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PID control based Cluster Autoscaling for Kubernetes

Sagar Padhi
x21245673

Abstract

Containerized cloud based microservices are deployed using Kubernetes frame-
work in recent approaches in the industry. Kubernetes offers in-built autoscaling
tools like the Horizontal Pod Auto-scaler and Vertical Pod Auto-scaler for provision-
ing resources based on demand. This research proposes a Control-based autoscal-
ing method implementing the Proportional, Integral and Derivative control theory
(PID).the PID control logic is used to address the dynamic resource allocation in
an efficient approach. In this research the scaling requirement and decision is ag-
gregated by analysing CPU utilization ,Memory Utilization and Error requests. By
passing these metrics into the PID control loop to obtain a stable value for autoscal-
ing the hardware. Kubeadm and terraform are used for deployment and the achieve
horizontal and vertical scaling. This research highlights the potential of the PID
Auto-scaler to achieve better scaling performance in container based microservices
by achieving better cost-effectiveness , response-time and performance. In Future
the PID control logic can be implemented on various other metrics together or in-
dividually on any number of metrics then calculate an aggregated mean, later the
scaling output can be further refined by applying advanced mean models to obtain
more stable and effective results.

1 Introduction

A key technology in modern day cloud environment is containerization, which makes light-
weight virtualization possible and makes it easier to use microservices-based designs. Ap-
plications can remain scalable in dynamic workloads with the help of containers, that are
controlled by orchestration platforms like Kubernetes. The com- plexity of containerized
environments, makes it extremely difficult to optimize resource allocation while maintain-
ing system stability and cost effectiveness.Scaling technologies that are commonly used
are Kubernetes’ Horizontal Pod Autoscaler (HPA) and Vertical Pod Autoscaler (VPA).
But these native autoscalers frequently have trouble keeping up with changes in workload,
which results in poor use of resources and higher operat- ing costs.To improve autoscaling
capabilities, recent developments have placed a major focus on combining control theory
with predictive models |Garces et al.| (2020). The capacity of proportional- integral-
derivative (PID) controllers to dynamically modify resource allocations depend- ing on
real-time measurements has made them popular among these. In order to overcome the
drawbacks of current autoscalers, this research presents a PID-based autoscaling archi-
tecture for Kubernetes environments. The suggested system dynamically scales container
workloads by using measures like CPU utilization and request error, reducing the waste
of resources while maintaining application performance. This report’s next sections offers



a examination of the PID-based autoscaling system’s development, deployment, and as-
sessment, emphasizing how it could improve resource management in containerized cloud
settings.

2 Related Work

Two helpful autoscaling features that are part of Kubernetes are the Vertical Pod Auto-
scaler (VPA) and the Horizontal Pod Autoscaler (HPA). These solutions modify resource
allocations based on variables like CPU and memory utilization to guarantee that applic-
ations scale according to workload requirements. These autoscalers work well in simple
situations, but they don’t measure up other metrics, including error rates, latency, or
specific application requirements that are taken into consideration in [Tran et al. (2022).
The drawbacks of native solutions, such as HPA and VPA, have been addressed by new
techniques brought about by recent developments in Kubernetes auto-scaling |Senjab et al.
(2023)).These innovative techniques aim to improve the performance, maximize resource
use, and increase scalability of containerized applications.

2.1 State-of-the-Art Techniques in Container Scaling

Recent research on Kubernetes auto-scaling have developed techniques that overcomes
the limitations of HPA and VPA. These new methods aim to increase containerized
applications’ performance, optimize resource usage, and enhance scalability. Machine
learning techniques are used by Al-based auto-scaling systems to examine workload
trends and forecast resource needs.As mentioned in Xing et al. (2019) the systems pro-
actively allocate resources by forecasting future demands, which lowers latency and en-
hances system responsiveness during sudden spikes in workload. Neural network and
reinforcement learning-based frameworks have the potential to handle difficult scaling
situations.Predictive auto-scaling frameworks use historical data and real-time metrics to
estimate resource requirements with accuracy. This enables proactive scaling strategies,
ensuring that workload increases may be handled by the system without over-provisioning
its resources as cited in |Pahl et al.| (2019)

CPU and memory utilizaton measurements are basic metrics that many Kubernetes
scaling techniques use.state-of-the-art techniques enables the scope by including application-
specific measurements like latency, error rates, and request throughput. These custom
measurements help adjust scaling decision with application execution objectives by giv-
ing a more optimized scaling strategy.To obtain scaling decisions further, some methods
use feedback loops and control theory principles like PID-based control systems. These
mechanisms dynamically adjust scaling parameters based on real-time system behaviour,
ensuring stable and efficient scaling.

2.2 Comparative Analysis of Auto-Scaling Techniques

In containerized systems, the variety of auto-scaling techniques shows approach to op-
timize resource management. These techniques focus on factors like operational stability,
cost reduction, resource efficiency, and responsiveness. This section explains key methods
and offers a comparative evaluation of their advantages and disadvantages. The devel-
opment of container-based auto-scaling methods demonstrates new methods to improve
system performance and maximize utilization of resources in cloud-native environments.



Kubernetes container scaling has seen a variety of developments, from native solutions
like Vertical Pod Auto-scaler (VPA) and Horizontal Pod Autoscaler (HPA) to more cre-
ative approaches combining control theory and machine learning. In [Beltre et al.| (2019)
Simple indicators like CPU and memory usage are the foundation of native Kubernetes
auto-scalers, which provide simplicity but little flexibility for complicated workloads. By
combining historical usage patterns and predictive algorithms, recent approaches—Ilike
resource-aware frameworks like RUBAS—improve scaling precision{Senjab et al.| (2023)
research from 2023 shows that customized metrics improve user experience, help with scal-
ing decisions, and match resource allocation to the needs of particular applications.These
methods increase operational complexity by requiring complex analytics and strong real-
time monitoring.

Long Short-Term Memory (LSTM) networks and other machine learning models are
used in adaptive Al strategies to predict resource demands and traffic patterns. Machine
learning algorithms are used in adaptive Al-based methods to forecast the demand for re-
sources. in Xing et al.| (2019)the ability of Long Short-Term Memory (LSTM) neural net-
works to understand sequential data, such as workload patterns, makes them frequently
utilized. These methods predict traffic surges before they happen, which lowers latency
and prevents over-provisioning. Research shows that Al-based scaling frameworks signi-
ficantly improve cost-efficiency and reaction times.By proactively scaling resources, these
strategies lower latency and avoid over-provisioning.In order to make accurate scaling
decisions, predictive auto-scaling uses historical data. Frameworks based on time-series
analysis models, such as ARIMA or Prophet,are able to anticipate workload patterns
and distribute resources in advance.,Joshi et al.| (2024 Because these frameworks rely on
historical patterns, they may perform poorly during unexpected traffic surges yet well in
settings with predicted workload changes. Compared to standard techniques that just
consider CPU or memory utilization, incorporating specific metrics such as latency, error
rates, and request volumes into scaling decisions offers a more efficient approach. Like in
Xing et al.|(2019) latency-aware scaling frameworks prioritize ensuring optimal response
times to enhance user experience. However, these methods require real-time monitoring
and complex metric monitoring, which can make operations more complicated.This ap-
proach achieves up to 15% better resource utilization but introduces slight computational
overheads. As noted by [Senjab et al. (2023)), such methods are ideal for environments
with predictable workload trends but struggle with abrupt spikes .

To achieve effective resource optimization, hybrid approaches combine vertical scaling
(adjusting the number of pods) with horizontal scaling (modifying resource allocations per
pod).InBurroughs et al.| (2021]), This dual strategy provides flexibility and efficiency while
managing a variety of workload patterns. While its potential, hybrid scaling requires co-
ordination between the two scaling processes and complicated deployment.The difficulties
of dynamic workloads in containerized settings are addressed by the twin strategy of com-
bining resource optimization with rapid scaling. This approach guarantees that programs
may adjust to changing demands while preserving effective resource usage by utilizing
both horizontal and vertical scaling techniques. In addition to improving system speed,
this well-rounded approach offers a scalable framework for microservices systems.

However, by employing time-series models to analyze past trends, Predictive Auto-
Scaling inBurroughs et al.| (2021) the system performs exceptionally well in settings with
recurring workloads. Although it works well for consistent patterns, its unpredictable
nature makes it necessary to use other strategies to manage traffic spikes.In |(Chang et al.
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Figure 1: Comparative analysis of container based Auto-scaling techniques




(2017)by including application-specific data, like latency and error rates, into scaling de-
cisions, metrics-driven scaling adds an extra level of accuracy. Although it requires strong
and real-time monitoring capabilities, this improves the end-user experience cited in . In
Shelar (2019) by combining horizontal and vertical scaling techniques, hybrid scaling
strikes a balance between resource efficiency and speed. Although in |Medel et al.| (2018))
this dual method necessitates complex implementation and coordination between scaling
systems, it is especially appropriate for mixed workloads.PID-Based Scaling is ideal for
workloads with varying demand since it stabilizes scaling processes and avoids oscilla-
tions thanks to feedback control techniques. However, precise parameter adjustment is
important for maximizing its effectiveness. Medel et al.| (2018)introduces container mi-
gration and dynamic allocation mechanisms to solve inefficiencies in Kubernetes’ native
VPA. Although a little resource-intensive, it is a reliable option for resource-intensive
cloud environments because it increases overall utilization and lowers pod restarts.

The table [I| shows the importance of intelligent and hybrid scaling solutions that
reduce the limitations of current approaches while combining their advantages. The
proposal of an adaptive, PID-driven scaling model that maximizes resource consump-
tion and improves operational stability is based on these observations.The analysis of
different approaches shown in |Deshpande| (2021) have advantages and disadvantages of
each of them. Although they provide significant computing demands, adaptive Al-based
techniques perform exceptionally well in extremely dynamic contexts. While predictive
frameworks function well with consistent workloads, they struggle with irregular traffic.
Although it makes implementation more difficult, custom metric integration improves pre-
cision. Although stable, PID-based scaling needs to be carefully adjusted to avoid either
overscaling or underscaling. It is clear from the analysis that no one approach performs
better in every situation. Although it requires a lot of processing power, adaptive Al-
based scaling provides better responsiveness. While predictive frameworks are stable for
routine workloads, they break down when demand is erratic. Although they successfully
combine strengths, hybrid techniques can be difficult to implement. Although RUBAS
has small operating overheads, it shows notable gains in resource allocation efficiency.

2.3 Impact of Variables and Metrics in Scaling

Decisions on auto-scaling in containerized settings depend on accurate monitoring and
analysis of metrics. Cost-effectiveness, excellent application performance, and resource
efficiency are ensured by selecting the appropriate variables. This section reviews the
important metrics that affect scaling choices, as well as the difficulties in choosing and
applying them as mentioned in |Joyce and Sebastian| (2023))

The most often monitored metric for scaling choices is CPU usage. Increased work-
loads are frequently indicated by increased CPU consumption, which calls for more re-
sources.According to studies, the choice of only CPU measurements may result in over-
scaling during temporary traffic surges, which may unnecessarily increase costs|Joyce and
Sebastian| (2023).For instance, the Horizontal Pod Autoscaler (HPA) in Kubernetes uses
CPU utilization levels to determine default scaling Balla et al. (2020)).Memory utiliza-
tion measurements are important for scaling memory-intensive systems, including data
processing pipelines. According to Nguyen et al. (2020), improper memory scaling can
lead to inefficient under-utilization of allocated resources or out-of-memory issues.For
applications that interact with users, latency monitoring is important. In order to main-



tain Service Level Agreements (SLAs), longer response times indicate the requirement
for more resources.For example, latency measurements are included into metrics-driven
scaling strategies to guarantee quick response times during periods of high demand |Jahan
et al. (2020).

Throughput, defined as the rate of data processing or requests handled, is a vital met-
ric for scaling batch processing systems and real-time streaming applications.Predictive
scaling based on past workload patterns is frequently necessary to maintain consist-
ent throughput Zhang et al. (2019) and Wei-guo et al. (2018]).Beyond typical resource
monitoring, custom application metrics like error rates or queue lengths offer important
data.For example, in event-driven systems where asynchronous message processing drives
workload surges, queue length metrics are essential (RUBAS, 2019).

Over- or under-scaling may result from choosing the incorrect metric. For example
in |Joseph and Chandrasekaran| (2020) , focusing only on CPU use may fail to identify
bottlenecks brought on by I/O activities or network limitations.Although fine-grained
metrics increase the accuracy of scaling, they also demand additional resources for ana-
lysis and monitoring.high-frequency latency metric monitoring may result in additional
overhead and affect system performance.In |Jahan et al.| (2020)) decisions about scaling
depend on real-time data, yet response may be decreased by processing and metric ag-
gregation delays.Kubernetes’ metrics server updates every 15 seconds, which might not
adequately record sudden spikes in workload.

While numerous auto-scaling strategies have significantly improved resource allocation
in Kubernetes and containerized environments, several limitations persist. This section
identifies these gaps and proposes a framework that integrates the strengths of existing
methods with a PID-based approach for enhanced scaling efficiency and precision.

Gaps in Current Auto-Scaling Techniques

Many techniques rely on reactive scaling, responding to metrics after thresholds are
breached. This delay can lead to resource wastage or degradation of application per-
formance during surges in workloads |Aderaldo et al. (2019). The Kubernetes Horizontal
Pod Autoscaler (HPA) reacts to CPU or memory spikes, which may not align with the
actual application needs during latency-sensitive operations Deshpande, (2021) . While
most auto-scaling algorithms focus on CPU and memory utilization, they fail to incorpor-
ate critical application-specific metrics such as latency, error rates, or I/O bottlenecks.
RUBAS enhanced Kubernetes Vertical Pod Autoscaler (VPA) by introducing resource
migration, but still struggled to account for latency metrics Mulubagilu Nagaraj| (2020))
. Combining horizontal and vertical scaling provides robust solutions but remains com-
plex to implement. Current hybrid models often lack adaptability to diverse workload
patterns. The hybrid model in RUBAS showed improvements but faced challenges in bal-
ancing rapid scaling with resource optimization Balla et al. (2020) . Adaptive methods,
particularly those leveraging AI/ML, often incur high computational and financial costs
during training and real-time analysis. Such overheads are unsuitable for cost-sensitive
applications.Example: Al-based frameworks demonstrated improved performance, but

required significant resources for model training and inference Mavridis and Karatzal
(2017).



3 Methodology

This section explains a structured methodology to design and evaluate a PID-based auto-
scaling mechanism for Kubernetes based container environments.The limitations of ex-
isting scaling techniques are addressed and the research focuses on combining diffrent
dynamic metric-driven scaling with theoretical and experimental approach. The meth-
odology is supported by prior research, as mentioned in the related work, and aims
to propose a novel and adaptive solution to resource management.The experiments are
conducted in a controlled Kubernetes cluster environment, which is used as a testing
enviroment for real-time scenarios. The infrastructure includes Docker as contianer ser-
vice and Kubernetes version 1.24 with 2 node cluster deployed on a cloud platform.CPU
Utilization-Captures workload intensity and acts as a primary scaling variable.Request
Latency (ms) means user experience and system responsiveness.Error Rate ensures reli-
ability and identifies bottlenecks.To ensure consistency in scaling calculations, all metrics
are normalized within predefined thresholds. The PID control mechanism formed the core
of the autoscaler. It calculates scaling decisions by dynamically adjusting resources based
on real-time deviations from target values

Proportional Term (P)calculates as the difference between observed and target values.
Integral Term (I) adds the error correction over time to address continious deviations.
Derivative Term (D) Reacts to sudden workload fluctuations to stabilize the system.

de(t)
dt

t
PID Output = K, - e(t) + K - / e(r)dr + K, -
0
P =K, et)

t
I =K; / e(r)dr
0
de

(t)
dt

D=K,-

Scaling_Action = ceil(PID_Output)

Joshi et al.| (2024)) An important development in adaptive resource management is the
integration of Proportional-Integral-Derivative (PID) control logic into Kubernetes” auto-
scaling algorithms. Current autoscaling techniques, such the Horizontal Pod Autoscaler
(HPA), mostly use threshold-based rules, which might result in scaling decisions that
are reactive and occasionally ineffective. By continuously modifying scaling operations
in response to real-time system performance measurements, the PID controller, on the
other hand, provides a more advanced method.

This control signal is translated into accurate changes in the number of active pods
in Kubernetes autoscaling, allowing the system to react dynamically to variations in
workload.PID control’s use in container orchestration has been investigated in recent
research. In [Shelar| (2019)to estimate resource use and maintain desired performance
levels the PID approach combines PID control with predictive analysis using the Auto-
Regressive Integrated Moving Average (ARIMA) model.Shelar (2019) Comparing this
technique to conventional threshold-based techniques, it has been shown to enhance re-
sponse times and CPU utilization.The ability of PID control to offer a balanced and



flexible response to fluctuating workloads is what makes its integration with Kubernetes
autoscaling more effective. The PID-based method improves system stability and re-
source efficiency by continuously tracking performance measures and making real-time
resource adjustments.Each metric is assigned PID parameters (Kp, Ki, and Kd) that
are iteratively tuned to achieve a balance between scaling speed and system stability.
The aggregated PID outputs determined the required number of pods for scaling up or
down.The methodology includes simulation of dynamic workload patterns in form of ap-
plication image replica to evaluate the adaptability of the proposed method.To achieve
stability and precision in scaling decisions, the PID control loop has to include the pre-
vious error term. The procedure makes sure that the derivative component responds
proportionately to the rate of change in the observable metrics by storing and using the
most recent error value. By using an iterative feedback mechanism, the autoscaler may
predict workload patterns and avoid oscillation or overcorrective behavior. Additionally,
the loop maintains error evaluation continuity, allowing the integral term to gradually
correct for persistent deviations. As a result, the PID controller keeps a responsive and
balanced response, making sure that resource allocation closely matches real-time de-
mands while reducing unnecessary scaling operations.

METRICS COLLECTION C P=Kp*

) g - e(t) Calculation e(t)
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I
Ci I=Ki=
fe(t) dt

¥
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D
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—
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Figure 2: PID logic loop

The Auto-scaler logic computes a scaling output as shown in Fig[2 in by passing
the metric value obtained into the Kp term first calculating the proportional term by
comparing it with a predefined threshold value set prior. The same is done with other
metrics as well but the error calculated at kp is stored to use in the next iteration as a
previous error. this acts as a stabilizer for the scaling output preventing it from generating
skewed results.



Static Workloads- Baseline tests with consistent workload levels to measure resource
efficiency. Dynamic Workloads- Simulated traffic spikes and drops to assess respons-
iveness. Hybrid Workloads- Periodic and random workload changes combined to test
scalability and stability under complex conditions in Burroughs et al. (2021) following
that, the collected data is subjected to detailed analysis to evaluate the performance
of the PID-based autoscaler. Key performance indicators (KPIs) included .Time taken
for scaling decisions to be executed and reflected in cluster performance. Efficiency of
resource allocation in maintaining target performance levels. Frequency of scaling oscil-
lations, indicates stability.Statistical analysis tools were used to compare results across
scenarios just like in Baresi et al. (2021)), highlighting the effectiveness of the proposed ap-
proach. Several challenges are encountered during the research like sudden metric spikes
impacted scaling precision. This was resolved using moving averages and smoothing tech-
niques.Identifying optimal PID values required multiple iterations to balance stability of
the Auto-Scaler logic.Scenarios with extremely low or high workloads resulted in the im-
plementation of thresholds to prevent excessive scaling actions.The proposed methodology
provides a framework for developing and validating a PID-based autoscaling mechanism
in Kubernetes clusters. By using real-time metrics and adaptive control logic the goal
is to optimize resource allocation, enhance responsiveness, and ensure reliability under
dynamic workloads.

4 Design Specification

The design specification describes the entire architecture for implementing a custom auto-
scaling mechanism in Kubernetes based container environments that is based on PID.
This design includes essential tools and technologies to guarantee application perform-
ance under dynamic workloads and achieve effective resource utilization and smooth
execution of the auto scaling operation.

4.1 Infrastructure Setup

EC2 t2.medium instances are used as the worker nodes and control plane in the Kuber-
netes cluster, which is hosted on Amazon Web Services (AWS). These instances offer a
balance between processing power and cost-effectiveness, their configuration of two vir-
tual CPUs and four gigabytes of RAM these requirements are needed for kubernetes
framework to run. To ensure fault tolerance and high availability, the worker nodes and
control plane are placed in the same availability zones. Terraform is used to provide
and manage the EC2 instances, allowing for faster infrastructure deployment and easy
integration in the auto scaling logic.The collected metrics are forwarded to Prometheus,
which serves as the central monitoring and metrics aggregation system. Prometheus
ensures that metrics from all nodes are consistently available for analysis for this case
Prometheus is setup on the same server as the control plane but this can be implemented
on a separate server focused on metrics collection.Every worker node in the Kubernetes
cluster has a lightweight Daemon Set installed. In order to collect performance meas-
urements, the Daemon Set feature makes sure that a certain pod is operating on each
node.The daemon set kind yaml file makes sure it gets executed on each and evry pod
in the metadata collection section of the pod.Due to this feature it is possible to collect
precise metrics from each pod as they are deployed.This Daemon set file then triggers an



execution call to the main PID cluster auto scaler script. The PID controller, which is im-
plemented as a custom Python script called PID-autoscaler.py, is the central component
of the design. This script computes scaling decisions by processing the real-time metrics
that Prometheus has collected.

The PID-based scaling logic is core to the system’s functionality. It uses proportional
components to react to immediate deviations, integral terms to address cumulative er-
rors, and derivative terms to avoid downtime in sudden workload surges or drops. The
algorithm translates the PID output into a positive or negative scaling value, deciding
whether additional pods should be provisioned or existing ones removed for nodes as
well. By integrating real-time metrics from daemon set and control theory based logic to
calculate a sacling value, the model adapts dynamically, making it suitable for unpredict-
able microservice workloads.Deployment management is handled using Terraform scripts,
which automate the Vertical scaling actions determined by the PID logic. These scripts
integrate with Kubernetes APIs to add or remove pods or nodes in response to scaling
decisions. The use of Terraform ensures faster and efficient management of infrastructure
changes, along with the operational requirements of modern cloud-native container based
environments.
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Figure 3: PID autoscaler process flow

4.2 Scaling management

The necessary number of pods is determined by the scaling value that the PID logic gen-
erates. The PID logic decides how many more pods are needed to balance the workload if
the workload is 150% greater than the present capacity with a target CPU utilization of
50%.Using Kubeadm, an administrative tool for Kubernetes, horizontal scaling is carried
out using the PID output. Kubeadm dynamically adds or removes pods by interacting
with the Kubernetes API as shown in Fig[3|and Fig[dl This guarantees that even in the
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event of unexpected spikes in traffic, application performance is maintained as set the pid
logic tries to settle it according the threshold value set prior.The system uses Terraform
to provision extra EC2 instances or decommission unused nodes when the workload ex-
ceeds the capacity of the current node pool. Reliability of scaling actions are guaranteed
by Terraform’s interface with AWS. The cluster can manage workloads that beyond the
pod-level scaling capabilities enabling horizontal as well as vertical scaling. The design
also prioritizes scalability at the cluster level by achieving beyond pod-level autoscal-
ing. When pod scaling alone is insufficient to meet demands, the system integrates with
Kubernetes cluster autoscalers to provision additional nodes dynamically. This hierarch-
ical scaling capability ensures that the framework remains effective even in environments
application demands exceeds the capacity of the existing node pool.The system is de-
signed to integrate with various cloud providers and container orchestration platforms,
making it versatile for deployment across diverse operational contexts.while the imple-
mentation is focused on Kubernetes, the principles and algorithms can be adapted for
other platforms like Docker Swarm or Apache Mesos with minimal modifications. This
flexibility ensures that the design remains relevant as containerization and orchestration
technologies evolve.The design includes a feedback loop for continuous stabalizing and
meeting the PID threshold value. Performance data from scaling actions are logged to
further aggregate the PID parameters and decision range over time. This adaptive tun-
ing feature ensures that the system evolves with the workload patterns, maintaining its
effectiveness as application demands change.Security and fault tolerance have also been
addressed in the design. The system employs role-based access control (RBAC) for its
Terraform scripts and Kubernetes interactions, ensuring that scaling operations are ex-
ecuted securely. Additionally, redundancy mechanisms are used into the monitoring and
scaling processes to handle failures.Fallback strategies used here is ,if a primary scaling
action fails due to network latency or API errors.It enhances the resource management
capabilities of Kubernetes and provides a compatible and secure solution for solving the
challenges of modern, dynamic workloads. By implementing PID control, hybrid scaling,
and continuous feedback collection , the design ensures optimal performance and resource
utilization,for scalable containerized applications in cloud-native environments.

5 Implementation

The implementation of the proposed PID-based autoscaler includes a structured ap-
proach, beginning with the development of core components and culminating in the
deployment and testing of the system within a Kubernetes environment.

5.1 Autoscaler work flow

The first step is creating the metrics collection pipeline. A lightweight daemon set is
deployed to each Kubernetes node, enabling the continuous monitoring of metrics such
as CPU utilization, memory usage, and error rates in this case. The daemon set uses
Prometheus exporters to collect these metrics and store them .This data is used for cal-
culating real-time scaling output values, ensuring the system responses fast to workload
fluctuations. The PID controller logic is implemented as a Python script running in a
Kubernetes pod. This script periodically fetches metrics data using Prometheus APIs
and applied the PID control algorithm to calculate the scaling factor. The PID para-
meters (Kp, Ki, and Kd) were fine-tuned during the testing phase to ensure stability
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and responsiveness under different workload conditions.These values are aggregated by
testing the logic of the repeatedly and obtained a fair constant value Kp-0.1, Ki-0.01
and kd-0.05.These constants determine the weight of each component in the PID logic.
The output of the PID controller determines the number of pods required to maintain
target performance levels, with an additional buffer of +1 pod to handle sudden traffic
spikes.For executing scaling decisions, the system integrates with Terraform to automate
pod and node scaling. The PID script passes scaling actions to Terraform through a se-
cure API endpoint, making communication better between the autoscaler and the cluster
infrastructure. Terraform configurations are pre-defined to enable dynamic scaling, in-
cluding the creation of new nodes when pod requirements exceeded the current cluster
capacity.In this case there is no range of limit for the autoscaler yet as it is tested in
a very controlled environment but a range of limits can be defined in the terraform to
avoid accidental scaling and use of unused instances. Role-Based Access Control (RBAC)
policies are applied to secure Terraform’s access, ensuring that scaling operations adhered
to cluster security protocols and only the owner with correct authentication keycan create
more nodes. The PID controller enhances the system’s efficiency by providing a robust
decision-making mechanism for scaling as the constant check for scaling is compared with
actual utilization every second and react to needed circumstances in a quicker resposne
time. Unlike static or rule-based scaling approaches, the PID controller dynamically ad-
justs scaling actions based on real-time metrics. The Proportional (P) component reacts
to the current error by determining how far the system is from the target state. The
Integral (I) component accumulates past errors, addressing steady-state deviations and
ensuring that the system doesn’t underperform or over-utilize resources in the long term.
The Derivative (D) component predicts future trends by analyzing the rate of change
of the error, allowing the system to respond to rapid workload fluctuations faster.The
DaemonSet and PID controller create a combination of repeated checks for needed value
while considering the previous solved error. The DaemonSet ensures timely metric col-
lection across the cluster, providing the data needed for PID logic to calcualte scaling
decisions. The PID controller processes these metrics to provide precise, adaptive scaling
values as no. of pods +1. This combination results in an autoscaling mechanism that is
efficient, responsive and resource-conscious, effectively managing dynamic workloads in
real-time container based environments.

The workflow and architecture of a PID-based custom autoscaler in a Kubernetes
container based enviroment is shown in the diagram Fig [l Through the combination
of Kubernetes and Terraform, it explains how metrics get collected, processed, and used
to calculate the scaling decisions and no. of pods to be allocated or de-allocated, while
providing effective resource management.The pods are the main components which con-
tain containerized applications image files in the worker node segment. The application
workloads are managed by these pods, and their resource consumption is regularly mon-
itored by the metadata pod. Every worker node in the cluster will have a particular
metadata collecting pod installed due to the Daemon Set file deployed. Key perform-
ance parameters like CPU utilization, request delay, and error rates are collected by this
metadata collection pod. After being prepared as JSON objects, these measurements are
transmitted to the control plane for processing.The control plane will contain the main
PID-Autoscaler python file which will be called and executed by daemon set file, in short
the pid autoscaler script is executed repeatedly as soon as there is any diffrence between
the pre-defined scaling threshold value and current value.Additionally, every worker node
has a kubelet, a Kubernetes component in charge of pod management. The kubelet re-
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ports the status of the pods that the autoscaler has deployed to the control plane and
makes sure they are operating as planned. Decisions about scalability are made at the
control plane, which is the main component of the design. Every worker node’s perform-
ance metrics are gathered by Prometheus, which then aggregates them for analysis. The
PID-based autoscaler script then receives these metrics. PID control terms are used by
the autoscaler script to determine scaling choices. The derivative component reduces sud-
den spikes in workload, the integral component takes into account continuous deviations
over time, and the proportional component responds to current deviations from goal val-
ues. Whether scaling actions, such adding or removing pods, are necessary is decided
by the PID logic.Scaling choices at the pod level are implemented by Kubeadm in the
control plane. When scaling operations include node additions or deletions, Terraform
is used to manage the infrastructure. By ensuring that worker nodes are provided or
decommissioned as necessary. Terraform helps to match the workload demands with the
cluster’s capacity. The DaemonSet starts the workflow by gathering worker node metrics.
Prometheus receives these measurements, combines them, and sends them to the PID
autoscaler. After analyzing the metrics, the autoscaler determines whether to scale up or
down. Kubeadm modifies the amount of pods deployed for horizontal scaling. Terraform
adds or removes nodes for node-level or vertical scaling. This system runs constantly,
tracking metrics and processing them in a feedback loop to ensure the cluster adapts
dynamically to changing workloads.

The final phase of implementation involves testing the autoscaler in a controlled pro-

duction environment. variety of workloads with varying patterns in form of deploying
replica sets of the demo application written in Go languge are generated to evaluate the
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system’s responsiveness, stability, and efficiency. Key performance indicators such as
scaling latency(delay), resource utilization(extra unsed pods), and error rates (amount
of errors generated due to insufficient pods) are collected to use it in the autoscaler’s
calculation. Feedback from these tests shows further refinements to the PID parameters
and scaling logic. The implementation of the PID-based autoscaler is a multi-staged pro-
cess involving metric collection, control logic development, automation of scaling actions,
and repeated checks for stability. The system is designed to integrate with Kubernetes,
providing a flexible and adaptive solution for resource management in containerized en-
vironments. By using both horizontal and vertical scaling strategies, the implementation
ensures optimal resource utilization and high application performance across dynamic
workload generated in various scenarios.The architectural flow begins with the metrics
collection stage, where a Kubernetes DaemonSet is deployed across the cluster to gather
real-time data. This DaemonSet collects critical performance metrics such as CPU utiliz-
ation, memory usage, error rates, and request latencies from all nodes within the cluster.
The collected metrics are then parsed to Prometheus, a monitoring and alerting toolkit
that acts as the central repository for storing and managing these metrics. Prometheus
enables efficient querying and analysis of the data, providing the basis for subsequent
decisions and can be used in future to collect advance application specific rquirements
to achive more accurate scaling results.Once the metrics are stored in Prometheus as
objects, they are fetched by a custom PID controller implemented in a Python file which
contains the PID logic algorithm. This controller processes the metrics to determine
deviations between the current and desired threshold values and tries to reach to the
target value set initially. Using proportional, integral, and derivative calculations, the
PID controller generates an output value that denotes the scaling requirement a positive
or negative number denoting the need of scalling up or scaling down the system. The
controller evaluates whether the current workload necessitates scaling up, scaling down,
or maintaining the existing resource allocation.The output from the PID controller is
then fed into Terraform scripts , which automate the necessary scaling operations. These
scripts interact with the underlying infrastructure to modify the Kubernetes cluster con-
figuration. Depending on the scaling requirement, the scripts adjust either the number
of pods in the cluster or the resource allocation of individual containers.The Kubernetes
cluster, equipped with the new configuration, proceeds to implement horizontal scaling
by increasing or decreasing the number of pods based on workload demands. This shows
that the system can effectively handle variations in requests for service while maintaining
performance and efficiency. Also, vertical scaling adjusts the resource limits of individual
containers, optimizing the utilization of CPU and memory resources within the existing
pods.The target can be changed accordingly to maximize the hardware use.

5.2 Daemon set feature

The Daemon Set plays a critical role in this architecture by ensuring that metrics are col-
lected consistently and accurately across all nodes within the Kubernetes cluster. Since a
Daemon Set runs a copy of a specified pod on each node, it provides a uniform mechanism
to gather key performance metrics such as CPU utilization, memory usage, error rates,
and request latencies and other metrics directly from the source. This decentralized and
synchronized data collection minimizes latency in retrieving metrics and ensures that the
system has an up-to-date understanding of cluster-wide resource utilization.the Daemon
Set simplifies the deployment of monitoring tools. Instead of manually configuring mon-
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itoring tools on each node, the Daemon Set ensures that the agents are automatically
deployed and maintained, reducing administrative overhead. This automation is espe-
cially valuable in dynamic cloud environments, where nodes may frequently scale up or
down.

6 Evaluation of PID Autoscaler

This section evaluates the performance, effectiveness, and flexibility of the suggested
PID-based autoscaling mechanism in a different case scenarios. The primary finding
of this research is that adding PID control logic to Kubernetes autoscaling improves
system responsiveness and resource usage under changing workloads. In order to com-
pare the suggested approach with other autoscaling strategies such as Horizontal Pod
Autoscaler (HPA), Vertical Pod Autoscaler (VPA), and other advanced frameworks, the
experiments have been carefully developed to replicate real-world application scenarios,
including both controlled and unpredictable traffic patterns.This section aims to address
important research goals, such as stability under varying workloads, resource allocation
efficiency, and adaptability to hybrid scaling requirements, by utilizing a combination
of theoretical insights and experimental setups. Because the experiments are based on
strict testing procedures and controlled scaling actions, the outcomes are guaranteed to be
both practically and statistically significant. This section describes a thorough summary
of the advantages and disadvantages of the PID-based strategy using specific perform-
ance measures including CPU utilization, request latency, and scaling speed.Real-time
metric collecting and smooth execution of scaling actions are made possible by tools like
Terraform and Prometheus which increase the response time of the operation in total. To
make it easier to understand how the system behaves in various situations, the findings
are displayed using tables and then compared in graphs in discussion. This section con-
cludes by highlighting the research’s useful applications, providing useful data for both
research and industry practices in cloud containerized systems.

6.1 Evaluating PID-Based Autoscaler with Static Workloads
against the HPA /VPA

In this experiment, a controlled static workload scenario is generated by the demo ap-
plication replica sets to compare the PID-based autoscaler to the Kubernetes Horizontal
Pod Autoscaler (HPA) and Vertical Pod Autoscaler (VPA). In order to demonstrate the
results of the PID-based strategy in a static workload enviroment, the important metrics
evaluated are CPU utilization, the number of scheduled pods, and system response time.
Version 1.24 of Kubernetes is installed on the Kubernetes cluster used in this experiment.
The workload is hosted on a single node with a target CPU usage threshold of 50% and
an initial pod count of one. The workload is static as the amount of cpu usage and
memory usage can be locked in the replica set deployment file, ensuring no fluctuation in
demand to test the autoscalers’ behavior under static conditions.This involves creating
replica sets, starting with one pod, and observing how both autoscalers respond by adding
or removing pods as necessary. Additionally, the experiment does node-level scaling to
determine how efficiently resources are allocated and deallocated.
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Time Pods
. PID Autoscaler HPA/VPA CPU Pods Scheduled
(Minutes . . Scheduled
CPU Util (%) Util (%) (HPA/VPA)
) (PID)
2 40 40 1 2
5 45 45 2 3
10 48 48 2 4
15 50 50 3 5

Figure 5: Results obtained to record amount of resources allocated for a static workload

6.2 Response to Sudden Workload Spike

This experiment compares the PID-based autoscaler’s response time and resource effi-
ciency to that of the HPA/VPA in the case of a sudden spike in workload.the spike is
generated by using a different script to generate multiple traffic request. The workload
is steady at 40% CPU usage at the start of the experiment. The spike is simulated by
deploying replica sets at different frequency, which results in a 120% increase in CPU
utilization. The threshold CPU utilization for both autoscalers is set at 50%. One pod
manages a consistent workload at 40% CPU usage at the start of the experiment. Real-
world traffic surges are replicated by sequentially deploying replica sets with increasing
request frequencies in order to replicate a sudden workload spike. In order to assess the
PID-based autoscaler’s scaling efficiency in comparison to HPA/VPA, metrics like the
number of pods added and stabilization time are tracked.

Pod Ti Pod
Increase in Workload Add ;: T TE Add d.r': s d Time Taken
e emo aken e emove
(Initial % =+ Spike %) (HPA/VPA)
ved (PID) (PID) (HPA/VPA)
20
40% =+ 120% +2 +3 40 seconds
seconds
25
120% < 60% -1 -2 45 seconds
seconds
15
60% » 30% -1 -1 30 seconds
seconds
22
30% =+ 100% +3 +4 50 seconds
seconds
18
100% < 40% -2 -3 35 seconds
seconds

Figure 6: Results obtained to record response time in scaling operation
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6.3 Calculating Resource Wastage

This experiment compares the efficiency of HPA/VPA with the PID-based autoscaler
under various workloads in order evaluate over-provisioning pods. A consistent workload
of 30% CPU usage controlled by a single pod starts the test. Increasing over time, the
CPU utilization peaks at 80% and then drops out at 50%. At each interval, metrics are
recorded, including the number of pods scheduled and the amount of resource waste.The
HPA /VPA adds three pods, leaving one extra pod, whereas the PID system schedules
two pods when the workload exceeds 60% at the 5-minute mark. Measurable resource
waste results from this pattern’s repeating at other intervals.

Time CPU Pods Pods Excess Pods Resource
(Minut | Utilization | Scheduled Scheduled (HPA/VPA) Wastage
es) (%) (PID) (HPA/VPA) (HPA/VPA)
2 30 1 1 0 0%
5 60 2 3 1 ~33%
10 80 3 4 1 ~25%
15 50 2 3 1 ~20%

Figure 7: Results obtained after deploying irregular workload

6.4 Discussion

The experiments provide a detailed comparison between the PID-based autoscaler and
HPA /VPA methods in Kubernetes environments. By analyzing metrics such as CPU
utilization, time taken for scaling, resource efficiency, and pods scheduled, the evaluation
highlights the superiority of the PID-based approach in dynamic scaling scenarios.In a
static workload scenario, the PID-based autoscaler demonstrated efficient scaling with
minimal resource wastage. The experiment began with a consistent workload at 40%
CPU utilization, gradually increasing to 50% over 15 minutes. During this time, the
PID-based autoscaler scheduled pods incrementally as needed, avoiding over-provisioning.
In contrast, the HPA /VPA scheduled additional unnecessary pods, leading to increased
resource wastage. For example, at the 15-minute mark with 50% CPU utilization, the
PID-based method scheduled three pods compared to five pods by HPA /VPA, reducing
excess allocation by 40%.

The PID-based system added two pods in 20 seconds when the workload increased
from 40% to 120%, whereas HPA /VPA added three pods in 40 seconds, demonstrating the
PID’s superior resource use and quicker responsiveness.The PID-based method deleted
one pod in 25 seconds during a workload reduction from 120% to 60%, but HPA /VPA
removed two pods in 45 seconds, indicating slower and less effective scaling on the part
of HPA/VPA.The PID controller’s adaptive nature made it possible for it to effectively
stabilize the system, preserving peak performance while reducing excessive resource use.
These findings are consistent with studies showing threshold-based scaling techniques,
such as HPA/VPA | are not very effective in managing sudden workload fluctuations.The
examination of resource waste provided important information on how effective both
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approaches are. The number of extra pods planned by HPA/VPA in comparison to the
ideal number needed was used to calculate resource waste. HPA /VPA planned three pods
at 5 minutes with 60% CPU consumption, whereas PID scheduled two pods, wasting 33%
of the available resources. HPA/VPA scheduled three pods at 15 minutes with 50% CPU
utilization, but PID scheduled two pods, resulting in a 20% waste of resources. These
results show that the PID-based approach can reduce operating expenses and improve
resource efficiency while maintaining appropriate scaling without over-provisioning.

6

5

(%)

[

2 3 - 5

— P05 Scheduled (PID) — Pods Scheduled (HPASVPA)

Figure 8: Comparison of Pods Scheduled Over Time: PID-based Autoscaler vs.
HPA /VPA

The graph in Fig [§| shows how many pods are planned over time for both HPA /VPA
and the PID-based autoscaler. First, over-provisioning occurs because the HPA/VPA
routinely plans more pods than the PID-based autoscaler. The PID-based autoscaler
continues to scale more steadily and effectively over time, but the HPA/VPA shows a
more pronounced increase in pods, which may indicate resource waste. This illustrates
how effectively the PID technique reduces needless scaling activities.
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Figure 9: Comparison of Scaling Response Times: PID-based Autoscaler vs. HPA /VPA
under Varying Workload Changes

18



The bar chart in Fig |§| compares the scaling reaction times of HPA/VPA with the
PID-based autoscaler under different workload fluctuations. It demonstrates that the
PID-based autoscaler continuously responds to changes in workload more quickly and
scales more quickly in all situations. The HPA /VPA | on the other hand, takes a lot longer,
particularly when there are major increases or decreases in workload. This demonstrates
how well the PID-based strategy responds to changing workload needs and cuts down on
decision-making delays related to scaling.

The comparative costs across various time periods are shown in this bar graph Fig

$0.25
$0.20

$0.15

$0.10
- I I
$0.00 . I
2 5 10 15

mCost (PID) @ Cost (HPA/VPA)

Figure 10: Cost Comparison of PID-Based Autoscaler vs. HPA/VPA Over Time

Because of its effective resource allocation, the PID-based autoscaler continuously shows
lower costs when the costs are computed based on resource utilization over time. When
the workload stabilizes at two minutes, the expenses of both systems are almost equal.
The PID-based autoscaler is still more cost-effective, but as the workload increases (at 5,
10, and 15 minutes), the HPA /VPA costs increase greatly because of the over-provisioning
of resources.

7 Conclusion and Future Work

This study proposes and evaluates a PID-based autoscaling framework in order to over-
come the problems of the default Kubernetes Horizontal Pod Autoscaling (HPA) and Ver-
tical Pod Autoscaling (VPA) methods. Reducing overprovisioning and underprovision-
ing by constant target checks and increasing resource allocation efficiency also ensuring
cost-effectiveness without sacrificing application performance were the main goals. The
effectiveness of the PID-based method in accomplishing these objectives was confirmed
by a series of controlled experiments that compared it to similar autoscalersexecuting a
dynamic workload scenario.The key findings show that the PID-based autoscaler is more
resource-efficient and responds to workload variations more quickly. Especially when the
demand is dynamic, it continuously avoids the resource waste seen in HPA /VPA. The
PID-based system scaled up and down quickly and precisely in situations of unexpected
workload spikes, eliminating unnecessary pods and preserving target utilization. Accord-
ing to the cost study, this action not only decreased operating expenses but also guaran-
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teed a steady performance level, which is essential for preserving Quality of Service (QoS).

There are some limitations to the research. It can be difficult to balance responsiveness
and stability in highly unpredictable conditions since the PID tuning process is sensitive
and requires iterative calibration. Also, since CPU utilization acted as the main scaling
indicator in this study, future research might investigate the incorporation of other met-
rics, including disk I/O and network bandwidth, to develop a more comprehensive scaling
mechanism appropriate for a range of cloud microservice workloads.The PID-based model
is economically feasible for cloud service providers looking to optimize resource manage-
ment since it can be easily integrated into current Kubernetes cloud environments. It is
a strong option for handling modern cloud-native apps because of its capacity to flex-
ibly adjust to changes in workload.Automating PID parameter tweaking with machine
learning methods to increase system flexibility is one possible research topic. Also, this
framework’s applicability might be expanded by integrating it into memory-intensive mi-
croservices or stateful applications. The effectiveness of scaling decisions could be further
improved by investigating hybrid strategies that combine PID control with predictive
scaling based on previous patterns.

In conclusion, this study has successfully demonstrated how a PID-based autoscaler
may be used to successfully overcome the drawbacks of conventional autoscaling tech-
niques. It creates the foundation for creative developments in Kubernetes resource man-
agement by finding a balance between performance, responsiveness, and affordability. It
also creates new opportunities for investigation and findings of new approches in cloud-
native enviroments.
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