~

“—-
\ National
College

Ireland

Configuration Manual

Benchmarking the Performance of Java Virtual Threads in
High-Throughput Workloads
Cloud Computing

Vishesh Pandita
Student I1D: x23184531

School of Computing
National College of Ireland

Supervisor: Yasantha Samarawickrama

National College of Ireland National

Project Submission Sheet Col]ege of
School of Computing Ireland

Student Name: Vishesh Pandita

Student ID: x23184531

Programme: Cloud Computing

Year: 2024

Module: Benchmarking the Performance of Java Virtual Threads in
High-Throughput Workloads

Supervisor: Yasantha Samarawickrama

Submission Due Date: 12/12/2024

Project Title: Configuration Manual

Word Count: 1274

Page Count:]

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature: Vishesh Pandita

Date: 12th December 2024

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). O
Attach a Moodle submission receipt of the online project submission, to | [J
each project (including multiple copies).
You must ensure that you retain a HARD COPY of the project, both for | [J
your own reference and in case a project is lost or mislaid. It is not sufficient to keep
a copy on computer.

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only
Signature:

Date:
Penalty Applied (if applicable):

1

Configuration Manual

Vishesh Pandita
x23184531

Introduction

This configuration manual describes in details the steps to implement and deploy the
benchmarking infrastructure to benchmark Java Virtual Threads in a safe and robust
environment that was proposed in the research.

This section provides a detailed description of the steps needed for development of the
benchmarking infrastructure. The main components of this infrastructure are AWS EC2
instances to deploy java applications and perform computations, Apache JMeter for load
testing and results recording, and VisualVM for profiling the java applications.

1.1

Pre-requisites

These pre-requisites are essential to perform this benchmarking:

AWS Account: An AWS Account with valid credentials is required. Valid TAM user
with permission to create and use EC2 instances with proper security groups.

Java: Every instance should have Java 214 as Virtual Threads were introduced in
Java 21.

Apache Jmeter: Familiarity with creating and applying load testing with the help
of Jmeter and recording results is essential.

VisualVM: Basic familiarity with profiling Java applications is needed. With the
help of VisualVM metrics like Memory usage and CPU utilization is calculated.

Text Editor: A text editor is needed to develop the applications that needs to be
tested. I have used Intellij IDEA for development on my java applications.

Build Tool: A build tool is needed to create and package Java applications into jar
files. I have used Maven in this project.

Creating AWS EC2 instances

Step 1: Log in to the AWS account and open AWS Management Console.
Step 2: Open EC2 Dashboard

Step 3: Click Launch instance.

e Step 4: Name the instance - Select Ubuntu Server 24..04 LTS -Select instance type
as t3.xlarge - Create or Select the Key pair login of type rsa.

e Step b: Select or create a security group with inbound ports of 22 and 8080 and
outbound for all.

e Step 6: now click on “Review and Launch”

e Step 7: After launching the instance you can ssh into the instance using command
”ssh -i "secretKey.pem” ubuntu@given-instance-name.amazonaws.com”

e Step 8: In the same way create a total of 5 instances.

EC2 > Instances > i-014bee170c0f988f6 ® B
Instance summary for i-014bee170c0f988f6 (vt-io-main-v2) o @ (Cconnect) ((instance state v) (CActions v)
Updated less than a minute ago
Instance ID Public IPv4 address Private IPv4 addresses
[0 i-014bee170c0f988f6 I0] 3.208.94.199 | open address [2 0 172.31.13.3
1PV6 address Instance state Public IPv4 DNS
- @© Running [0 ec2-3-208-94-199.compute-1.amazonaws.com

open address [2

Hostname type Private IP DNS name (IPv4 only)

IP name: ip-172-31-13-3.ec2.internal 0] ip-172-31-13-3.ec2.internal

Answer private resource DNS name Instance type Elastic IP addresses

1Pv4 (A) t3.large -

Auto-assigned IP address VPCID AWS Compute Optimizer finding

[E) 3.208.94.199 [Public IP] I0) vpc-046df064c7cfed267 [2 @ Opt-in to AWS Compute Optimizer for recommendations. |
Learn more [2

1AM Role Subnet ID Auto Scaling Group name

- I0) subnet-0561c3022f3f4348f [2 -

IMDSv2 Instance ARN Managed

Required [0 arn:aws:ec2:us-east-1:487685687837:instance/i-014bee17 | false
0c0fo88f6

Operator

3 Installing Apache Jmeter and VisualVM

These two applications should be installed in the local machine and they will connect
with the instance through network calls.

3.1 Apache JMeter
e Step 1: Update the system using "sudo apt update && sudo apt upgrade -y”

e Step 2: Install Java using "sudo apt install default-jre”

Step 3: Download Apache Jmeter using ”wget https://dlcdn.apache.org//jmeter /binaries/apache-
jmeter-5.4.1.zip”

Step 4: Unzip Jmeter using "unzip apache-jmeter-5.4.1.zip”

Step 5: Go into Jmeter directory using ”cd apache-jmeter-5.4.1/bin”

Step 6: Run Apache Jmeter using ”./jmeter” which should open it in GUI mode
as shown in the image.

00:00:36 /4K 0 0

Aggregate Report

Name:
Comments:
Time

hroughput Over Time Write re Read from file
- Connect Times Over Time isplay Only: [] Errors s p—

#Samples Average Median Min Maximum Eror% Throughput Sent KBy
HTTP Requ.

TOTAL

0.0:
0.03%

- Transactions per
48 Aggregate Report

Include group name n label? | S V| Save Table

.t.JMeterThre n Th 1
.t.IMet shed: Thread Group 1-
.t.JMeterThre f : Thread Group 1-8
.t.JMeterThread Thread Group 1-10
1-3
1
!
1
r

GG&EG

Thread
Thread Grou
MeterThread Thre
rThr read fin Th
andardJMeterEngine: Notifying test
MenuBar: setRunning(false, Lo

of end of

3.2 VisualVM
e Step 1: Update the system using ”"sudo apt update”
e Step 2: Install Visual VM using ”sudo apt install visualvm”

e Step 3: Run visualvm and it will open in GUI mode as shown in image.

Y VisualVM 2.1.10 1
=5 B HH S H
Applications | & dev.vishesh.vt_cpu_bound.VtC (pid 23236) X
5 Local ['3 Overview # Monitor | £3 Sampler
¥ visualvm
B Intellj IDEA (pid 10242) C dev.vishesh.vt_cpu_bound.VtCpuBoundApplication (pid 23236)
& org.apache jmeter.NewDriver (pid 21325) (il cPu Memory (@ Classes @ Threads
P2 dev.vishesh.vt_cpu_bound.VtCpuBoundApplication (pid 23236)
& orgjetbrains.jps.cmdline.Launcher (pid 23235) Uptime: <unknown> Perform GC Heap Dump
& Remote
55 VM Coredumps
CPU X | | Heap | Metaspace x
% JFR Snapshots P P
(] snapshots CPU usage: <unknown> y: <unknown> Used: -1B
&5 IdGeneratorApplication Virtual Threads L00%
&5 IdGeneratorApplication Platform Threads
80%-
60%-
40%:
20%
8:37:28.000pm 8:37:28.500pm 8:37:29.000pm 8:37:29.500pm 8:37:30.000pm).000am 1:00:00.500am 1:00:01.000am 1:00:01.500am 1:00:02.000am
E CPU usage B GC activity M Heap size M Used heap
Classes X Threads x
Total loaded: 0 Shared loaded: 0 Daemon: -1
Total unloaded: Shared unloade Total started
100 2
80
1
60-
40
0-
20

0 -1
00:00.000am 1:00:00.500am 1:00:01.000am 1:00:01.500am 1:00:02.000am 0:00.000am 1:00:00.500am 1:00:01.000am 1:00:01.500am 1:00:02.000am

D Total loaded classes H Shared loaded classes D Live threads HE Daemon threads

°

4 Create Application and Jar Files

e Step 1: Get the source code of all 5 application : vt-cpu-bound, thread-cpu-bound,
vt-main, thread-main and vt-blocker.

e Step 2: Update the system using command ”sudo apt update”.
e Step 3: Install Java in the system using ”sudo apt install default-jdk -y”

e Step 4: Download Maven using ”wget https://mirrors.estointernet.in/apache /maven/maven-
3/3.6.3/binaries/apache-maven-3.6.3-bin.tar.gz"

e Step 5: Unzip maven "tar -xvf apache-maven-3.6.3-bin.tar.gz”
e Step 6: Install maven using "mv apache-maven-3.6.3 /opt/”

e Step 7: Go into each application using ”cd project-name”

e Step 8: Create Jar for each project using "mvn clean package”

e Step 9: Now transfer the created Jar file to respective AWS EC2 instance us-
ing "rsync -avz —progress -e "ssh -i private-key.pem” jarFileName.jar ubuntu@ec2-
name.amazonaws.com:/home/ubuntu”

& vt-main [clean,package]:
Results:

--- (default-jar) @
Building jar: /Users/vishesh/coding/RIC/test-apps/io/vt-main/target/vt-main-0.0.1-SNAPSH

1
1
1
1
1
1
1
1
1
1

- (repackage) (@
1 Replacing main artifact /Users/vishesh/coding/RIC/test-apps/io/vt-main/target/vt-main-0.
1 The original artifact has been renamed to /Users/vishesh/coding/RIC/test-apps/io/vt-main

1 Total time: 3.279 s
] Finished at: 2024-12-11T722:50:19Z

Process finished with exit code 0

Setup on AWS EC2 Instances

)

e Step 1: Update the instances using ”"sudo apt update && sudo apt upgrade -y”.
e Step 2: Install Java on all the instances using ”"sudo apt install default-jdk”

e Step 3: REMOTE: Enable JMX on the remote JVM.Add the following parameters
to the JVM:
-Dcom.sun.management.jmxremote.port=9000
-Dcom.sun.management.jmxremote.ssl=false
-Dcom.sun.management.jmxremote.authenticate=false

e Step 4: REMOTE: Create a jstatd permissions file. Create a file named permis-
sions.txt with the following contents:
grant { permission java.security. AllPermission;} ;

e Step 5: REMOTE: Start jstatd. Run jstatd -J-Djava.security.policy=permissions.txt.
Leave this running while you monitor the JVM.

e Step 6: LOCAL: Open Visual VM.
e Step 7: LOCAL: Enable VisualVM to use the SSH tunnel.

In VisualVM, open menu: Tools — Options — Network
— Select Manual proxy settings

— Uncheck Use the same proxy settings for all protocols
Set SOCKS Proxy: localhost, Port: 10,000

e REMOTE: Get the IP Address of the server. Run ifconfig and generally you are
looking for the ip address after inet addr on ethO but it may vary.

e LOCAL: Add the Remote Host to VisualVM.

In VisualVM, open menu: File — Add Remote Host
Add the IP Address from the previous step

— Under Advanced Settings, remove the default jstatd connection
— Click OK
— Right-Click the new host and select “Add JMX Connection. . .”

— Enter the IP Address from the previous step with port 9000 as the connection.
This should look like: 10.0.0.1:9000.

— Click OK

— VisualVM should connect. You should now be able to monitor the remote
JVM.

6 Start Java Applications

e Start the Java Applications in every instance using
”java -Dcom.sun.management.jmxremote.port=9000
-Dcom.sun.management.jmxremote.ssl=false
-Dcom.sun.management.jmxremote.authenticate=false jarFileName.jar”

ubuntu@ip-172-31-13-3:~$ java -jar vt-io-main-v2.jar

s

dev.vishesh.vt_main.VtMainApplication Starting VtMainApplication v0.0.

1-SNAPSHOT using Java 21.0.5 with PID 1592 (/home/ubuntu/vt-io-main-v2.jar started by ubuntu in /home/ubuntu)

INFO dev.vishesh.vt_main.VtMainApplication No active profile set, falling b
ack to 1 default profile: "default"

INFO 0.s.b.w.embedded.tomcat.TomcatWebServer Tomcat initialized with port 808
0 (http)

INFO .apache.cat ndardService Starting service [Tomcat]

INFO .apach ndardEngine Starting Servlet engine: [Apache
Tomcat/10.1.31]

INFO .a .C.[Tomcat].[localhost].[/] Initializing Spring embedded Web
ApplicationContext

INFO s.c.ServletllebServerApplicationContext Root WebApplicationContext: init
ialization completed in 2717 ms

INFO 0o.s.b.w.embedded.tomcat.TomcatWebServer Tomcat started on port 8080 (htt
p) with context path '/'

INFO dev.vishesh.vt_main.VtMainApplication Started VtMainApplication in 5.5
38 seconds (process running for 7.42)

7

Stress Testing Using Apache Jmeter

Step 1: Launch the JMeter GUI.

Step 2: Add test plan elements.

Step 3: Load and save test plan elements.

Step 4: Configuring the Thread Group elements.

Step 5: Enter Number of Threads=100, Ramp-up Period=60, Duration=600.

Step 6: Create HT'TP Request in Thread Group. Enter Server Name=IP address
of EC2 instance, Port number=8080, HTTP request=GET, path="/test’.

Step 7: Run JMeter test plan.

BCEATVYEBE + -4 > LO® 8N > BB 00 Ao oo @ &

8

read Group Aggregate Report

#* HTTP Reques Nan Aggregate Report

s to file / Read from file

Median 90% Line
4
4

o
o
o
o
o
o
o
o
o
o
o
o
o
o

Track the metrics

Throughput and Latency will be tracked with Apache Jmeter and Memory usage and
CPU utilization will be tracked with VisualVM.

	Introduction
	Pre-requisites

	Creating AWS EC2 instances
	Installing Apache Jmeter and VisualVM
	Apache JMeter
	VisualVM

	Create Application and Jar Files
	Setup on AWS EC2 Instances
	Start Java Applications
	Stress Testing Using Apache Jmeter
	Track the metrics

