

Configuration Manual

MSc Research Project

Cloud Computing Group B

AKILESH PALANIVELU
Student ID: 23109831

School of Computing

National College of Ireland

Supervisor: SHREYAS SETLUR ARUN

National College of Ireland
Project Submission Sheet

School of Computing

Student Name: Akilesh Palanivelu

Student ID: 23109831

Programme: MSc in Cloud Computing
Year: 2023

Module: MSc Research Project

Supervisor: Shreyas Setlur Arun

Submission Due Date: 03/01/2025

Project Title: Configuration Manual

Word Count: 2000
Page Count: 11

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature: AKILESH PALANIVELU

Date: 3rd January 2025

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). □

Attach a Moodle submission receipt of the online project submission, to
each project (including multiple copies).

□

You must ensure that you retain a HARD COPY of the project, both for
your own reference and in case a project is lost or mislaid. It is not sufficient to keep
a copy on computer.

□

Assignments that are submitted to the Programme Coordinator office must be placed

into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

1

Configuration Manual

Akilesh Palanivelu

 23109831

1 Introduction

This manual details the configuration and setup process for addressing latency issues in
cloud gaming. Due to technical limitations with AWS account support, the proposed
Virtual GPU (VGPU) server and edge server were not feasible. As a workaround, the
VGPU server concept has been replaced with a cloud EC2 instance, and the edge server
has been substituted with a local setup.

2 Technologies Used

The game was developed using the following technologies:

• HTML

• JavaScript

2.1 Game Description

The game is a simple block-based game where the block can be moved using the arrow
keys. The primary file is index.html, and the code remains consistent across three
environments:

1. Local Setup

2. EC2 Instance with Built-in Flask Server

3. EC2 Instance with Gunicorn Server

2

3 Architecture Overview

Figure 1: System Architecture Overview

Figure 1 illustrates the overall system architecture, highlighting the interactions between
the local setup, EC2 instances, Flask server, Gunicorn server, and Prometheus for mon-
itoring.

3

4 Game Code

Figure 2: Frontend Code (index.html)

5 Flask Application

5.1 app.py

The Flask backend responsible for receiving and exposing metrics is detailed below:

4

Figure 3: Flask Backend Code (app.py)

6 Setup Instructions

6.1 Running the Game

Execute the following command to serve index.html in all three environments:

python -m http.server 8000

6.2 Setting Up the Flask Server

1. Install Required Packages:

pip install flask flask-cors prometheus-client

2. Run the Flask Application:

set FLASK_APP=app.py
flask run

6.3 Setting Up Prometheus

1. Download Prometheus:

https://prometheus.io/download/

5

- Download the Windows version.

2. Configure Environment Variables: - Add the Prometheus folder to your sys-
tem’s environment variables.

3. Update prometheus.yml: Replace the existing configuration with the following:

Listing 1: prometheus.yml

my g l o b a l c o n f i g
g l o b a l :

s c r a p e i n t e r v a l : 15 s # Set the scrape i n t e r v a l to every 15 seconds .
Default i s every 1 minute .

e v a l u a t i o n i n t e r v a l : 15 s # Evaluate r u l e s every 15 seconds .
Default i s every 1 minute .

s crape t ime o ut i s s e t to the g l o b a l d e f a u l t (10 s) .

Alertmanager c o n f i g u r a t i o n
a l e r t i n g :

a lertmanagers :
- s t a t i c c o n f i g s :

- t a r g e t s :

− alertmanager : 9093

Load r u l e s once and p e r i o d i c a l l y e valuate them accord ing
to the g l o b a l ’ e v a l u a t i o n i n t e r v a l ’ .
r u l e f i l e s :

− ” f i r s t r u l e s . yml”
− ” s e c o n d r u l e s . yml”

A scrape c o n f i g u r a t i o n c o n ta in in g e xa c t ly one endpoint
to scrape : Here i t ’ s Prometheus i t s e l f .
s c r a p e c o n f i g s :

The job name i s added as a l a b e l ‘ job=<job name >‘ to
any t i m e s e r i e s scraped from t h i s c o n f i g .
- job name : ” prometheus ”

s t a t i c c o n f i g s :

- t a r g e t s : [” l o c a l h o s t : 9 0 9 0 ”]

Flask app c o n f i g u r a t i o n

- job name : ” f l a s k a p p ”
s c r a p e i n t e r v a l : 5 s # Scrape Flask app me tr ics every

5 seconds
s t a t i c c o n f i g s :

- t a r g e t s : [” 1 2 7 . 0 . 0 . 1 : 5 0 0 0 ”]

4. Run Prometheus:

prometheus.exe --config.file=prometheus.yml

6

5. Verify Targets: - Navigate to http://127.0.0.1:9090/targets to check the
status of targets.

6. Query Variables on Prometheus Dashboard: - frame rate - input latency
- response time

7 Deployment on EC2 Instances

7.1 Local Setup

• Game URL: http://127.0.0.1:8000

• Metrics URL: http://127.0.0.1:5000/metrics

• Prometheus URL: http://127.0.0.1:9090/query

7.2 EC2 Instance with Built-in Flask Server

• Game URL: http://3.110.119.8/

• Metrics URL: http://3.110.119.8:5000/metrics

• Prometheus URL: http://3.110.119.8:9090/query

7.3 EC2 Instance with Gunicorn Server

• Game URL: http://65.1.130.2:8000/

• Metrics URL: http://65.1.130.2:5000/metrics

• Prometheus URL: http://65.1.130.2:9090/query

7.4 Setting Up Prometheus on EC2 with Gunicorn

1. Download Prometheus:

wget https://github.com/prometheus/prometheus/releases
/download/v3.0.1/prometheus-3.0.1.linux-amd64.tar.gz

2. Extract the Archive:

tar -xvzf prometheus-3.0.1.linux-amd64.tar.gz
cd prometheus-3.0.1.linux-amd64

3. Update prometheus.yml: Replace the existing configuration with the following:

http://127.0.0.1:9090/targets
http://127.0.0.1:8000/
http://127.0.0.1:5000/metrics
http://127.0.0.1:9090/query
http://3.110.119.8/
http://3.110.119.8:5000/metrics
http://3.110.119.8:9090/query
http://65.1.130.2:8000/
http://65.1.130.2:5000/metrics
http://65.1.130.2:9090/query

7

Listing 2: prometheus.yml

my g l o b a l c o n f i g
g l o b a l :

s c r a p e i n t e r v a l : 15 s # Set the scrape i n t e r v a l to every 15 seconds .
Default i s every 1 minute .

e v a l u a t i o n i n t e r v a l : 15 s # Evaluate r u l e s every 15 seconds .
Default i s every 1 minute .

s crape t ime o ut i s s e t to the g l o b a l d e f a u l t (10 s) .

Alertmanager c o n f i g u r a t i o n
a l e r t i n g :

a lertmanagers :

- s t a t i c c o n f i g s :
- t a r g e t s :

− alertmanager : 9093

Load r u l e s once and p e r i o d i c a l l y e valuate them accord ing
to the g l o b a l ’ e v a l u a t i o n i n t e r v a l ’ .
r u l e f i l e s :

− ” f i r s t r u l e s . yml”
− ” s e c o n d r u l e s . yml”

A scrape c o n f i g u r a t i o n c o n ta in in g e xa c t ly one endpoint
to scrape : Here i t ’ s Prometheus i t s e l f .
s c r a p e c o n f i g s :

The job name i s added as a l a b e l ‘ job=<job name >‘ to
any t i m e s e r i e s scraped from t h i s c o n f i g .
- job name : ” prometheus ”

s t a t i c c o n f i g s :

- t a r g e t s : [” l o c a l h o s t : 9 0 9 0 ”]

Flask app c o n f i g u r a t i o n

- job name : ” f l a s k a p p ”
s c r a p e i n t e r v a l : 5 s # Scrape Flask app me tr ics every

5 seconds
s t a t i c c o n f i g s :

- t a r g e t s : [” 1 2 7 . 0 . 0 . 1 : 5 0 0 0 ”]

8 Environment Details

8.1 Local Setup

• Game URL: http://127.0.0.1:8000

• Metrics URL: http://127.0.0.1:5000/metrics

• Prometheus URL: http://127.0.0.1:9090/query

http://127.0.0.1:8000/
http://127.0.0.1:5000/metrics
http://127.0.0.1:9090/query

8

8.2 EC2 Instance with Built-in Flask Server

• Game URL: http://3.110.119.8/

• Metrics URL: http://3.110.119.8:5000/metrics

• Prometheus URL: http://3.110.119.8:9090/query

8.3 EC2 Instance with Gunicorn Server

• Game URL: http://65.1.130.2:8000/

• Metrics URL: http://65.1.130.2:5000/metrics

• Prometheus URL: http://65.1.130.2:9090/query

9 Rationale for Environment Setup

Figure 4: AWS EC2 Instances Dashboard

9.1 Purpose of Three Environments

Three distinct environments were created to simulate different server configurations and
analyze their impact on game performance metrics:

1. Cloud EC2 Instance with Built-in Flask Server: Acts as the VGPU server.

2. Local Setup: Functions as the edge server.

3. Cloud EC2 Instance with Gunicorn Server: Integrates the edge server with
the VGPU server.

http://3.110.119.8/
http://3.110.119.8:5000/metrics
http://3.110.119.8:9090/query
http://65.1.130.2:8000/
http://65.1.130.2:5000/metrics
http://65.1.130.2:9090/query

9

9.2 Observations

Initial tests indicated that the EC2 instance with the built-in Flask server exhibited lower
frame rates and higher response times compared to the local setup. This highlighted
potential areas for optimization.

10 Recommendations for Reducing Latency

Based on the observations, the following suggestions are proposed to mitigate latency
issues:

1. Reduce Network Latency:

• Utilize cloud regions closest to users to minimize network latency. For this
project, the Mumbai server was selected.

2. Optimize Flask Application:

• Deploy a production-ready web server such as Gunicorn or uWSGI instead of
relying on Flask’s built-in development server.

11 Conclusion

This configuration manual outlines the setup and deployment process for addressing
latency issues in cloud gaming through the use of local and cloud-based servers, Flask
for backend metrics handling, and Prometheus for monitoring. By implementing the
recommended optimizations, further reductions in latency and improvements in game
performance metrics can be achieved.

