

Configuration Manual

MSc Research Project

MSc in Cloud Computing

Yamini Murugan
Student ID: x23166401

School of Computing

National College of Ireland

Supervisor: Shreyas Setlur Arun

National College of Ireland

MSc Project Submission Sheet

School of Computing

Student

Name:

Yamini Murugan

Student ID: x23166401

Programme: MSc in Cloud Computing Year: 1

Module: MSc Research Project

Lecturer: Shreyas Setlur Arun

Submission

Due Date:

12/12/2024

Project Title: Development and Performance Evaluation of a Dockerized Flask

Application for Phishing URL Detection Across AWS and Azure

Word Count: 909 Page Count: 12

I hereby certify that the information contained in this (my submission) is information

pertaining to research I conducted for this project. All information other than my own

contribution will be fully referenced and listed in the relevant bibliography section at the

rear of the project.

ALL internet material must be referenced in the bibliography section. Students are

required to use the Referencing Standard specified in the report template. To use other

author's written or electronic work is illegal (plagiarism) and may result in disciplinary

action.

Signature: Yamini Murugan

Date: 12/12/2024

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple

copies)

□

Attach a Moodle submission receipt of the online project

submission, to each project (including multiple copies).

□

You must ensure that you retain a HARD COPY of the project, both

for your own reference and in case a project is lost or mislaid. It is not

sufficient to keep a copy on computer.

□

Assignments that are submitted to the Programme Coordinator Office must be placed

into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

1

Configuration Manual

Yamini Murugan

x23166401

1 Dataset Preparation – Feature Extraction

Pre-Requisites – Vs code Installation, Python Version – 3.10.11

1. For generating the “final_dataframe.csv” after feature extraction - Run the python file
“url_feature_extration.py” as shown below or,
run command, “ python url_feature_extraction.py”

2 Data Pre-Processing and Deep Learning Model Training

Pre-Requisites – Google Drive, Google Colab [1] connection.

Google Colab Link

Step 1: Upload the final_dataframe.csv to google drive

Step 2: Create a python notebook on google colab for data pre-processing and DL Model

Training.

Step 3: After running the code, the best model (BiLSTM) is saved for future Flask
Application development.

3 Flask Application Creation

Pre-Requisites – Vs code Installation, Python Version – 3.10.11

Step 1: Install Flask [2] from Python package Manager by using the command:

https://colab.research.google.com/drive/1xxv0iOEGdy_iIUQ4RsqQGj1yt9UPicd9?usp=drive_open

2

pip install Flask

Step 2: Create a python file with name “app.py” in the Project Directory.

Step 3: For app.py, import Flask and define the required routes.

Step 4: Run “app.py” flask application with command

python app.py

4 Docker Image Creation

Pre-Requisites – Docker Desktop Downloaded [3]

Step 1: Docker must be installed following the installation guidelines from:
docker_installation_guide and must be in running state.

Step 2: Build Dockerfile

Pre-Requisites: requirements.txt file with a list of libraries to be imported

The below Dockerfile (case sensitive - with “D” capitalized) is created for the flask

application.

The workings of this file are explained with the comments.

https://docs.docker.com/get-started/get-docker/

3

Step 3: Build Docker Image with command

docker build -t purldwebapp0 .

Step 4: To Check Docker Image use command

docker run -d -p 5000:5000 purldwebapp0

5 AWS Deployment

Pre-Requisites – GitHub [4] Account and AWS [5] Account Set Up

Step 1: Upload the codebase along with the Dockerfile to the GitHub repository

4

Step 2: Create a sample AWS Elastic Beanstalk environment for phishing URL detection

application and choose Docker as the Platform.

Step 3: Set up a CI/CD pipeline on AWS using AWS CodePipeline and establish a

connection with GitHub during configuration.

5

Step 4: Select the repository containing the code pertaining to this project, to be the source.

Step 5: Select the Elastic Beanstalk environment and the application, as the Deployment platform during

configuring CodePipeline, this triggers the CI/CD pipeline.

6 Azure Cloud Deployment

Pre-Requisites – Docker Desktop, Azure CLI and its VS Code extension, and Microsoft

Azure [6] Account Set Up

Step 1: Connect to Azure account using the command “az login” from powershell.

Step 2: Choose the correct subscription “Azure for students” by entering 1.

Step 3: Set the variables for resource group name, location and container registry name.

6

Step 4: Create an Azure resource group using “az group create --name $rgname --$location”

Step 5: Create an ACR repository using the command, “az acr create --resource-group

$rgname --name $acrname --sku Basic”

Step 6: Log onto azure container registries by running the command “az acr login –name

$acrname”

Step 7: Create a Docker tag for the image using “docker tag puridwebapp0

purldwebapacr01.azurecr.io/purldwebap”

Step 8: Check for the presence of Docker image and the image tag on Docker Desktop using

“docker image ls”

7

Step 9: Push the Docker image to ACR using “docker push

purldwebapacr01.azurecr.io/purldwebap”

A repository has been created on Azure Container Registry as seen in Figure above

Step 10: Set the variables for deploying the image on Azure Container Apps,

$resourceGroupName = "rg-purldwebap"

$acrName = "purldwebpacr01"

$acrImage = "$acrName.azurecr.io/purldwebap:latest"

$location = "australiaeast"

$containerAppEnv = "purldwebap-capenv"

$containerAppName = "purldwebap-webapp"

Step 11: Create the Container App environment by using this command, “az

containerapp env create --name $containerAppEnv --resource-group $resourceGroupName --

location $location”

Step 12: Fetch the ACR repository username by using this command, “$acrUsername

= az acr credential show --name $acrName --query "username" --output tsv”

8

Step 13: Fetch the ACR repository password by using this command, “$acrPassword

= az acr credential show --name $acrName --query "passwords[0].value" --output tsv”

Step 14: Create a Container Apps environment using the command, “az containerapp

create --name $containerAppName --resource-group $resourceGroupName --environment

$containerAppEnv --image $acrImage --registry-server "$acrName.azurecr.io" --registry-

username $acrUsername --registry-password $acrPassword --target-port 5000 --ingress

'external' --cpu 0.5 --memory 1.0Gi”

The creation of Azure Container Apps environment is seen in Figure above

7 Locust Load Testing Set up

Step 1: Install locust [7] from Python package Manager by using the command

pip install locust

Step 2: Create a locust file with name “locustfile.py” in the Project Directory.

Step 3: To run - use command

For AWS:

locust -f locustfile.py --host=http://x23166401-phishingdetection02env.eba-jvmmw4pa.eu-

west-2.elasticbeanstalk.com/ --web-port 5000

http://x23166401-phishingdetection02env.eba-jvmmw4pa.eu-/

9

For Azure:

locust -f locustfile.py --host=https://purldwebapp0-webapp.politetree-

95cc7c65.australiaeast.azurecontainerapps.io/ --web-port 5000

10

8 AWS CloudWatch and Azure Monitor

AWS CloudWatch dashboard is set up and the metrics such as CPU usage, Network I/O,

Latency and AverageLoad is collected.

Azure Monitor Dashboard is set up to gather insights from the deployed application on Azure

Container Apps. Metrics include CPU Usage, Average Response time, Network I/O and CPU

usage Percentage.

11

9 Alert Set up

AWS SNS subscription is used to trigger an alert to the configured email if the CPU

utilization percentage crosses 65% over a time period of 5 minutes.

Microsoft Azure Monitor Alerts is set up to trigger email alerts if the CPU Usage Percentage
of the Azure application crosses 60%.

12

10 References

b.research.google.com/.

/flask.palletsprojects.com/en/stable/.

ww.docker.com/.

ps://aws.amazon.com/?nc2=h_lg.

ps://azure.microsoft.com/en-us/.

[7] "GitHub," [Online]. Available: https://github.com/.

[1] "Google Colab," [Online]. Available: https://cola

[2] "Flask Framework," [Online]. Available: https:/

[3] "Docker Desktop," [Online]. Available: https://w

[4] "AWS Documentation," [Online]. Available: htt

[5] "Azure Documentation," [Online]. Available: htt

[6] "Locust," [Online]. Available: https://locust.io/.

https://colab.research.google.com/
https://flask.palletsprojects.com/en/stable/
https://www.docker.com/
https://aws.amazon.com/?nc2=h_lg
https://azure.microsoft.com/en-us/
https://github.com/
https://colab.research.google.com/
https://flask.palletsprojects.com/en/stable/
https://www.docker.com/
https://aws.amazon.com/?nc2=h_lg
https://azure.microsoft.com/en-us/
https://locust.io/

