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Image Security in Cloud using hybrid 

Compression and Encryption Technique 

Nikhil Puranik 

X22194771 

 
Abstract 

The exponential growth of cloud-based image storage demands efficient, secure, and 

scalable solutions for managing large volumes of image data. This research introduces the 

Cloud Hybrid Compatible Algorithm (CHCA), which is an advanced framework for image 

compression, encryption, and meta-embedding to improve storage, security, and data 

integrity. Using 2D-Discrete Wavelet Transform (2D-DWT) for compression and a SHA- 

Blowfish encryption model, CHCA has made developments in the aspects of compression 

ratio, security, and scalability. Meta-embedding using SHA-256 means that image 

traceability, tampering, and self-checking are possible. 

Evaluation reveals that the proposed CHCA framework is more effective than current 

strategies in critical success factors. For JPG images, the proposed method provides an 

average compression ratio of about 1.43, PSNR of 40.96 dB and up to 30% overhead 

reduction in encryption. In the case of PNG images, the proposed CHCA achieves the 

average compression ratio of 0.88, PSNR of 44.92 dB, and the encryption overhead is 

reduced up to 6%. Unlike other approaches, CHCA provides real-time, serverless 

processing through AWS Lambda, which is flexible and inexpensive. The system retains 

high-quality image and provides adequate security against the unauthorized access and 

data theft. More will be done in the future to enhance the decryption process as well as to 

identify future uses of CHCA in complex, multiple cloud environments. 

 

1 Introduction 

The exponential growth in usage of digital images in various fields such as media, surveillance, 

and e-commerce has led to the need for efficient, secure, and scalable storage solutions. Cloud 

computing has emerged as the preferred choice for managing these vast datasets due to its 

scalability, accessibility, and cost-effectiveness. However, the widespread reliance on cloud 

storage has also amplified risks, such as unauthorized access, data breaches, and cyberattacks. 

High-profile incidents, like the significant breaches reported in 2024, underline the urgent need 

for robust security mechanisms to safeguard sensitive and valuable image data (Global 

Technology Services, 2024). 

Analyzing the market of cloud infrastructure in more detail, it is possible to note that the growth 

rates have been steadily increasing in terms of both revenues and growth rates within the past 

three years. Starting in Q1 2023, the cloud infrastructure services market reported revenues of 

$62.5 billion, which steadily increased to $84.0 billion by Q3 2024. This 
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consistent rise represents a compounded growth rate, with year-over-year growth improving 

from 19% in Q1 2023 to 23% by Q3 2024. These statistics highlight the rising popularity of 

cloud solutions and their importance in facilitating the development of innovative digital 

technologies, such as image storage and analysis. Such growth trends projected for the future 

also strengthen cloud computing as the fundamental approach to managing the increasing needs 

of data-driven industries (CRN, 2024; Canalys, 2024). 

 

Figure 1: Revenue quarterly growth in cloud industry. 

 

Traditional image storage systems face various challenges in handling computational 

efficiency with data security. Current encryption methods, while offering protection, are 

usually costly in terms of time and resources, especially when handling big data. At the same 

time, At the same time, compression systems can help save space on the storage media while 

not adequately covering data integrity and confidentiality issues. These limitations are 

particularly concerning in evolving cloud environments that demand real-time processing for 

massive uploads. Existing solutions often lacks to integrate encryption and compression 

effectively, creating critical gaps in cloud-based image management (Chandrashekhar & 

Waheed, 2022). 

The demand for effective and secure image storage goes beyond the mere technological need 

and is relevant to such fields as healthcare, e-commerce, and public safety. Many of these 

sectors require image data for critical operations and require systems that will protect the data, 

keep the business up and running and meet compliance standards. Solving both the issues of 

storage and security becomes imperative in order to regain the trust and to meet the demands 

of the industry (Ali et al., 2024). 

This research addresses the primary question: "How can an integrated framework be 

developed to optimize cloud storage space while ensuring data integrity, confidentiality, 

and compatibility for image data?" To answer this, the study presents the Cloud Hybrid 

Compatible Algorithm (CHCA) that integrate 2D-Discrete Wavelet Transform (2D-DWT) for 

image compression and SHA-Blowfish encryption model for data security. This approach 

requires minimal storage space to store the images and at the same time promises the quality 
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of the images and assurance of security against intrusion. This is done through meta- 

embedding where metadata is incorporated into the picture so that the pictures can be accounted 

for, checked and authenticated by the system. The system is implemented in a serverless 

fashion, using AWS Lambda to perform computations automatically, elastically, and in real-

time, while the final processed images are stored in AWS S3. This end-to-end solution resolves 

the problem of storage and compliance where large volumes of images are stored in the cloud, 

and for industries that have stringent security standards, such as health, finance, and forensic 

industries. 

2 Related Work 

2.1 Image Compression Techniques in Cloud Computing: 

Recent development in image compression has played a major role in promoting efficient 

cloud storage of images. Farghaly and Ismail (2020) presented a floating-point DWT 

compression scheme on FPGA using IEEE-754 single precision for precision and scalability. 

Although this method provides accurate image decomposition, its operation based on hardware 

constraints makes it less applicable in other complex software environments. Nugroho et al. 

(2023) have compared DWT with DCT, SVD, and KLT and concluded that though DWT 

results in a better compression ratio of 12% with less quality degradation compared with DCT, 

SVD, and KLT. However, their study was on a small data set and did not consider integration 

with cloud, suggesting more scalable and cloud friendly methods are required. 

Other researchers have looked at the use of a combination of the two. Ranjan and Kumar (2023) 

proposed a mixed compression model using DWT, PCA and Canonical Huffman Encoding to 

obtain better PSNR (between 17 dB) and lower bpp. However, their approach is not effective 

for real-time applications due to the high computational complexity. Mody et al. (2020) 

proposed the integration of new optimization techniques including Artificial Bee Colony 

(ABC) and Particle Swarm Optimization (PSO) into DWT compression. Their approach had 

better PSNR and lower MSE than the proposed method, but it was not fully automatic since it 

involved tuning the hyperparameters of the method for a given dataset. 

Collectively, although DWT-based compression techniques are superior in terms of image 

quality, most of the studied methods are implemented in hardware environments or are based 

on local processing, and thus, do not consider the problem of cloud integration. To bridge this 

gap, CHCA proposes a 2D-DWT-based compression algorithm designed for cloud 

environments with AWS Lambda. This approach reduces computational overhead, supports 

real-time compression, and offers a scalable solution for large datasets. 

2.2 Encryption Techniques in Cloud Security 

The modern development in the image encryption shows that the topic of data security is 

constantly unfolding. Transmission and storage. Chen et al., (2022) developed an asymmetric 

encryption scheme SHA-3, RSA, and compressive sensing integrated where provide excellent 

protection against plaintext assaults and obtaining high quality of reconstruction with measures 

like Peak Signal to Noise Ratio. (PSNR) and encryption time. Nonetheless, the method is 

computationally expensive because of the multiple steps involved in the process. 
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The project activities include; Disordered and squeezing processes. On similar grounds, Huang 

et al. (2022) proposed a visually secure asymmetric encryption algorithm for the steganography 

of the encrypted images with the carrier images using SHA-3 and integer wavelet transforms 

(IWT). The approach has high level of imperceptibility (PSNR ~43 It has high capacity to 

embed signal in terms of carrier/interference power ratio (dB) and high embedding capacity 

but requires excessive computing power to embed processes. 

Blowfish encryption that is often used on the cloud revealed great potential regarding the speed 

test for symmetric encryption. Hussaini (2020) used Blowfish with clustering algorithms to 

enhance the encryption of cloud data in terms of execution time and data integrity to minimize 

processing overhead and enhanced security. Nevertheless, with Blowfish, one disadvantage is 

that the block size is comparatively small; only 64-bits which may lead to problems when 

implementing it on large sets with brute force attacks. Execution time, memory usage and 

ciphertext size were selected for a comparison between the symmetric algorithm as proposed 

by Dibas and Sabri (2021). In the tests they had performed they noticed that Blowfish and 

Twofish generated bigger messages in their ciphertext form but seemed to outperform AES 

and 3DES in the throughput criterion. Although, Twofish had slightly better results in terms of 

execution time compared to Blowfish it is not suitable for real time applications. 

Zhou et al. (2020) examined dynamic DNA-based image encryption including SHA 512 and 

chaotic systems. The method shown was immune to statistical and brute force attacks while In 

this case, the goals are minimizing algorithmic complexity, where measures such as Hamming 

distance, and the speed of encryption are useful. Nevertheless, the more complex the DNA 

operations were the longer it took to encrypt and presented issues for large scale. applications. 

Mohammed et al. (2020) proposed a low complexity encryption method for IoT devices which 

are simple and stable, and compared it with parameters as encrytion time, which are 

computation time, memory consumption and the size of the written code. While efficient, the 

approach risks weaker cryptographic strength compared to AES.Collectively, while these 

studies advance image encryption by improving resistance to attacks and optimizing 

performance, challenges persist regarding scalability, computational overhead, and adaptation 

to diverse data environments. 

2.3 Subsection Hybrid Encryption Techniques in Cloud Security 

Hybrid encryption techniques are designed to leverage the speed of symmetric encryption and 

the strong security of asymmetric encryption, offering a balance between performance and 

security. Recent advancements have focused on improving computational efficiency, 

scalability, and key management to address the increasing demands of cloud storage systems. 

Ahmed and Jawhar (2024) proposed a hybrid encryption model that integrates Blowfish, 

Paillier, and AES to achieve strong data privacy with low computational overhead. Their 

evaluation factors included encryption time and throughout and the system proved to be faster 

in securing big data sets. However, the use of three different key management systems made 

operations more complex particularly on real-time applications. The CHCA framework 

addresses this issue by using a hybrid approach with SHA-Blowfish and overcome the need 

for multiple key management procedures while maintaining high throughput. Ahmad and 
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Shin (2022) have presented an Encryption-then-Compression (EtC) for safeguarding the 

medical images by employing the concepts of block based scrambling and JPEG compression. 

Their approach was able to achieve a high PSNR of 40 which indicates that the level of 

distortion that was placed on the image after encryption was negligible. But they have not been 

able to extend their system to other image formats because of the JPEG compression. In 

contrast, the current approach uses the more generalizable compression method, 2D-DWT, 

which can compress both JPG and PNG formats, ensuring broader adaptability across multiple 

application domains. 

Nugroho et al. (2023) proposed an hybrid cloud security model that combines DWT 

compression and AES and Blowfish encryption. Their system ensured considerable 

compression ratio and encryption time, indicating that it can be effectively used for real-time 

cloud storage. However, their system requires separate processing phases for compression and 

encryption, leading to higher overall processing time. 

2.4 Critical analysis and Conclusion: 

The reviewed studies together have pointed out that there have been lot of progress made in 

image compression. symmetric and asymmetric, as well as the combination of both, encryption 

techniques, demonstrating that they can be adopted for cloud-based applications. Such 

compressing strategies like DWT are efficient in keeping image integrity compared to the other 

methods. quality yet they can accommodate different input data and a mixed integration with 

encryption. algorithms is limited. Similarly to that, Blowfish and RSA encryption algorithms 

work best in terms of speed and security, yet their key management and memory-based 

constraints limit the scalability for real-time applications. Hybrid RSA- Blowfish and 

Encryption-then- Compression (EtC) based approaches are found to be effective. interface the 

advantages of both, symmetric and asymmetric methods in optimization. However, challenges 

remain in juggling the needs of computational cost and protection while making the solutions 

appropriate for multi-cloud environments environments. These limitations highlight the 

absence of a broad and efficient approach to the problem. It actually allows for compression 

and encryption to converge without compromising on performance. 

In addition to these solutions, my investigation adds to the literature by proposing a combined 

approach with 2D-DWT for and a two tier compression and SHA-Blowfish encryption model 

as well. Application of these techniques with When it comes to serverless computing AWS has 

Lambda while for scalable storage, AWS came up with S3 which addresses the above identified 

limitations. This approach improves on the security of image data and their storage in the cloud. 

environments, which has been consistent with the increasing need for enhanced and flexible 

architectures. By bridging These gaps, our work fills the gap within the existing and emerging 

cloud-based image security systems. 

 

Table 1: Summarization of related works. 

Article Methodology Research 
Domain 

Achievements Limitations Differentiation 

Floating-point Discrete 
Wavelet Transform- 

Hardware 
implementation 

Image 
compression in 

Achieved 243.6 MHz 
clock frequency, 

Limited scalability to 
different FPGA 

Focus on hardware- 
specific optimizations 
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based Image 
Compression on FPGA 

using Discrete 
Wavelet 
Transform (DWT) 
on FPGA 

digital systems higher precision with 
IEEE-754 Floating- 
Point representation 

architectures, specific 
to hardware 
implementation 

and IEEE-754 
representation. 

A Comparative Study 
On Image Compression 
in Cloud Computing 

Comparison of 
DCT, DWT, SVD, 
and KLT methods 

Cloud-based 
image 
compression 

DWT achieved 
highest compression 
ratio (12%) and 
grayscale similarity 
(0.96) 

Lower color similarity 
with DWT; SVD 
performs better in 
color retention 

Comprehensive 
analysis of multiple 
compression 
techniques in cloud 
context 

Image Compression 
Using Discrete Wavelet 
Transform 

Proposed pruning- 
based algorithm 
using DWT 

Digital image 
storage and 
transmission 

High compression 
ratios with minimal 
quality loss 
compared to other 
methods 

Higher computational 
requirements for DWT 
compared to simpler 
methods 

Introduction of a 
pruning mechanism 
to enhance DWT 
effectiveness 

An Improved Image 
Compression Algorithm 
Using 2D DWT and PCA 
with Canonical 
Huffman Encoding 

Combines 2D 
DWT, PCA, and 
Canonical 
Huffman Coding 

Image 
compression 
using hybrid 
methods 

Up to 60% 
compression with 
better PSNR and bpp 
compared to 
standalone methods 

Trade-off between 
quality and 
compression ratio 

Incorporation of PCA 
with DWT for 
enhanced 
compression 
performance 

Image Compression 
using DWT and 
Optimization using 
Evolutionary 
Algorithms 

DWT with 
optimization using 
Artificial Bee 
Colony and 
Particle Swarm 
Optimization 

Image quality 
optimization 
post- 
compression 

Optimized 
compression with 
better PSNR and CR 
values compared to 
traditional 
techniques 

Higher complexity due 
to evolutionary 
algorithms 

Combination of DWT 
and optimization for 
high-quality image 
retention 

Performance 
Evaluation of 
Cryptographic 
Algorithms: DES, 3DES, 
Blowfish, Twofish, and 
Threefish 

Comparison of 
encryption speeds 
of DES, 3DES, 
Blowfish, Twofish, 
and Threefish 

Cryptographic 
encryption for 
secure 
information 
transmission 

Blowfish 
outperforms other 
algorithms in 
encryption speed for 
various text file sizes 

Limited to symmetric 
block cipher 
comparison, no 
asymmetric algorithms 
included 

Emphasis on 
simulation-based 
speed analysis and 
performance 
comparison 

An Asymmetric Image 
Encryption Scheme 
Based on SHA-3, RSA 
and Compressive 
Sensing 

Asymmetric image 
encryption using 
SHA-3, RSA, and 

Compressive 
Sensing 

Image 
encryption for 
secure image 
communication 

Can resist known 
plaintext attacks and 
chosen plaintext 
attacks 

Higher computational 
complexity due to 
multiple 
transformation steps 

Unique combination 
of SHA-3, RSA, and 
Compressive Sensing 
for enhanced security 

Visually Asymmetric 
Image Encryption 
Algorithm Based on 
SHA-3 and Compressive 
Sensing 

Image encryption 
using SHA-3, 
compressive 
sensing, and 
embedded 
encryption 

Visual security 
and image 
encryption 

Provides strong 
imperceptibility and 
key sensitivity with 
high PSNR and NC 
values 

Dependence on carrier 
image characteristics 
for security robustness 

Embedding encrypted 
image into a carrier 
image for additional 
security 

A Comprehensive 
Performance Empirical 
Study of the Symmetric 
Algorithms: AES, 3DES, 
Blowfish, and Twofish 

Empirical 
performance 
evaluation of AES, 
3DES, Blowfish, 
and Twofish 

Cryptographic 
performance 
evaluation of 
symmetric 
algorithms 

AES had the lowest 
execution time and 
Blowfish and Twofish 
had the largest 
ciphertext sizes 

Limited to four 
symmetric algorithms, 
no asymmetric 
comparison 

Analysis includes 
execution time, 
memory usage, and 
ciphertext size for 
encryption and 
decryption 

A Lightweight Image 
Encryption and 
Blowfish Decryption for 
the Secure Internet of 
Things (IoT) 

Lightweight 
encryption using 
Stable IoT 
algorithm and 
Blowfish 
decryption 

IoT image 
security and 
lightweight 
encryption 

Achieved adequate 
protection with five 
rounds of encryption 
using minimal 
computation 

Limited to 64-bit block 
encryption, dependent 
on hardware 
constraints 

Emphasizes 
lightweight 
encryption for IoT 
devices with limited 
resources 

A Dynamic DNA Color 
Image Encryption 

Two-round 
permutation- 

Color image 
encryption and 

Resistant to brute- 
force attacks, 

Complexity due to the 
two-round 

Use of dynamic DNA 
coding, 4-wing chaotic 
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Method Based on SHA- 
512 

diffusion using 
SHA-512 and 
dynamic DNA 
coding 

DNA-based 
cryptography 

plaintext attacks, and 
statistical attacks 

permutation-diffusion 
mechanism 

systems, and SHA-512 
for initial conditions 

A Critical Review on 
Cryptography and 
Hashing Algorithm SHA- 
512 

Review and 
analysis of SHA- 
512 algorithm and 
its applications 

Cryptographic 
hashing and data 
security 

Highlights use of 
SHA-512 for 
encrypted download 
links and secure 
online services 

Focus is on SHA-512 
only, with limited 
comparative analysis 
to other hashing 
methods 

Emphasis on the 
practical application 
of SHA-512 for user 
security and privacy 

Cyber Security in Cloud 
Using Blowfish 
Encryption 

Use of Blowfish 
encryption and 
clustering 
techniques for 
cloud data 
security 

Cloud data 
security and 
encryption 
methodologies 

Optimal Blowfish 
encryption enhanced 
accuracy and security 
of cloud data 

No comparative 
analysis with other 
encryption algorithms 
for cloud security 

Incorporation of 
clustering with K- 
Medoid for 
classification before 
encryption 

Applying a Hybrid 
Encryption Algorithm in 
Cloud Computing 

Combining 
Blowfish, Paillier, 
and AES for triple 
encryption 

Cloud data 
security and 
hybrid 
encryption 

Increased security 
and performance for 
cloud storage with 
minimal time 
consumption 

Higher computational 
complexity due to use 
of three encryption 
layers 

Unique hybrid 
approach using 
Blowfish, Paillier, and 
AES to balance 
protection and 
efficiency 

A Hybrid Data 
Encryption Technique 
using RSA and Blowfish 
for Cloud Computing 
on FPGAs 

Hybrid encryption 
using RSA for 
authentication 
and Blowfish for 
fast encryption 

Cloud 
computing, data 
security, and 
FPGA-based 
encryption 

Successfully 
implemented hybrid 
algorithm on FPGA 
with high speed and 
secure 
authentication 

Resource limitations 
due to FPGA 
constraints, small key 
sizes for asymmetric 
encryption 

Combination of FPGA 
implementation and 
hybrid approach using 
RSA and Blowfish for 
better security 

Encryption-then- 
Compression System 
for Cloud-based 
Medical Image Services 

Encryption 
followed by 
compression (EtC) 
for cloud-based 
image 
transmission 

Medical image 
security and 
compression for 
cloud-based 
storage and AI 
services 

Preserved quality of 
medical images for 
diagnosis while 
securing data during 
transmission 

Requires segmentation 
of region-of-interest 
(ROI) for better 
compression and 
encryption 

Integration of 
encryption and 
compression to 
ensure image security 
for telemedicine 

Enhanced Data Storage 
Security in Cloud 
Environment using 
Encryption, 
Compression and 
Splitting Technique 

Triple security 
approach using 
encryption, data 
splitting, and 
compression for 
cloud storage 

Triple security 
approach using 
encryption, data 
splitting, and 
compression for 
cloud storage 

Provided enhanced 
security and 
protection from 
unauthorized access 
using encryption and 
splitting 

Increased storage 
overhead due to file 
splitting and additional 
processing for 
compression 

Unique three-step 
process of encryption, 
splitting, and 
compression for 
enhanced cloud 
security 

3 Research Methodology 

This section provides a comprehensive explanation of the research methodology employed in 

developing and evaluating the Cloud Hybrid Compatible Algorithm (CHCA). The 

methodology outlines the research procedure, software and hardware requirements, 

experimental setup, and data analysis. 

3.1 Research Procedure 

The research procedure is divided into three key stages: Proposed Framework, Proof of 

Concept, and Cloud Implementation. 
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Framework Development 

The first contribution of this research is the design of the proposed Cloud Hybrid Compatible 

Algorithm (CHCA). In the proposed framework 2D Discrete Wavelet Transform (2D-DWT) 

has been used for image compression technique and SHA-Blowfish Hybrid encryption model 

has been used for security model. 

• Compression: 2D-DWT helps in analyzing the low and high frequency parts of the 

image which are required for detailed analysis while excluding non relevant portion of 

images. 

• Encryption: SHA provides credibility of the image while Blowfish is a faster algorithm 

for encrypting the compressed image. 

• Cloud Integration: The framework employs AWS Lambda for the serverless computing 

and AWS S3 for the scalable storage which makes the processing in real- time at less 

costs. 

Software and hardware requirements 

The CHCA is introduced depending on the selection of a set of specific hardware and software 

components for the optimal work of the solution. For computation, the system uses a secure 

local and cloud computing platform, and the software platform utilizes modern libraries and 

frameworks for image compression and encryption and cloud computing. 

Table 2: Hardware requirements. 

Component Specifications 

Local Machine Intel(R) Core(TM) i5-7200U CPU @ 2.50GHz, 2 Cores, 4 Logical Processors, 

16GB RAM 

Cloud Instance Amazon EC2 t2.2xlarge, 8 vCPUs, 32GB RAM 

 

Table 3: Software requirements. 

Component Details 

Programming 

Language 

Python 

Version Python 3.9 

Libraries Used PyWavelets (DWT for compression), PyCrypto (Blowfish encryption), 

hashlib (SHA-256 hashing) 

Web 

Framework 

Streamlit (for developing the user interface) 

Operating 

System 

Amazon Linux (deployed on the EC2 instance) 

 

Initial Testing 

Before the actual deployment of the CHCA framework in cloud environment, feasibility, 

performance and efficiency test was conducted on the CHCA framework. The intention was to 

first check whether the algorithm was working correctly in terms of compression and 
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encryption before carrying out the exercise in a cloud environment. These specifications were 

sufficient to provide the required computational resources for debugging and testing of these 

algorithms. 

Testing Goals: Functionality testing was required here to know if the algorithm compressed 

the data as expected, if the algorithm encrypted the data and if it stored the data in the way it 

was supposed to. 

Cloud Deployment 

The last stage of the research is to implement the CHCA algorithm in the real cloud 

environment with the help of AWS Lambda and AWS S3. The algorithm is built in serverless 

function that run every time new images are uploaded in AWS S3. 

Serverless Function Deployment: 

• The algorithm was developed as a serverless function that would be automatically 

called every time new images were uploaded to AWS S3. 

• It is implemented 2D-DWT compression, SHA-Blowfish hybrid encryption and 

uploading compressed encrypted images to AWS S3. 

3.2 Experimental Setup 

This section discusses the steps undertaken in preparing and processing the data that has been 

employed in the evaluation of the CHCA. The experimental setup is divided into two key 

components: Data Collection and Data Processing. 

Data Collection 

To enhance the performance of the CHCA algorithm, all the various images used were 

collected from different sources and all the images used in this study are in the public domain. 

This dataset offered images in jpg and also png format to see how the algorithm function in 

both formats, lossy and lossless. These images showed real life scenarios where the algorithm 

could be applied and therefore provided a real life platform on which they could be compared. 

Dataset Characteristics: It was also important that the images used in the study had different 

sizes of between 512 x 512 pixels and 4096 x 4096 pixels which allowed for testing of the 

algorithm on images of different file sizes and level of details. This diversity was applied in 

evaluating the performance of the algorithm, given different levels of complexity in the images 

and in the aspect of image compression. 

Data Processing 

Data processing involved three interconnected steps: compression, encryption, and cloud 

storage. Every step was carefully performed to assess several performance aspects, to analyze 

performance parameters of the CHCA algorithm, and its scalability. 

The first step, compression, utilized the 2D-Discrete Wavelet Transform (2D-DWT) algorithm. 

This algorithm was chosen for its ability to split images into low-frequency and high- frequency 

components This algorithm was chosen for its ability to split images into low-frequency and 

high- frequency components. This approach ensured efficient compression while maintaining 

image quality. The compressed image will be accessed for processing time, compression 

ratio, and quality metrics such as Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity 
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Index (SSIM). 

Following compression, the images will be secured through the SHA-Blowfish encryption 

model. SHA part of the system generated the hash value for each image to verify the data 

authenticity and the Blowfish encryption enhanced the security of the system without 

significant effect on time consumption. The reliability of encryption will be determined by 

checking decryption at different instances including attempts with the wrong keys. 

Cloud processing 

Lastly, the processed images were saved into AWS S3 buckets using AWS Lambda for 

compressing and encrypting the images in a serverless approach. This setup was designed to 

resemble a typical cloud application where images are uploaded, processed and stored securely 

and in large capacity. AWS Lambda allowed testing the algorithm with various loads, for 

example, concurrent uploads in order to analyze scalability and elasticity. The combination of 

the compression and encryption with cloud infrastructure brought out an efficient and seamless 

data processing work flow which enabled the CHCA algorithm for real-time and large scale 

applications. 

Data Analysis 

The data analysis phase was very important in supporting the efficiency of the Cloud Hybrid 

Compatible Algorithm (CHCA). This done based on the need to assess the performance of the 

algorithm in solving the challenges with image compression and encryption so as to determine 

its suitability to the cloud platform. This was done as per the metrics, statistical analysis, and 

comparison strategy that has been used in determine the performance of CHCA algorithm with 

other methods as reported in the literature. 

Metrics Evaluated 

Various performance measures were used to assess the performance of the proposed CHCA 

algorithm. 

Compression Time: The time taken to compress the images was also measured for both JPG 

as well as PNG images so as to compare the speed of the algorithm. This metric highlighted 

how CHCA was able to compress images in a way that would reduce their size while still 

providing high quality images. 

Overall Processing Time: The total time taken for the compression, encryption and storage 

on the cloud was also recorded to assess the effectiveness of the algorithm each time. The 

overall processing time is calculated using the following formula: 

𝑇𝑡𝑜𝑡𝑎𝑙 = 𝑇𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 + 𝑇𝑒𝑛𝑐𝑟𝑦𝑝𝑡𝑖𝑜𝑛 + 𝑇𝑠𝑡𝑜𝑟𝑎𝑔𝑒 

Where: 

• 𝑇𝑡𝑜𝑡𝑎𝑙 = 𝑂𝑣𝑒𝑟𝑎𝑙𝑙 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 𝑡𝑖𝑚𝑒. 

• 𝑇𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 = 𝑇𝑖𝑚𝑒 𝑡𝑎𝑘𝑒𝑛 𝑓𝑜𝑟 𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛. 

• 𝑇𝑒𝑛𝑐𝑟𝑦𝑝𝑡𝑖𝑜𝑛 = 𝑇𝑖𝑚𝑒 𝑡𝑎𝑘𝑒𝑛 𝑓𝑜𝑟 𝑒𝑛𝑐𝑟𝑦𝑝𝑡𝑖𝑜𝑛. 

• 𝑇𝑠𝑡𝑜𝑟𝑎𝑔𝑒 = 𝑇𝑖𝑚𝑒 𝑡𝑎𝑘𝑒𝑛 𝑡𝑜 𝑠𝑡𝑜𝑟𝑒 𝑡ℎ𝑒 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑 𝑖𝑚𝑎𝑔𝑒 𝑖𝑛 𝑡ℎ𝑒 𝑐𝑙𝑜𝑢𝑑. 
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Image Quality Metrics: Compressed image quality measurements like PSNR and SSIM were 

assessed in order to measure the image quality after compression. PSNR was used to assess the 

quality of the images and its value was higher when most of the details of the image were 

preserved. SSIM, on the other hand, was concerned with the structural similarity between the 

original and the processed images and hence more appropriate for formats such as PNG that 

are rich in quality. PSNR calculates the quality of the compressed image with the respect to the 

original image. The formula is: 

 

Where: 

• MAX = Maximum possible pixel value of the image (e.g., 255 for 8-bit images). 

• MSE = Mean Squared Error, calculated as: 
 

Here, I(i,j) and K(i,j) are the pixel values of the original and compressed 

images, and M and N are the dimensions of the image. 

SSIM compares the structural similarity between the original and compressed images. The 

formula is: 

Where: 

•  

•  

•  is the covariance. 

•  

 

Compression Ratio: The compression ratio was also used to determine the extent to which 

the CHCA algorithm compressed the sizes of the images. This was further supported by an 

assessment of size reduction, in the sense of the percent reduction in file size after compression. 

 

 

 

4 Design Specification 
Design specification describes how CHCA will be structured, how it will function and the 

technology that will be used in the process. CHCA algorithm addresses the concerns on image 

data compression, encryption, and cloud deployment.This specification targets to give 
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a broad perspective of the framework and the parts, flow, and security that the algorithm 

applies. 

4.1 System Architecture 

The system architecture of the Cloud Hybrid Compatible Algorithm (CHCA) is to integrate the 

image compression and encryption with the cloud system. This architecture also has the ability 

to do image processing in real-time with high security and optimized for a large number of 

images. The framework consists of three components: It consists of the Compression Module, 

the Encryption Module, and Cloud Integration. 

 

Figure 2: System architecture of CHCA. 

 

Compression Module 

The primary operation of the compression module is to format input images to compressed 

sizes with less distortion on the image quality. This is done through the application of the 2D- 

Discrete Wavelet Transform (2D-DWT) algorithm as shown in the following section. The 2D-

DWT algorithm simply operates on the input images by decomposing the image into low and 

high frequencies. Low frequency areas of the image which are most important are preserved 

and the high frequency areas which are not very significant in perceiving the image are either 

neglected or quantized. This decomposition also greatly decreases the size of the image and at 

the same time increases the space needed to store it. This is because the compression module 

is developed to handle all types of applications with the help of multiple formats such as JPG 

and PNG. 

Encryption Module 

The encryption module focuses on the security and confidentiality of the compression images. 

It uses compound SHA-Blowfish encryption algorithm that has features of both the algorithms 

SHA is used to generate hash key for every compressed image to check if the image has been 

altered. The Blowfish algorithm which is fast and relatively light compresses the images and 

then encrypts in order to bar some people from gaining access. This way the safety of the 

images is ensured and at the same time the computational overhead of the 
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system is kept to a minimum.The encryption module is also connected to the compression 

module in order to facilitate the transition from compression to encryption. 

Cloud Integration 

The integration of the CHCA framework with the cloud infrastructure of AWS services 

increases the scalability of AWS services. This eliminate the need for dedicate servers and 

allows the system to grow as per the amount of traffic. After that the images are saved in AWS 

S3 buckets which are highly reliable, scalable and secure storage infrastructure for data. This 

integration ensures that the processed images are available for use, well stored and secured 

from any unauthorized persons. 

The high level block diagram of the architecture exhibits how the data of the input image is 

processed and stored in the cloud. These three modules formed one processing line that can be 

as efficient, effective and secure as the one described in the diagram below. This modular 

design makes the system flexible, sustainable, and relevant to actual cloud-based image 

processing needs. 

4.2 Workflow of the Framework 

The CHCA framework follows a systematic workflow to process images from initial input to 

secure cloud storage. The workflow is as follows: 

 

Figure 3: Workflow of CHCA. 

Start (User Uploads Image) 

The first process is the user uploading an image in JPG or PNG format to the AWS S3 bucket 

situated in the /raw/ folder.This action creates an S3 event to kick start processing. 

S3 Event Trigger 

Whenever a file is uploaded to the AWS S3 the service generates an event which in turn 

activates an AWS Lambda to process the image in real-time. 

AWS Lambda Processing 

From the /raw/ folder, AWS Lambda downloads the image and passes it through the 

Compression Module, where the 2D-DWT algorithm compresses the image and stores only the 

low-frequency sub-band, cA. The compressed image is then sent to the Encryption Module and 
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SHA-Blowfish hybrid model generates SHA-256 hash to check on the integrity of the image 

before encrypting the image. The Meta-Embedding Module then integrates the hash into the 

encrypted picture to perform auto-authentication to generate the final processed picture. The 

processed image is then saved in the /processed/ folder within the S3 bucket. 

S3 Processed Image Storage 

The /processed/ folder securely stores the compressed, encrypted, and meta-embedded 

image.Users can retrieve or download the processed image as needed, completing the 

workflow. This seamless process ensures optimized storage, robust security, and real-time 

automation. 

4.3 Design Constraints 

The design of the CHCA algorithm was influenced by key constraints that defined the 

functionality and efficiency of this algorithm. Concurrency was implemented through the AWS 

Lambda serverless architecture, which allows for the easy management of multiple uploads. 

During local testing, computational power was limited and thus the need to use relatively light 

weight algorithms for compression and encryption such as 2D-DWT and Blowfish 

respectively. To minimize latency the system combined fast compression and secure 

encryption with automatic resource management using the AWS Lambda. The framework was 

built to read JPG and PNG images because these are sufficient for most of the uses and can be 

compressed with little loss or no loss, though a future version may add other formats. 

4.4 Security Considerations 

The security was a major consideration of the Cloud Hybrid Compatible Algorithm (CHCA) 

to ensure that the image data did not leak out while being processed and stored in the cloud. 

Encryption: The CHCA framework employed a security SHA-Blowfish encryption model for 

enhanced security within the framework. Blowfish was a low weight high power of 

confidentiality while SHA was used to hash data and secure content and keys. 

Hashing: To be able to verify the integrity of the images, a SHA hash was developed for each 

of them, just like fingerprints. This made it possible to detect if the image had been altered in 

some way since the time it was taken to avoid compromising the image when it was being used. 

Access Control: The policy mechanism named as AWS Identity and Access Management 

(IAM) services revealed the application of strong access control policies. AWS S3 and Lambda 

could only be accessed by authenticated users/ processes, basically reducing the opportunities 

for insecurity or unauthorized accessing of data. 

Data Privacy: All the data transfers were done through https to avoid exposure of the image 

data that was being transferred to and from the cloud for upload and download operations. This 

would ensure that the privacy was achieved irrespective of the location of the cloud 

implementation. 

 

5 Implementation 
The Cloud Hybrid Compatible Algorithm (CHCA) is a very detailed approach that requires a 

solution to the image compression, encryption and compatibility with the cloud. It is also 

designed to reduce image sizes while trying to keep the quality of the images as high as possible 
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and to provide enough security and image data integrity for images that are stored in the cloud. 

Another aspect that has been included in the mechanism is the use of meta- embedding in the 

images that increase the confidence level, quality audit and quality certification. The 

subsequent sections of the paper present an overview of the compression and encryption 

modules and the changes made to the existing libraries, the reasons for such changes, and 

advantages of the introduced change. 

 

 

 

The 2D-Discrete Wavelet Transform (2D-DWT) which is a well-known method for image 

decomposition, in this work it is used to decompose the image into multiple sub-bands. These 

sub-bands are the low frequency component which contains most of the image information 

content and the high frequency components which contains edge and texture information 

represented by cH, cV and cD respectively. In its conventional form, 2D-DWT operates on all 

the sub-bands in the same manner, which is ineffective in terms of storage since the high 

frequency components contribute marginally to the overall image quality. In the context of the 

CHCA framework, the 2D-DWT algorithm is modified to retain only the cA sub-band and 

discard or quantize the other sub-bands. This customization makes sure that all the important  

visual aspects are retained while cutting down on a lot of unnecessary duplication. Thus, by 

concentrating on the most significant data for visualization, the CHCA framework provides 

efficient compression while maintaining the image quality.  

Algorithm 1: 2-DWT Compression 

Function CompressImage(input_image, output_path): 

// Step 1: Load the Input Image Load 

the image from the input path 

 

// Step 2: Convert the Image to Grayscale If 

the image is colored: 

Convert the image to grayscale 

Else: 

Use the original image data as grayscale 

 

// Step 3: Apply 2D-Discrete Wavelet Transform (2D-DWT) 

Decompose the grayscale image into sub-bands: 

cA (approximation), cH (horizontal details), cV (vertical details), 

cD (diagonal details) 

// Step 4: Retain the Low-Frequency Sub-Band 

Retain only the cA sub-band as it contains essential image details 

 

// Step 5: Quantize the Low-Frequency Sub-Band 

Apply quantization to the cA sub-band to reduce data redundancy 

 

// Step 6: Save the Compressed Image 

Save the quantized image to the specified output path 

 

// Step 7: Return the Compressed Image Return 

the quantized image data 
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The following are the advantages of this customization: Selective compression is more 

effective in reducing the size of the file while still retaining the look and feel of the image, 

making the compression ratio better. Performance optimization is done through reduction of 

computational complexity which makes it possible to achieve faster compression time even 

on large files or in real-time applications. Also, the integration with the encryption module is 

smooth since the simplified data structure can be directly fed into the encryption stage, 

reducing preprocessing time. These enhancements make the CHCA framework more efficient, 

scalable and suitable for cloud based image processing system. The time complexity of 2D-

DWT is O(N log N) for an N x N image. This way, the system reduces the amount of memory 

used and the rate of processing increases since high frequency components are eliminated. 

 

 

The Blowfish encryption algorithm (via PyCrypto) and SHA-256 hashing algorithm (via 

hashlib) are two powerful cryptographic techniques that are often used for data security and 

data integrity. However, their default implementations run in parallel, meaning that hashing 

and encryption processes have to be done separately. To address this, the CHCA framework 

proposes a new SHA-Blowfish model that combines hashing and encryption in one step. Such 

customization means that the image data is compressed, encrypted and is also easily verifiable, 

providing a double layer of protection. To check the integrity of the compressed image, SHA- 

Algorithm 2: SHA-Blowfish Encryption 

256 is employed to create a hash for the compressed image; on the other hand, to ensure 

confidentiality of the image Blowfish is used to encrypt the image. 

Function EncryptImage(compressed_image, encryption_key): 

// Step 1: Generate the SHA-256 Hash 

Generate a SHA-256 hash for the compressed image 

Input: compressed grayscale image 

Output: sha_hash 

// Step 2: Convert Image to Byte Array 

Convert the compressed image into a byte array 

Output: image_bytes 

// Step 3: Apply Padding to Byte Array 

If the length of image_bytes is not a multiple of 8: 

Calculate the required padding size 

Add padding to the byte array 

Output: padded_bytes 

Else: 

Use the original byte array as padded_bytes 

 

// Step 4: Initialize Blowfish Cipher 

Initialize the Blowfish cipher with the provided encryption key 

 

// Step 5: Encrypt the Padded Byte Array 

Encrypt the padded byte array using the Blowfish cipher 

Output: encrypted_image 

 

// Step 6: Return Encrypted Data 

Return the encrypted image and SHA-256 hash 
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The main issue with Blowfish encryption is that the data has to be in multiples of 8 bytes. As 

image data does not fit this size natively, a new padding scheme was designed for this purpose. 

This logic adds further bytes to make the data block aligned, which makes it compatible with 

Blowfish encryption fully. The customization offers several important advantages: It is secure 

because the data is protected twice; there is no interruption of the work process because 

hashing, padding, and encryption are performed in one step; and data compatibility ensures 

that all image data can be encrypted without loss of data integrity. It maintains confidentiality, 

integrity and optimizes on cloud storage of image data. The time 

complexity of the SHA-Blowfish hybrid encryption in the CHCA framework is O(N), N is the 

size of the input image (in bytes). This complexity is due to the sequential processing of SHA-

256 and Blowfish with constant-time padding to encrypt large images with equal efficiency. 

Meta-embedding can be described as the process of placing metadata within an image file, as 

a component of the image. In the CHCA, meta-embedding is the act of embedding a SHA- 256 

hash into the compressed image before the encryption process. This approach leads to self-

verifying images that can enable integrity verification of the images without the use of 

reference files. SHA-256 hash is the identification number of the image and if an image was in 

any way modified or transformed the hash value obtained from the image will not be the same 

as the hash value placed in the image. This makes the system more secure, self- contained and 

reliable for storing images in cloud based system. 

The main goal of meta-embedding is to achieve data authenticity, accountability, and 

confidentiality. The use of tags such as time, user ID and source information help to track the  

Algorithm 3: Meta-Embedding in Image 

Function EmbedMetadataIntoImage(encrypted_image, sha_hash): 

// Step 1: Convert the SHA-256 Hash into Binary Format 

Convert the SHA-256 hash into a binary format (each hex 

character is 4 bits) 

Input: encrypted_image (after encryption) and SHA-256 hash 

Output: binary_hash 

 

// Step 2: Flatten the Encrypted Image into a 1D Array 

Convert the encrypted image into a 1D array of pixel values 

Output: image_array 

 

// Step 3: Embed the Binary Hash into Pixel Values 

For i from 0 to Length(binary_hash): 

Calculate the bit position within a pixel byte (0-7) 

Calculate the byte position in the image array to modify 

Embed the binary hash bit at the calculated position in the 

image array 

 

// Step 4: Reshape the Image Array Back to 2D Form 

Reshape the modified image array into its original 2D format 

Input: modified image array, original image dimensions (height 

and width) 

Output: embedded_image 

 

// Step 5: Return the Embedded Image 

Return the image with embedded metadata 
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history of the image and who has been involved. This is especially important in regard to the 

legal requirements especially for images used in areas such as health and forensic where the 

use of images demands validation of image authenticity. Also, the hash is placed inside the  

image in CHCA to avoid having other hash files that complicate storage and loss of external 

metadata. It is incorporated in the image and therefore whenever the image is copied, moved 

or transferred it takes the hash along with it. 

Cloud Integration 

The Cloud Hybrid Compatible Algorithm (CHCA) was implemented as a serverless function 

on AWS Lambda for fully automated, scalable, and real-time image processing. This 

integration with AWS cloud services makes it possible for the system to support large 

numbers of images to be uploaded at once. The Lambda function was set to be invoked when 

there were new images uploaded to an AWS S3 bucket, so that the compression, encryption 

and storage procedures could initiate without any human intervention. 

The cloud deployment process involved three key steps. First, the compression and encryption 
code, along with all necessary dependencies were placed in the zip file. This package was 

deployed to AWS Lambda where environment for Python 3.9 was set up. Subsequently, a 

Lambda function was developed to run the CHCA algorithm. Last but not the least, an S3 
event trigger was configured in such a way that each time a new image is placed in the specific 

S3 bucket, the Lambda function is initiated. It is a flexible event-drivers architecture that allows 
for real-time image processing and cloud storage, which increases the system’s scalability, 

performance, and automation. Since AWS Lambda can directly interact with S3, image 
processing is efficient, safe and inexpensive because only during the running of the program 

resources are used. 

 

6 Evaluation 

The evaluation of the Cloud Hybrid Compatible Algorithm (CHCA) is aimed at assessing its 

performance, efficiency, and scalability in handling image data in a cloud-based environment. 

To facilitate the comparison, I align the results from the CHCA framework with those derived 

from other studies in the literature. The categories for the assessment parameters are time for 

image compression, compression ratio, PSNR and SSIM of the compressed image, encryption 

time, time for embedding the metadata. It is done in order to test it on JPG and PNG images so 

that the program will be more dependable and versatile. 

Test Case 1: Compression Efficiency 

Objective 

The aims of Test Case 1 were to investigate the quality of the image and the compression 

capacity of CHCA measures such as PSNR and SSIM. This evaluation was intended to assess 

the effectiveness of CHCA with other related work done to establish its adequacy in improving 

image integrity for JPG and PNG formats. The other objective was also to determine whether 

the proposed hybrid compression and encryption framework of CHCA is of superior quality to 

the conventional methods. 
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Figure 4: PSNR comparison of images Figure 5: SSIM Comparison of images 

Results 

The CHCA processed images’ average of PSNR and SSIM were calculated individually for 

JPG and PNG formats. The quantitative findings were as follows: The PSNR was on average 

40.2 dB and the SSIM was 0.963, this affirmed that the quality of the reconstructed images 

was nearly as good as the original images. For the PNG images, the CHCA yielded an 

average of 45.1 dB PSNR and an average of 0.986 SSIM, which should signify even better 

image quality preservation. 

Analysis 

The results showed that the overall performance of CHCA is high when compared to the 

literature. Nugroho et al. (2023) reported an average PSNR of 40 dB for DWT-based 

compression, which agrees with CHCA performance of JPG images but falls short of its results 

of PNG images (PSNR: 45.1 dB). Similarly, SSIM values reported by Huang et al. (2022) for 

their visually secure asymmetric encryption algorithm peaked at 0.98, which CHCA exceeded 

for PNG images (SSIM: 0.986). This proves that CHCA can keep high structural similarity 

with the original images at the same time to have high compression. The outcomes of the study 

assist CHCA to address the established limitations in the previous research, such as achieving 

high-quality image compression without straining the quality of the image. These results 

demonstrate that CHCA is suitable for secure and high-quality image storage in the cloud, 

which is a major contribution to the image processing in the cloud computing environment. 

 

Test Case 2: Encryption Efficiency 

Objective 

The second test case aimed to evaluate the encryption performance of the CHCA framework 

by measuring the encryption overhead as a percentage change in file size. This test aimed at 

evaluating how effectively the SHA-Blowfish hybrid encryption model performs encryption 

on both JPG and PNG formats without much impacts on storage or computational overheads. 
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Figure 6 : Encryption performance compariosion of images. 

Results 

The encryption overhead percentages for JPG and PNG formats were calculated for six 

samplesThe overhead for JPG images was between -30% and -10% because the size of the 

images was smaller after encryption due to blowfish light encryption and the structuring of 

metadata. PNG images had overheads close to 0% for the overheads which means there is 

minimal increase in file size after encryption because PNG is a lossless format. These results 

demonstrate the differences in the behavior of lossy and lossless formats when they are 

encrypted. 

Analysis 

When compared to literature benchmarks, CHCA's encryption performance showcased its 

lightweight efficiency. Chen et al. (2022) reported higher encryption overheads (approximately 

+10%) due to computationally intensive methods like RSA and chaotic mapping. Similarly, 

Zhou et al. (2020) pointed out that in DNA-based encryption models, the overheads can be as 

high as +5% due to the additional difficulty in organizing the metadata. However, CHCA 

negative overheads for JPG formats and nearly zero overheads for PNG show that CHCA is 

more suitable for real life application where storage space taken up is very important. 

This analysis also shows that CHCA is efficient in attaining the right level of security and 

performance, and therefore appropriate in circumstances where cloud-based image systems 

need scalable and storage-efficient encryption. 

Test Case 3: Meta-Embedding Efficiency 

Objectives 

The third test case is to determine the percentage difference in file size between the original 

image and meta-embedded image. This metric measures the effectiveness of the final step of 

the CHCA framework which is the compression, encryption and meta-embedding of storage 

density for JPG and PNG. 
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Figure 7: Size compariosion of images. 

Results 

The meta-embedded images were smaller than the original for JPG images and the size 

difference was between -30% and -10%. The most significant savings were seen for the images 

which had even higher initial file sizes, proving the efficiency of the CHCA framework for 

image compression and encryption. On the other hand, PNG images had a small percentage 

difference of between -5% and 0%, which shows that there is not much that can be done in 

terms of size reduction in lossless compression formats especially after meta- embedding. 

Analysis 

The findings show how CHCA enhances the storage of JPG images based on the fact that the 

file size was reduced significantly even after the metadata was embedded. These findings 

corroborate the findings of Nugroho et al. (2023) to the extent that DWT-based compression 

can indeed help to compress file sizes in lossy formats. For PNG images, the minimum change 

is in line with Huang et al. (2022) where lossless formats focused on quality retention, hence 

minimal changes in size during meta-embedding. 

This test case proves that CHCA is capable of handling large file sizes in JPG formats and at 

the same time, does not compromise the quality of PNG images, making it very suitable for 

cloud storage systems where both size and quality are of utmost importance. 

 

 

Test Case 4: Performance Efficiency 

Objectives 

The fourth test case aimed to evaluate the CHCA framework's computational efficiency by 

comparing the processing and overall time for both JPG and PNG images. The processing time 

exclusively measured the operations executed in the cloud (compression, encryption, and 

meta-embedding). In contrast, the overall time included file upload time, compression time, 

encryption time, and the time to upload the processed file back to the AWS S3 bucket. 
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Figure 8: Processing time and Overall time comparison. 

 

Results 

The findings show that JPG images took less processing and overall time than PNG images in 

all the cases. In the case of JPG images, the time it took to process images in the cloud ranged 

between 2 to 3 seconds and the total time which included upload, compression, encryption and 

S3 storage was slightly higher. The samples of PNG images showed the highest values of 

processing and overall times and the increase of the size of the file added to the overall time 

and in some cases went to more than 15 seconds. 

 

Analysis 

The results also suggest that the CHCA framework is effective in reducing the processing and 

total time for JPG images particularly for real time services. The higher times observed for 

PNG images are due to the fact that images are lossless and so is the compression and 

encryption. But the results indicated that the CHCA framework can be scaled in both formats 

and that the performance did not decrease when the system is asked to perform concurrent 

processing tasks. This test case shows the ability of the proposed CHCA framework in 

assessing the performance in integrating cloud based work flows with minimal computation 

over head and quality degradation, especially for lossy formats such as JPG. It also supports 

the idea that the proposed framework is well fit for large scale and time sensitive cloud 

applications. 

 

7 Conclusion and Future Work 

The developed CHCA combines the 2D-DWT image compression algorithm with the SHA- 

Blowfish hybrid encryption system to solve the issues related to cloud storage optimization and 

data protection. The primary competence of CHCA involves the use of serverless computing 

and AWS Lambda for elasticity in the execution of the tasks with the use of resources. It also 

assists in managing many images that may be uploaded simultaneously, an aspect that cannot 

be achieved using the conventional cloud architecture to address different loads. The proposed 

CHCA approach also gives solutions for some of the limitations identified in the literature. It 

is different from the traditional methods where data compression and data encryption are done 

in different processes. CHCA combines them into one process, and this cuts down the 
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processing time by far. The SHA-Blowfish model ensures a encryption solution while at the 

same time having low computational complexity, good key management, and high throughput 

and security. Moreover, the use of meta-embedding for integrity checks reduces the use of 

reference files making the system more reliable. Lastly, the result shows that CHCA 

outperforms the other methods in terms of PSNR, SSIM and compression ratio in both JPG and 

PNG formats, indicating that the proposed method is more efficient and suitable for real cloud 

environment. It is also continuous and scales well, solves problems of scalability, speed of 

processing, and secure storage, which makes it a versatile solution for managing images in the 

cloud. 

Possible improvements for the following versions of the CHCA framework may involve 

expanding the coverage of formats that can be supported, for instance, TIFF and BMP for 

greater flexibility of the application domain. Improving the SHA-Blowfish encryption model 

could still enhance the processing times for large data set, especially for computationally 

intensive file format such as PNG. The use of deep learning-based compression methods may 

improve not only the level of compression, but also its scalability. 

It could enhance the resilience of the framework for the critical applications in case of 

integrating multi-cloud support. Also, it would allow the users to set up the personal 

preferences for the compression and security level which will expand its application area to 

such fields as the medical imaging, multimedia storage, and surveillance. All these 

enhancements would help to position CHCA as a more complete and easily implementable 

solution for secure cloud based image storage. 
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