preferences for the compression and security level which will expand its application area to

such fields as the medical imaging, multimedia storage, and surveillance. All these

enhancements would help to position CHCA as a more complete and easily implementable

solution for secure cloud based image storage.

References
Global Technology Services, 2024. Recent breaches in the technology sector. Available at:

[source].

Chandrashekhar, M. and Waheed, K., 2022. Challenges in encryption and compression

methods. Available at: [source].

Ali, M.A., Singh, R. and Verma, P., 2024. Relevance of secure cloud-based image storage.

Available at: [source].

CRN, 2024. Cloud market share Q4 2023 results: AWS falls as Microsoft grows. CRN.

Available at: https://www.crn.com/news/cloud/2024/cloud-market-share-q4-2023-results-

aws-falls-as-microsoft-grows.

Canalys, 2024. Worldwide cloud Q4 2023. Canalys. Available at:

https://www.canalys.com/newsroom/worldwide-cloud-q4-2023.

Farghaly, S.H. and Ismail, S.M., 2020. Floating-point discrete wavelet transform-based image

compression on FPGA. AEU-International Journal of Electronics and Communications, 124,
p.153363.

Nugroho, T.Y., Hidayat, A.N., Filsafan, M.S., Ardiansyah, Y.A. and Santoso, B.J., 2023,

September. A Comparative Study On Image Compression in Cloud Computing. In 2023 10th

International Conference on Electrical Engineering, Computer Science and Informatics

https://www.crn.com/news/cloud/2024/cloud-market-share-q4-2023-results-aws-falls-as-microsoft-grows
https://www.crn.com/news/cloud/2024/cloud-market-share-q4-2023-results-aws-falls-as-microsoft-grows
https://www.canalys.com/newsroom/worldwide-cloud-q4-2023

24

(EECSI) (pp. 219-225). IEEE.

Kanagaraj, H. and Muneeswaran, V., 2020, March. Image compression using HAAR discrete

wavelet transform. In 2020 5th international conference on devices, circuits and systems
(ICDCS) (pp. 271-274). IEEE.

Ranjan, R. and Kumar, P., 2023. An improved image compression algorithm using 2D DWT

and PCA with canonical huffman encoding. Entropy, 25(10), p.1382.

Mody, D., Prajapati, P., Thaker, P. and Shah, N., 2020, April. Image compression using DWT

and optimization using evolutionary algorithm. In Proceedings of the 3rd International

Conference on Advances in Science & Technology (ICAST).

Alabdulrazzaq, H. and Alenezi, M.N., 2022. Performance evaluation of cryptographic

algorithms: DES, 3DES, blowfish, twofish, and threefish. International Journal of

Communication Networks and Information Security, 14(1), pp.51-61.

Chen, Z. and Ye, G., 2022. An asymmetric image encryption scheme based on hash SHA-3,

RSA and compressive sensing. Optik, 267, p.169676.

Huang, X., Dong, Y., Zhu, H. and Ye, G., 2022. Visually asymmetric image encryption
algorithm based on SHA-3 and compressive sensing by embedding encrypted image.

Alexandria Engineering Journal, 61(10), pp.7637-7647.

Dibas, H. and Sabri, K.E., 2021, July. A comprehensive performance empirical study of the

symmetric algorithms: AES, 3DES, Blowfish and Twofish. In 2021 International Conference
on Information Technology (ICIT) (pp. 344-349). IEEE.

Saddam, M.J., Ibrahim, A.A. and Mohammed, A.H., 2020, October. A lightweight image

encryption and blowfish decryption for the secure internet of things. In 2020 4th International
Symposium on Multidisciplinary Studies and Innovative Technologies (ISMSIT) (pp. 1-5).

IEEE.

Zhou, S., He, P. and Kasabov, N., 2020. A dynamic DNA color image encryption method based
on SHA-512. Entropy, 22(10), p.1091.

Verma, J., Shahrukh, M., Krishna, M. and Goel, R., 2021. A critical review on cryptography

and hashing algorithm SHA-512. International Research Journal of Modernization in

Engineering Technology and Science, 3(12), pp.1760-1764.

Hussaini, S., 2020. Cyber security in cloud using blowfish encryption. International Journal

of Information Technology, 6(5).

Alobaydi, E. and Jawhar, M., 2024. Appling A Hybrid Encryption Algorithm in Cloud
Computing. Al-Rafidain Journal of Computer Sciences and Mathematics, 18(1), pp.58-65.

Ahmad, I. and Shin, S., 2022, January. Encryption-then-compression system for cloud-based

medical image services. In 2022 International Conference on Information Networking (ICOIN)
(pp. 30-33). IEEE.

