

Configuration Manual for Performance
Optimization and Scalability of Cloud-Based
Data Processing Pipelines for Fire Emergency

Response Systems

MSc Research Project
Cloud Computing

Olajide Olawuyi
Student ID: x23214619

School of Computing
National College of Ireland

Supervisor: Shreyas Setlur Arun

National College of Ireland

MSc Project Submission Sheet

School of Computing

Student
Name:

Olajide Olawuyi
……. ………

Student ID:

X23214619
………..……

Programme:

Msc Cloud Computing
………………………………………………………………

Year:

2024/2025
…………………………..

Module:

Research Project

…….………

Lecturer:

…….………

Submission
Due Date:

13th December, 2024
…….………

Project Title:

Performance Optimization and Scalability of Cloud-Based Data
Processing Pipelines for Fire Emergency Response Systems

…….………

Word Count:
6,127
……………………………………… Page Count: ………………………………….…….………

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.
ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author's written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature:

……

Date:

10th December, 2024
……

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple
copies)

□

Attach a Moodle submission receipt of the online project
submission, to each project (including multiple copies).

□

You must ensure that you retain a HARD COPY of the project, both
for your own reference and in case a project is lost or mislaid. It is not
sufficient to keep a copy on computer.

□

Assignments that are submitted to the Programme Coordinator Office must be placed
into the assignment box located outside the office.
Office Use Only
Signature:
Date:
Penalty Applied (if applicable):

1

Configuration Manual for Performance Optimization and
Scalability of Cloud-Based Data Processing Pipelines for Fire

Emergency Response Systems

Olajide Olawuyi
Student ID: x23214619

1 Introduction

This documentation is aimed at creating a comprehensive manual to demonstrate all research

project implementation setup for carrying out this research on “Performance Optimization

and Scalability of Cloud-Based Data Processing Pipelines for Fire Emergency Response

Systems”. This research is primarily focused on optimizing the performance (efficiency and

scalability) of a cloud based data processing pipeline design and built for fire emergency

response system. To archive the set objectives of research, three system components were

developed namely IoT-enabled system for processing and transmitting IoT data from

installation site to the cloud platform, the machine learning component for processing and

analysing sensor data and detecting fire signals and the monitor web application for

visualizing the state of all IoT-enabled systems. Together, these systems components are

couple as Fire Emergency Response System (FERS).

The IoT-enabled system is a localized IoT data streaming system used to stream read sensor

data generated from the installation site and propagate the data to the cloud via EMQX

publicly available MQTT broker. The stream IoT data is further processed and analysed by

the machine learning component to label the data as fire or non-fire signal visualized from the

monitor web application.

The machine component is composed of four (4) trained supervised machine learning models

namely Decision Tree (DT) model, Logistic Regression (LR) model, Random Forest (RF)

model and Support Vector Machine (SVM) model. These model used to classify or label

streamed IoT data as fire and non-fire signal.

2

The monitor web application is used to monitor all configure and install IoT-enabled system

and tracking the state or label of the signal being transmitted in real-time.

The rest of this documentation is organized as follows: section 2 will discuss the hardware

specification and the software specification of the computer device used to carrying out the

research implementation. Section 3 will discuss the software, programming languages

libraries and their installation to create the implementation setup for carrying out research.

Section 4 discusses the implementation of the system components namely the IoT-enables

system, machine learning component and the monitor application. Finally, section 5 will

discuss the concluding statement of this document.

2 Hardware and Software System Specification
This section will discuss implementation system configuration with respect to hardware and

software resources.

2.1 Hardware Configuration

Three (3) different hardware machine were configured to implement the different system

component implemented to archive the set objectives this study. The MacBook Pro machine

was the primary development machine hosting the virtual machine and for build the machine

learning models used for analysis the IoT sensor data, Ubuntu 22.04 Desktop Virtual

Machine used to implement and setup the IoT-enabled system and the AWS EC2 instance for

hosting and deploying the Monitor web Application.

2.1.1 MacBook Pro
The primary hardware for used for the implementation research study is MacBook Pro and it

is equipped with the following specifications

• 8GB of RAM

• 256GB of ROM

• Apple M2 Chip

2.1.2 Ubuntu 22.04 Desktop Virtual Machine
The virtual machine used to implement and run the IoT-enabled system and it is equipped

with the following specifications

4GB of RAM

3

• 30GB of ROM

• 4 Core of CPU x86_64 architecture

2.1.3 AWS EC2 Instance
The AWS EC2 instance used to implement and run monitor web application and it is

equipped with the following specifications

• 1GB of RAM

• 8GB of ROM

• Intel(R) Xeon(R) CPU E5-2686 v4 @ 2.30GHz

2.2 Software Requirements

The software requirements for the solution proposed will be discussed with respect to the

implementation machine (MacBook Pro), the virtual machine for the IoT-enabled system and

the AWS EC2 for hosting the monitor web application.

2.2.1 MacBook Pro

The MacBook Pro machine is the primary device used in the development of most

components of this research study. Mac OS Sequoia (version 15) is the primary software used

carry out this research and other system application software includes

• Universal Turing machine (UTM) virtual machine - UTM employs Apple's Hypervisor

virtualization framework to run ARM64 operating systems on Apple Silicon at near

native speeds. This virtual machine is used to power the Ubuntu 22.04 Desktop used to

implement the IoT-enabled System.

• Ubuntu 22.04.5 Desktop LTS ISO File – This is the installation file used to install Ubuntu

on the UMT virtual machine.

• Git – This is a distributed version control system that versions of files. It is used to

maintain the different source code used to implement the system components and backup

the source all through the development period.

• Anaconda – This is an open source data science and artificial intelligence distribution

platform for Python and R programming language.

• Python – Python is a high-level general-purpose programming language used in this

instance to build the machine learning component of this project.

• Jupyter Notebook – is a project to develop open-source software, web-based Python IDE,

ideal for coding, visualization, and documentation in data science and education.

4

2.2.2 IoT-Enabled System

The IoT-enabled system is implemented in an Ubuntu 22.04 install in Universal Turing

machine virtual host running MacBook Pro. The below are a list of system software and

application software used to setting up IoT-enabled system

• Ubuntu 22.04 Desktop OS – This is the underlying system software used to implement

the IoT-enabled system. All others application software listed were install and executed.

• Contiki-NG - This is a specialized operating system designed for Internet of Things (IoT)

devices with limited resources. It features a standards-compliant, low-power IPv6

communication stack that facilitates Internet connectivity.

• C programming – This programming language is extensively used to develop and compile

applications and system components. It allows for developing to write efficient, low-level

code for resource-constrained IoT devices while leveraging the modularity and flexibility

of Contiki-NG.

• Visual Studio Code - This is a code editor created by Microsoft that offers features like

debugging, syntax highlighting, smart code completion, snippets, code refactoring, and

integrated Git version control.

• Mosquitto MQTT Broker - is an open source (EPL/EDL licensed) message broker that

implements the MQTT protocol versions 5.0, 3.1.1 and 3.1. Mosquitto is lightweight and

is suitable for use on all devices from low power single board computers to full servers.

• Mosquitto MQTT Client - It enables devices and applications to publish and subscribe to

messages over a network using MQTT protocol, making it ideal for Internet of Things

(IoT) use cases.

2.2.3 AWS EC2 Instance

The AWS EC2 instance in the cloud was provision using Ubuntu 24.04 server and run the

monitor web application. The below are a list of system software and application software

used to setting up IoT-enabled system

• Ubuntu 24.04 Server OS - This is the underlying system software used develop and run

the monitor web application. All others application software listed were install and

executed.

• Python – The web application was developed in Python programming language using

fastapi libraries.

5

• JavaScript, HTML and CSS – These technologies are used to develop the frontend

component of the web applications.

3 Compiling and Running the IoT-Enabled System
The IoT-enabled system components such MQTT client application and IoT Data Controller

are develop using Contiki-NG OS and the c programming and as such will require

compilation and execution of compile code. This section provide instruction used to compile

and run the application components.

IoT-enabled system source code is contained fire-emergency-response-system directory. The

directory contains 3 other directories namely application_ui, data_io and mqtt-client. The

application_ui directory contains IoT Data Controller application source code and mqtt-client

directory contains MQTT client application source code.

3.1 Compilation instruction for MQTT Client Application
To compile MQTT client application source code, navigate into mqtt-client directory and

open the terminal point to the current directory. On the opened terminal run

make clean

The make clean command is used to remove previously compiled code from the build

directory which contains all compilation resource use to support file need to run the compiled

MQTT client application.

To compile MQTT client application, run

make TARGET=native

This command will create a build directory in the current directory and generate mqtt-

client.native file and all supporting files and resource need to execute mqtt-client application

stored in the build folder.

3.2 Compilation instruction for IoT Data Controller Application
To compile IoT Data controller application source code, navigate into application_ui

directory and open the terminal point to the current directory. The application_ui contains

6

application-ui.c source code for the IoT Data Controller UI application. The application-ui.c

source code depends on the source code in the data_io directory. To compile application-ui.c

code, a linker between the application-ui.c source and the source code in the data_io

directory. To begin compilation, on the opened terminal run

gcc -I../data_io -c ../data_io/cJSON.c -o cJSON.o

This command compiles the source file cJSON.c in the data_io directory into an object file

cJSON.o. The compiler looks for header files in the data_io directory and produces an

intermediate file cJSON.o that contains the compiled machine code for cJSON.c. This file

can later be linked with other object files to create an executable.

gcc -I../data_io -c ../data_io/data-processor.c -o data-processor.o

This command compiles the source file data-processor.c in the data_io directory into an

object file data-processor.o. The compiler looks for header files in the data_io directory and

produces an intermediate file data-processor.o that contains the compiled machine code for

data-processor.c. This file can later be linked with other object files to create an executable.

gcc `pkg-config --cflags gtk+-3.0` -I../data_io -c application-ui.c -o
application-ui.o

This command uses pkg-config to load compiler flags for including the GTK+ 3.0 library

headers. Adds data_io directory for custom headers and compiles the application-ui.c source

file into an object file with the name application-ui.o. The resulting object file can be linked

with other object to create an executable.

gcc application-ui.o data-processor.o cJSON.o `pkg-config --libs gtk+-
3.0` -o my_application

This command links the compiled object files (application-ui.o, data-processor.o, cJSON.o)

with the GTK+ 3.0 libraries to produce an executable named my_application. It ensures that

all required symbols (functions, variables, etc.) are resolved from both the object files and the

7

GTK+ 3.0 library. The resulting executable (my_application) can now be run, and it will

likely use GTK+ for its graphical user interface.

3.3 Run IoT-Enabled System
To run the IoT-enabled system, several different services and applications must be executed

concurrently. The following actions or steps must the execute serially

Open a new terminal and run the following commands

sudo kill $(sudo lsof –t –i:1883)

This is used to terminate any process that is running on the network port 1883. This is

important so that the mosquito broker can use the port.

sudo systemctl stop mosquito

This command stops the Mosquitto MQTT broker if it is running. The service is no longer

active, and any applications or devices attempting to connect to it will fail until the service is

restarted.

sudo mosquitto -c /etc/mosquitto/mosquitto.conf

This command is used run Mosquitto broker in the foreground (if not run as a service). It uses

the configuration settings defined in /etc/mosquitto/mosquitto.conf. The broker will be ready

to handle MQTT client connections and publish/subscribe operations.

On a second terminal, run

mosquitto_sub -h localhost -p 1883 -t "Local/FERS/IoT-Data/json" -u

"fers_user_account" -P "0000000000"

The mosquitto_sub command connects to the MQTT broker running locally on

localhost:1883. It subscribes to the topic "Local/FERS/IoT-Data/json". It uses the specified

username fers_user_account and password 0000000000 for authentication. Once connected,

the command waits and outputs any messages published to the specified topic in real-time.

8

On a third terminal, navigate to mqtt-client directory using the cd command. To run the

MQTT client application, run

sudo ./build/native/mqtt-client.native

This is used to run the MQTT client application from the Contiki-NG OS that published IoT

sensor data periodically every 5 seconds.

Finnally, on a fourth terminal, navigate to application_ui directory using the cd command.

To run the IoT Data Controller application, run

gcc -I../data_io -c ../data_io/cJSON.c -o cJSON.o && gcc -I../data_io -c

../data_io/data-processor.c -o data-processor.o && gcc pkg-config --cflags

gtk+-3.0 -I../data_io -c application-ui.c -o application-ui.o && gcc

application-ui.o data-processor.o cJSON.o pkg-config --libs gtk+-3.0 -o

my_application && ./my_application

The provided command sequence compiles and links a C program consisting of three source

files: cJSON.c (for JSON handling), data-processor.c (for data processing), and application-

ui.c (for the graphical user interface). Each file is compiled into an object file (cJSON.o, data-

processor.o, and application-ui.o) with necessary include paths and GTK+ 3.0 compiler flags.

The object files are then linked together with GTK+ 3.0 libraries to create an executable

named my_application. Finally, the executable is run, launching the program, which likely

includes a graphical user interface and processes JSON data using the compiled functionality.

This workflow demonstrates a typical modular C development process with external library

integration.

3.4 Real Time Monitor Web Application
The monitor web application is used to monitor the state of all active IoT-enabled system

(also known as IoT node) that is publishing data in real time. The monitor web application

can be accessed live on

http://34.242.232.105:8000/

9

4 Conclusion
This report has provided a detailed description of the implementation of the essential

components that makes the Fire Emergency Response System (FERS). The system was made

up of three subsystems: the IoT-enabled system, the machine learning component, and the

monitoring web application. Detailed explanations, accompanied by code snippets on how

the system can be setup and operated.

The outcomes of this study are repeatable, providing a baseline for researchers who wish to

reproduce the system using the methods outline in this report. By following these

instructions, subsequent implementations can produce consistent and reliable results. This

report serves as a comprehensive guide for setting up and operate the scalable and efficient

fire emergency response systems.

.

References

Contiki-NG Documentation — Contiki-NG documentation (no date).

https://docs.contiki-ng.org/en/develop/.

Osy (no date) UTM. https://mac.getutm.app/.

Wikipedia contributors (2024a) Anaconda (Python distribution).

https://en.wikipedia.org/wiki/Anaconda_(Python_distribution).

Wikipedia contributors (2024b) Git. https://en.wikipedia.org/wiki/Git.

Wikipedia contributors (2024c) Project Jupyter.

https://en.wikipedia.org/wiki/Project_Jupyter.

Wikipedia contributors (2024d) Python (programming language).

https://en.wikipedia.org/wiki/Python_(programming_language).

Wikipedia contributors (2024e) Visual Studio Code.

https://en.wikipedia.org/wiki/Visual_Studio_Code.

