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1 Dataset Preparation – Feature Extraction 

Pre-Requisites – Vs code Installation, Python Version – 3.10.11 

 

1. For generating the “final_dataframe.csv” after feature extraction - Run the python file 
“url_feature_extration.py” as shown below or, 
run command, “ python url_feature_extraction.py” 

 

 

2 Data Pre-Processing and Deep Learning Model Training 

Pre-Requisites – Google Drive, Google Colab [1] connection. 
 

Google Colab Link 
 

Step 1: Upload the final_dataframe.csv to google drive 

 

Step 2: Create a python notebook on google colab for data pre-processing and DL Model 

Training. 

 

Step 3: After running the code, the best model (BiLSTM) is saved for future Flask 
Application development. 

 

3 Flask Application Creation 

Pre-Requisites – Vs code Installation, Python Version – 3.10.11 

 

Step 1: Install Flask [2] from Python package Manager by using the command: 

https://colab.research.google.com/drive/1xxv0iOEGdy_iIUQ4RsqQGj1yt9UPicd9?usp=drive_open
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pip install Flask 

 

Step 2: Create a python file with name “app.py” in the Project Directory. 

Step 3: For app.py, import Flask and define the required routes. 

 
 

Step 4: Run “app.py” flask application with command 

python app.py 

4 Docker Image Creation 

Pre-Requisites – Docker Desktop Downloaded [3] 
 

Step 1: Docker must be installed following the installation guidelines from: 
docker_installation_guide and must be in running state. 

 

Step 2: Build Dockerfile 
 

Pre-Requisites: requirements.txt file with a list of libraries to be imported 

 

The below Dockerfile (case sensitive - with “D” capitalized) is created for the flask 

application. 

 

The workings of this file are explained with the comments. 

https://docs.docker.com/get-started/get-docker/
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Step 3: Build Docker Image with command 

docker build -t purldwebapp0 . 

Step 4: To Check Docker Image use command 

 

docker run -d -p 5000:5000 purldwebapp0 
 

 

 

 
5 AWS Deployment 

Pre-Requisites – GitHub [4] Account and AWS [5] Account Set Up 
 

Step 1: Upload the codebase along with the Dockerfile to the GitHub repository 
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Step 2: Create a sample AWS Elastic Beanstalk environment for phishing URL detection 

application and choose Docker as the Platform. 
 

 

Step 3: Set up a CI/CD pipeline on AWS using AWS CodePipeline and establish a 

connection with GitHub during configuration. 
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Step 4: Select the repository containing the code pertaining to this project, to be the source. 

 
Step 5: Select the Elastic Beanstalk environment and the application, as the Deployment platform during 

configuring CodePipeline, this triggers the CI/CD pipeline. 

 

 

6 Azure Cloud Deployment 

Pre-Requisites – Docker Desktop, Azure CLI and its VS Code extension, and Microsoft 

Azure [6] Account Set Up 
 

 

Step 1: Connect to Azure account using the command “az login” from powershell. 
 

 

Step 2: Choose the correct subscription “Azure for students” by entering 1. 
 

Step 3: Set the variables for resource group name, location and container registry name.
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Step 4: Create an Azure resource group using “az group create --name $rgname --$location” 

 

Step 5: Create an ACR repository using the command, “az acr create --resource-group 

$rgname --name $acrname --sku Basic” 
 

Step 6: Log onto azure container registries by running the command “az acr login –name 

$acrname” 
 

Step 7: Create a Docker tag for the image using “docker tag puridwebapp0 

purldwebapacr01.azurecr.io/purldwebap” 

 

Step 8: Check for the presence of Docker image and the image tag on Docker Desktop using 

“docker image ls” 
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Step 9: Push the Docker image to ACR using “docker push 

purldwebapacr01.azurecr.io/purldwebap” 
 

 
A repository has been created on Azure Container Registry as seen in Figure above 

 

Step 10: Set the variables for deploying the image on Azure Container Apps, 
 

$resourceGroupName = "rg-purldwebap" 

$acrName = "purldwebpacr01" 

$acrImage = "$acrName.azurecr.io/purldwebap:latest" 

$location = "australiaeast" 

$containerAppEnv = "purldwebap-capenv" 

$containerAppName = "purldwebap-webapp"  
 

Step 11: Create the Container App environment by using this command, “az 

containerapp env create --name $containerAppEnv --resource-group $resourceGroupName -- 

location $location” 

 

Step 12: Fetch the ACR repository username by using this command, “$acrUsername 

= az acr credential show --name $acrName --query "username" --output tsv” 
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Step 13: Fetch the ACR repository password by using this command, “$acrPassword 

= az acr credential show --name $acrName --query "passwords[0].value" --output tsv” 

 
 

Step 14: Create a Container Apps environment using the command, “az containerapp 

create --name $containerAppName --resource-group $resourceGroupName --environment 

$containerAppEnv --image $acrImage --registry-server "$acrName.azurecr.io" --registry- 

username $acrUsername --registry-password $acrPassword --target-port 5000 --ingress 

'external' --cpu 0.5 --memory 1.0Gi” 
 

The creation of Azure Container Apps environment is seen in Figure above 
 

7 Locust Load Testing Set up 

Step 1: Install locust [7] from Python package Manager by using the command 
 

pip install locust 
 

Step 2: Create a locust file with name “locustfile.py” in the Project Directory. 

Step 3: To run - use command 

For AWS: 

 

locust -f locustfile.py --host=http://x23166401-phishingdetection02env.eba-jvmmw4pa.eu- 

west-2.elasticbeanstalk.com/ --web-port 5000 

http://x23166401-phishingdetection02env.eba-jvmmw4pa.eu-/
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For Azure: 

 

locust -f locustfile.py --host=https://purldwebapp0-webapp.politetree- 

95cc7c65.australiaeast.azurecontainerapps.io/ --web-port 5000 
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8 AWS CloudWatch and Azure Monitor 
 

AWS CloudWatch dashboard is set up and the metrics such as CPU usage, Network I/O, 

Latency and AverageLoad is collected. 
 

Azure Monitor Dashboard is set up to gather insights from the deployed application on Azure 

Container Apps. Metrics include CPU Usage, Average Response time, Network I/O and CPU 

usage Percentage. 
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9 Alert Set up 
 

AWS SNS subscription is used to trigger an alert to the configured email if the CPU 

utilization percentage crosses 65% over a time period of 5 minutes. 
 

 

Microsoft Azure Monitor Alerts is set up to trigger email alerts if the CPU Usage Percentage 
of the Azure application crosses 60%. 
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