
Configuration Manual

MSc Research Project

Cloud Computing

Didheemose Pananchickal Sebastian
Student ID: x23176245

School of Computing

National College of Ireland

Supervisor: Sudarshan Deshmukh

www.ncirl.ie



National College of Ireland
Project Submission Sheet

School of Computing

Student Name: Didheemose Pananchickal Sebastian

Student ID: x23176245

Programme: Cloud Computing

Year: 2024

Module: MSc Research Project

Supervisor: Sudarshan Deshmukh

Submission Due Date: 12/12/2024

Project Title: Configuration Manual

Word Count: 738

Page Count: 8

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature: DIDHEEMOSE

Date: 11th December 2024

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). □
Attach a Moodle submission receipt of the online project submission, to
each project (including multiple copies).

□

You must ensure that you retain a HARD COPY of the project, both for
your own reference and in case a project is lost or mislaid. It is not sufficient to keep
a copy on computer.

□

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):



Configuration Manual

Didheemose Pananchickal Sebastian
x23176245

1 Introduction

This is the deployment configuration document of the self-adaptive federated learning sys-
tem for financial fraud detection. In the project, heterogeneity in resources, scalability,
and privacy in financial fraud detection are targeted by using the FL framework. This tu-
torial gives a detail of every step in order to configure, deploy, and execute the system
on cloud infrastructure.

2 Pre-Requisites

2.1 Software Requirements

• Python: Version 3.10.15

Figure 1: Python Version

• Libraries:

– kneed

– pandas

– seaborn

– tflite-runtime

– imbalanced-learn

– typing-extensions (upgrade)

– tensorflow-federated (upgrade)

– numpy

– flask

– tensorflow-federated (upgrade)

– typing-extensions (upgrade)

1



– jupyter

– tensorflow-model-optimization

Figure 2: Libraries

• Tools:

– Jupyter Notebook for testing and development.

– AWS EC2 Instance

2.2 Hardware Requirements

• Server EC2 Instance type: t3.2xlarge.

• Client EC2 Instances: Use 4 instances with different resources (eg. t3.2xlarge,
t2.micro).

2.3 Datasets

• Dataset Source: Kaggle Credit Card Fraud Detection dataset.

• Preprocessing: Handle class imbalance, scale features, and encode categorical vari-
ables.

3 Configuration Steps

3.1 Server Configuration

1. Launch an EC2 instance with the required specifications.

2. Connect to the EC2 instance using SSH client through system command line (eg.
Command prompt, Windows Powershell).

3. Create a python environment.

Figure 3: To Create Python Environment

2



4. Activate the environment.

Figure 4: To Activate Python Environment

5. Run the following commands to install Python and required libraries.

Figure 5: Python and Libraries

6. Set up the Flask server to communicate with clients for model and weights trans-
fering or upload the server configuration file (global.py file).

Figure 6: Server File Structure

3.2 Client Configuration

1. Launch 4 EC2 instances with the minium required Specifications.

2. Connect to the EC2 instance using SSH through system command line (eg. Com-
mand prompt, Windows Powershell).

3. Create a python environment.

4. Activate the environment.

5. Run the following commands to install Python and required libraries.

6. Place the dataset (.csv), jupyter file (.ipynb) and run benchmark.py specific to each
client on their respective instance.

3



Figure 7: Client File Structure

4 Execution Steps

4.1 Server Execution

1. Start the Flask server either from command line or through jupyter notebook (jupy-
ter notebook prefered) to handle client requests, pruning, quantisation and weights
aggregation.

Figure 8: To Start Flask Server

2. Ensure the server is listening on the correct port (eg. 5000).

Figure 9: Server listening on port 5000

3. The server aggregates client weights using Federated Averaging (FedAvg).

4. Update the global model and send it back to the clients for further training.

4



4.2 Client Execution

1. Start the jupyter notebook (port number should be different for each client)

Figure 10: Command to Start Jupyter Notebook

2. Access the jupyter notebook on browser (eg. localhost:8883/tree).

3. Execute the (.ipynb) script on each client to trains the local model and save weights
in (.h5) format.

4. Upload weights to the server using the /upload weights endpoint.

Figure 11: Weights Uploading

5. Ensure the script includes necessary changes for unique client IDs and datasets (eg.
client 1.ipynb, client 1.csv)

4.3 Benchmarking

1. Run the run benchmark.py script on each client to determine computational and
network capabilities

Figure 12: Benchmarking

2. Upload benchmark results to the server for classification and appropriate model
adjustments.

5



Figure 13: Example of Benchmark Results

5 Adaptive Techniques

5.1 Pruning and Quantization

1. Enable pruning to reduce model complexity by eliminating less important weights
for low-resource clients based on client benchmark results..

2. Apply quantization to optimize resource utilization for medium resource clients
based on client benchmark results.

5.2 Client Classification

Use benchmark results (e.g., cpu time, memory) from the run benchmark.py script to
classify clients.

• High Capacity: Full model.

• Medium Capacity: Pruned model (30%).

• Low Capacity: Pruned and quantized model.

5.3 Communication

Clients fetch the updated model from the server using the /get model endpoint, which
provides the best-suited model based on their classification.

Figure 14: Example of /get model endpoint

6



6 System Architecture

• Server - Client Interaction:

– Clients runs a benchmark test and request for updated model from server by
passing benchmark results.

– The server check the client resource to check whether the Pruning and Quant-
ization required or not before sending the model.

– Clients loads the model received server and train locally and share weights
with the server through HTTP request.

– The server aggregates and redistributes the global model for next training
round.

Figure 15: Federated Learning System Architecture

6.1 Results Verification

1. Evaluate model performance using:

• Accuracy, Precision, Recall, and F1 Score.

• Confusion Matrix: Compare True Positives, False Positives, etc.

2. Resource usage: Monitor CPU, memory, and network bandwidth.

7



6.2 Troubleshooting

Table 1: Troubleshooting

Issue Solution
Benchmark results not transmitted correctly Verify the network connection and server URL.
Model not updated on the server Ensure all clients upload weights successfully.
High resource usage on clients Use pruning and quantization.
Flask server fails to start Confirm Python and Flask installation.

7 Additional Notes

1. Endpoints:

• /upload weights: To upload client weights.

• /get model: To fetch updated model based on benchmarks.

2. System Logs:

• Monitor the server logs for weight aggregation status.

• Ensure no missing client uploads before aggregation.

8


	Introduction
	Pre-Requisites
	Software Requirements
	Hardware Requirements
	Datasets

	Configuration Steps
	Server Configuration
	Client Configuration

	Execution Steps
	Server Execution
	Client Execution
	Benchmarking

	Adaptive Techniques
	Pruning and Quantization
	Client Classification
	Communication

	System Architecture
	Results Verification
	Troubleshooting

	Additional Notes

