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Abstract 
 

In this research, an innovative approach is presented for energy efficiency optimization in cloud 
datacenters via intelligent virtual machine (VM) consolidation. This work attempts to address the 
growing environmental and operational concerns regarding datacenter energy consumption through a 
multi-objective optimization framework that utilizes machine learning and predictive analytics. A 
methodology of combining workload prediction by LSTM networks with the classification of the server 
load using Random Forest algorithms to make informed consolidation decisions is also presented. It 
extends to incorporate energy minimization, and VM migration optimization objectives traditionally 
addressed, as well as CO2 emissions, workload prediction accuracy, and performance impact metric 
objectives. Evaluation utilizes CloudSim simulation environment extended with Python-based 
optimization algorithms. Adaptive learning mechanisms were shown to provide for significant 
improvements in energy efficiency with no sacrifice in service quality. Performance of the framework 
is extensively evaluated against traditional consolidation approaches using energy consumption and 
resource utilization as evaluation metrics, seeing substantial improvements. This research is of direct 
relevance for large-scale cloud providers who want to trade operational efficiency with environmental 
responsibility. It shows how advanced machine learning techniques and multi-objective optimization 
can improve datacenter operations while saving on environmental impact. 
 
1 Introduction 
As cloud computing services continue to grow quickly, cloud providers are concerned about 
the drastically increasing energy consumption in datacenters, and so the energy efficiency of 
datacenters is very important (Radovanović et al., 2022). While most of the existing VM 
management solutions try to optimize performance metrics, neglecting other life cycle factors 
like energy consumption, resources utilization, environment impact (Talebian et al., 2020). 
This thesis presents a general framework that unifies advanced machine learning and multi-
objective optimization to obtain efficient VM consolidation that considers both operational and 
environmental impacts (Reddy and Reddy, 2023). The effective operation of consolidation 
requires integration of workload prediction and server load classification and opportunities for 
proactive resource management. This work presents a robust solution for the management of 
energy efficient VMs, using predictive analytics and adaptive learning mechanisms. 

1.1 Research Background 
The rapid evolution of cloud computing has turned the traditional IT infrastructure landscape 
on its head with an unprecedentedly scalable and flexible infrastructure but with many 
challenges of massive energy consumption. Recently there have been data around the growing 
environmental impact of the datacenter operations and the importance of energy efficiency 
(Patel et al., 2024).  
Current VM consolidation solutions need more sophisticated approaches that incorporate 
predictive analytics and machine learning (Rozehkhani et al., 2024) instead of basic resource 
utilization metrics as were used in traditional approaches. With the advent of sophisticated tools 
to predict workload (Khan et al., 2022), it is possible to determine new ways to allocate 



 

2 
 

 

different resources. It has been found that server load classification and adaptive learning are 
essential for consolidation decisions (Ahn et al., 2023). Moreover, optimization of a system by 
integrating environmental metrics into system’s optimization objectives has gained 
considerable importance since organizations increasingly pay attention to sustainable 
computing practices (Gholipour et al., 2020). 

1.2 Problem Statement 
However, current cloud datacenter VM consolidation techniques come with significant 
challenges in balancing a few competing objectives including energy efficiency, as well as 
performance and environmental impact. As workloads are inherently dynamic, the failure of 
traditional approaches to handle the dynamic nature of workloads and thus the resource 
utilization patterns are often ignored (Bannerjee et al., 2024). According to (Saxena et al. 
(2024), inaccurate workload prediction and server load classification lack appropriate 
mechanisms, therefore; suboptimal consolidation decisions were made and this led to 
superfluous energy consumption and possible performance degradation. Lastly, previous 
solutions do not consider the environmental consequences of consolidation decisions that only 
focus on operational metrics, while failing to consider broader sustainability goals 
(Radovanović et al., 2022).  

1.3 Motivation 
As cloud datacenters start to have a growing environmental impact as well as increasing 
operational costs, more sophisticated VM consolidation approaches are required (Dias et al., 
2021). Assessment of current consolidation strategies has recently progressed with recent 
advances in machine learning and predictive analytics, offering opportunities for the 
development of more intelligent and efficient consolidation strategies (Moghaddam et al., 
2020). Hence, to improve VM placed, multi-objective optimization approaches (Reddy and 
Reddy, 2023) have been developed to achieve significant energy savings while keeping service 
quality. Additionally, there is a strong argument being made for consolidating into carbon 
emitting factories with IT operations rather than expanding into other territories. 

1.4 Research Question 
What is the best way to integrate a machine learning based workload prediction and server load 
classification into a multi-objective optimization framework that can provide energy-efficient 
VM consolidation and minimize CO2 emissions, resource utilization, performance 
requirements? 

1.5 Research Objective 
A comprehensive VM consolidation framework that utilizes machine learning for workload 
prediction and server load classification to optimize multiple objectives including energy, 
migration efficiency, CO2 emissions and performance impact while ensuring scalability and 
practical applicability in real cloud environments is developed and is implemented. 

1.6 Research Contributions 
This research makes five significant contributions to the field of cloud computing and energy-
efficient resource management: 
 

• A novel multi objective optimization framework that concurrently incorporates energy 
efficiency, performance, and environmental impact into the VM consolidation 
decisions. 
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• An advanced workload prediction system using LSTM networks to enhance the 
accuracy of forecasting available resources utilization for the completion of 
consolidation planning. 

• The design of a sophisticated dedicated server load classification mechanism utilizing 
Random Forest algorithms to make better and more effective VM placement decisions. 

• The integration of environmental impact metrics like CO2 emissions into the 
consolidation decision making process in order to gain a more comprehensive approach 
to sustainable datacenter operations. 

• A practical framework based on design and implementation of the CloudSim 
integration and Python based tooling to bridge theoretical optimization approaches and 
real-world cloud environments. 

1.7 Thesis Structure 
In Chapter 1, we discuss the research context, objectives, and motivations to introduce the 
problem of carbon aware VM consolidation. Section 2 covers energy efficiency, VM 
consolidation, and carbon aware computing in the context of computing clouds. The research 
methodology, as well as the multi-objective optimization framework and machine learning 
approaches are presented in Chapter 3. Detailed design specifications of the system architecture 
and interactions of components are provided in Chapter 4. In Chapter 5, the implementation in 
terms of CloudSim integration and interfaces to Python based optimization algorithms is 
described. The experimental results and performance analysis of the system are discussed in 
chapter 6, where the system can effectively reduce energy consumption and carbon emission. 
Chapter 7 concludes the thesis with a summary of contributions followed by directions for 
future research. 
 
2 Related Work 

2.1 Carbon Aware Computing  
Radovanovic et al. (2023) introduced Google’s Carbon Intelligible Computing System (CICS), 
aimed at reducing carbon emissions by scheduling flexible workloads like data compaction and 
video processing. Using Virtual Capacity Curves (VCCs), CICS optimized hourly resource 
allocation while maintaining daily capacity, achieving a 1–2% reduction in peak carbon-
intensity power consumption across 20+ global data centres consuming 15.5 terawatt-hours. 
Results varied by location due to grid carbon intensity and usage patterns. 
Park et al. (2024) explored shifting workloads to datacenters with lower emissions using a 
fault-tolerant control system and Model Predictive Control (MPC) for GPU frequency 
optimization. Their CAFTM system improved power consumption prediction and reduced the 
carbon footprint when applied to real-world deep learning models. Similarly, Moore et al. 
(2024) proposed the Sustainable FaaS Cloud Management (SFCM) framework to balance 
service level objectives, carbon emissions, and water use. Evaluated using Microsoft Azure 
traces, it reduced SLA violations by 45%, emissions by 25%, and water use by 26%. 
Gupta and Gupta, (2024) proposed an Apache Flink-based architecture using the Carbon Aware 
SDK for carbon emission reduction recommendations. Their approach leveraged relocation, 
time, and demand shifting techniques, achieving a 20% carbon footprint reduction for an 
enterprise with 1,000 VMs and 200 TB of storage. They noted limitations in calculating 
emissions due to infrastructure location and hardware variability. 
An energy and carbon-aware initial VM placement algorithm for geographically distributed 
cloud datacenters is proposed by (Khodayarseresht et al., 2023). The algorithm accounts for IT 
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and non-IT power usage during VM placement. The carbon footprint calculation uses location 
specific carbon footprint rates to calculate the emissions, emissions = powerConsumed × 
carbonFootprintRate, with power consumed including both server power and datacenter 
overhead power based on power usage effectiveness (PUE). The proposed approach has 
achieved a 17% reduction in energy consumption and 6% in reduction of carbon emissions as 
compared to baseline approaches. 
An energy and carbon footprint optimization framework for distributed cloud datacenters 
enabled by renewable energy sources is presented by (Zhao and Zhou, 2022). The carbon 
emissions are calculated considering both brown energy consumption and renewable energy 
utilization as presented: The carbon footprint (CF) of a technology, at time 't', for each 
technology 'k' assigned to region 'r' is given by: CF = (Pk(t) − Rk(t)) × CFRk where Pk(t) is 
total power consumption, Rk(t) is renewable energy generation and CFRk is the location-
specific carbon footprint rate. In their energy and carbon footprint aware with predictive 
renewable energy source (EFP) algorithm, they achieve a whittled down renewable energy 
utilization of 73.11% while keeping SLA violations at 0.2%. 

2.2 Cloud Resource Management Approaches 
An improved differential evolution (IDE) algorithm for cloud data center VM allocation was 
proposed by Zhang et al. (2020). The algorithm minimizes cloud service provider costs and 
user task make-span using enhanced mutation and crossover operations, which improve 
convergence speed and avoid local optima. Compared to round-robin, Min-min, and standard 
differential evolution methods, IDE achieves lower make-span and better resource utilization, 
with balanced VM load ratios. Similarly, Shi et al. (2020) developed the BMin algorithm for 
task scheduling optimization in cloud environments. BMin balances workloads and minimizes 
task execution variance, calculating execution times without assuming completion time or 
workload distribution. Experiments with CloudSim showed BMin outperformed Min-min in 
throughput, turnaround time, and load balancing. 
Hajisami et al. (2020) introduced the "Elastic-Net" framework to optimize power consumption 
and resource utilization in Cloud Radio Access Networks (C-RAN). Elastic-Net dynamically 
adapts parameters like remote radio head (RRH) scheduling, VM migration, and active RRH 
density based on traffic fluctuations. Using simulation and testbed experiments, Elastic-Net 
improved energy efficiency, reducing average power consumption by 48.59% during off-peak 
and 7.39% during peak hours. 
Sharma and Bhardwaj (2022) optimized VM allocation using a modified emperor penguin 
optimization (I-EPO) algorithm. The approach evaluates metrics like data center distance, 
BBQ, and transportation costs, employing graph-based representations of user tasks and data 
centers. Experiments on the XEN hypervisor showed improvements in latency, response time, 
and load fairness across VM scales. 
Saxena et al. (2022) presented an Online VM Prediction-based Multi-Objective Load 
Balancing (OPMLB) framework that employs neural networks and adaptive evolutionary 
algorithms to forecast resource usage and minimize SLA violations. The framework achieves 
power savings of up to 85.3%, 99.9% accurate overload prediction, and reduced network traffic 
and VM migration costs. 
Finally, (Gong et al., 2024) explored dynamic resource allocation and VM migration 
optimization using machine learning. They employed LSTM networks for demand prediction, 
Deep Q Networks (DQN) for migration decisions, and multilayer perceptron for energy 
optimization. Their deep reinforcement learning framework demonstrated improved resource 
utilization, lower power costs, and enhanced service reliability. 
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2.3 VM Consolidation Techniques 
Hossain et al. (2020) proposed Active & Idle Virtual Machine Migration (AIVMM) to enhance 
energy efficiency in cloud data centers by isolating idle VMs from active ones, thereby 
balancing power among active machines. They integrated the Order Exchange Migration Ant 
Colony System (OEMACS) algorithm into AIVMM to optimize power consumption by 
monitoring CPU, RAM, and VM states. While the OEMACS+AIVMM approach improved 
migration efficiency, it faced high time complexity and difficulties with VMs changing states 
during migration. 
Seddiki et al. (2021) developed a sustainability-focused framework for inter-datacenter VM 
migrations, incorporating renewable energy considerations into CloudSim simulations. They 
introduced new CloudSim entities and a meta-scheduler to align workload distribution with 
renewable energy availability. Their methodology, tested across multiple scenarios, achieved 
68.39% renewable energy utilization without compromising Service Level Agreements 
(SLAs). The framework addressed VM placement to minimize physical machine (PM) power 
and network bandwidth consumption. 
Xing et al. (2022) introduced the energy- and traffic-aware ant colony optimization (ETA-
ACO) algorithm with three key schemes: direct information exchange, energy- and bandwidth-
aware PM selection, and traffic-based VM ordering. These schemes prioritized power and 
bandwidth efficiency while improving solution quality in VM placement. Evaluated on 36 test 
instances, ETA-ACO outperformed several heuristic and metaheuristic models. 
Zeng et al. (2022) presented the Adaptive Deep Reinforcement Learning-based Virtual 
Machine Consolidation (ADVMC) framework. It employed an Influence Coefficient-based 
VM selection algorithm (ICVMS) and a Prediction-Aware DRL placement algorithm 
(PADRL) to enhance efficiency. Tested with Google Cluster Trace data, ADVMC reduced 
energy consumption by 125.24% and SLA violations by 138.64% compared to Modified First 
Fit Decreasing (MFFD). The ICVMS alone reduced energy consumption by 112.3% and 
improved SLA violations by 38.33%, proving its scalability for large cloud environments. 
Alur et al. (2023) focused on dynamic VM consolidation for energy efficiency, using a three-
module approach: resource monitoring, random environment testing, and energy-efficient 
consolidation. Tested on a Multi Node OpenStack Yoga testbed, it demonstrated significant 
cost savings (27% to 35.8%) while maintaining system performance. This method underlined 
the potential of dynamic VM consolidation in reducing energy consumption in cloud 
environments. 

2.4 Summary 
Several key research gaps identified through literature review are addressed by this work. Most 
existing VM consolidation approaches are mostly concerned with single objectives, such as 
energy efficiency or performance, and fail to fully consider holistic consideration of 
environmental impacts and CO2 emissions. While there are studies on such carbon-aware 
computing, e.g., Google's CICS, they are featureless. In this research, workload prediction with 
LSTM networks and server load classification with Random Forest algorithms are combined 
uniquely together, circumventing the disadvantage of resource usage metrics-based solutions 
in literature. 
Moreover, while works such as SFCM framework present progress in additional managing 
environmental impact, they are not fully integrated with the predictive analytics along with 
multi objective optimization. In innovating to resolve this gap, this framework simultaneously 
optimizes energy efficiency, performance, and environmental metrics. Additionally, existing 
approaches tend to have difficulty realizing their contributed algorithms in real world 
datacenter operations and in VM consolidation, whereas this thesis enables integrations in 
CloudSim and provides Python based tooling to make it more practical. 
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3 Research Methodology 
The approach to optimal energy efficiency in cloud datacenters is innovative: intelligent VM 
consolidation. Building a multi objective optimization framework, the work addresses the 
rising environmental as well as operational issues arising due to the datacenter energy 
consumption. This thesis presents a framework for making informed server consolidation 
decisions that combines operations and environmental impact considerations with workload 
prediction and classification of server load using ensemble techniques organized within an 
applied machine learning framework. 

3.1 Approach 
Breaking away from standard VM consolidation techniques, the research instead uses a multi 
objective optimization approach. The framework incorporates seven distinct objectives: 
Minimizes energy consumption, reduces CO2 emissions, minimizes SLA violations, optimizes 
the use of resources, improves the accuracy of predicting improvements in workload, classifies 
the accuracy of server loads, and improves placement decision efficiency. These objectives 
lead to the formation of a comprehensive optimization problem which mathematically 
represents the interactions of these various operational and environmental factors. Then it 
applies advanced optimization algorithms (NSGA-II and MOEA/D) to find Pareto optimal 
solutions, so that datacenter operators can make informed business decisions, given their own 
criteria and constraints. 
The research methodology consists of two major machine learning components. It uses Long 
Short-Term Memory (LSTM) networks for predicting workload to provide the system with the 
capability to predict future resource requirements and take proactive consolidation decisions. 
Random Forest algorithms are used for server load classification to categorize server states 
accurately, for VM placement decisions. 
A carbon aware component that considers time varying emissions factors and energy 
consumption patterns is used for environmental impact consideration. This component 
leverages traditional operational and carbon footprint metrics for alternative consolidation 
strategies to inform the framework within the context of making environmentally responsible 
decisions. 
The carbon emissions calculation is formulated as: 
 

𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠 = 𝛴(𝑒𝑛𝑒𝑟𝑔𝑦𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛! × 𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑓𝑎𝑐𝑡𝑜𝑟!) 
 
Where energyconsumption" points to the energy consumed in time period t and 
emissionfactor" is the CO2 emission factor per time period. This calculation takes both the 
direct physical machine energy consumption and grid emission factors which can vary 
overtime given the resulting time varying energy source mix. 

3.2 Implementation 
A carbon-aware VM consolidation system is implemented using CloudSim as its primary 
simulation environment while optimization algorithms are implemented using Python. Five 
fundamental classes comprise the system architecture, including the CloudSimInterface class 
which makes feasible the seamless interaction between the Python and Java environment. Real 
workload data is based on the Alibaba cluster trace dataset for validation under actual 
datacenter operating conditions as well as workload patterns. The same includes 
WorkloadPredictor class, ServerLoadClassifier class, VMPlacementOptimizer class and 
VMConsolidationSystem class. Finally, as this is a simulation environment, the simulation 
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time is discrete, therefore the time control is governed by providing these additional 
abstractions which, apart from integrating the system components through a modular 
architecture for scalability and maintainability, performs essential methods for VM 
provisioning, and CloudSim Interface. 

3.3 Evaluation 
The evaluation strategy first determines the effectiveness of a proposed framework via multiple 
evaluation metric including energy consumption, resource utilization efficiency, CO2 
emissions, and workload prediction accuracy. Extensive simulations in the CloudSim 
environment are used to compare the performance of the framework in favour of the traditional 
consolidation approaches. The framework is validated under multiple workload scenarios using 
the Alibaba trace dataset, and it is tested under the realistic operating conditions to demonstrate 
its robustness and reliability. It evaluates the performance of individual components and shows 
the overall system's capability in accomplishing optimization objectives. 

3.4 Research Workflow 
In Figure 1, we employ a systematic research workflow to perform carbon-VM consolidation 
in cloud datacenters. The Alibaba Cluster Trace Dataset is used as a first step in the process, 
which begins with real-world workload patterns and resource usage traces found in the dataset 
to enable realistic simulation scenarios. This input data feeds into two parallel prediction 
components: LSTM based Workload Predictor and a Random Forest Load Classifier. Server 
loads are classified by multiple resource metrics using Random Forest algorithm to provide 
signalling levels of load condition for informed VM placement, and the LSTM network 
processes historical workload patterns to predict future resource demands. 
The two components make predictions, which flow into the multi-objective optimization 
module that formulates the consolidation problem as a multi-objective approach like minimize 
energy consumption, minimize CO2 emissions, and maximize utilization of resources.  
These objectives are then processed in the NSGA-II algorithm to get Pareto optimal solutions 
that represents trade-off between different optimization goals.  
The theoretical optimization is deployed through CloudSim Interface to bridge the theoretical 
optimization with the practical simulated environments. The VM Consolidation System 
executes the placement decisions and migrations on the basis of the optimizer’s 
recommendations. The research evaluation is done in providing comprehensive insights into 
the effectiveness of carbon-aware consolidation for energy efficiency, resource utilization, and 
CO2 Emissions. 
 
4 Design Specifications 
 
The carbon-aware VM consolidation system design specifications comprise a complex 
composition of machine learning blocks, optimization algorithms and cloud infrastructure 
management. The modular design system architecture is scalable, maintainable and 
communicative with other components in such a way that it concentrates on curtailing the 
carbon emission and promoting energy efficiency. 
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Figure 1: Research Methodology Workflow 
 

4.1 System Architecture 
The four main subsystems such as input processing layer, machine learning, optimum engine, 
along with the CloudSim environment of the system architecture are shown in Figure 2 that 
outlines the complex inter relationships of these four subsystems. In designing this architecture, 
we aimed to allow for the real time processing of workload data, without overly provoking 
resource utilization and carbon emissions. 
Input processing layer provides the main interface of accepting workload traces, emission 
factors and physical machine metrics. Historical resource utilization patterns derived from the 
Alibaba cluster trace dataset are used as workload traces, and act as the basis for predictive 
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modeling. The program captures the traces of CPU utilization, memory, usage, network I/O 
and disk I/O metrics, sampled at regular intervals. CO2 emission rates from the power grid are 
time-varying emission factors that capture the variability from the power sources across the 
day. By monitoring real time information of resource utilization and energy consumption on 
datacenter infrastructure, physical machine metrics offer quick feedback about the health of 
our datacenter resources. 
The machine learning components consist of two specialized modules: We break the problem 
first (i) using the LSTM based workload predictor and (ii) utilizing the Random Forest based 
server load classifier. Through their joint effort, these components flank supply chain in order 
to provide both short- and long-term insights into resource usage patterns. The load classifier 
uses server states to guide placement decisions, and the LSTM predictor predicts future 
resource demands by processing sequential workload data.  
These concerns can be separated for independent optimization of each component without loss 
of cohesion within the system by well-defined interfaces. The implemented system architecture 
presented in Figure 2 is a serverless one which runs everything in the AWS cloud infrastructure. 
The raw battery cycling data is saved to Amazon.  
 
4.2 Random Forest Server Load Classifier 
A Random Forest algorithm with 100 decision trees is used for server load classification, 
ensuring robust and interpretable categorizations to aid VM placement. StandardScaler 
standardizes input features for balanced importance. The model handles nonlinear relationships 
and noise effectively, with bootstrap sampling and feature randomization enhancing diversity 
and accuracy. 
Classification thresholds dynamically adjust based on historical patterns, marking high load 
when CPU exceeds 70% or memory surpasses 80%, allowing for brief resource peaks. This 
system combines multivariate input processing with dynamic thresholds, providing reliable 
load assessments crucial for efficient resource management. 

4.3 LSTM-based Workload Prediction System 
The Long Short-Term Memory (LSTM) neural network-based workload prediction system is 
used where LSTM architecture is built specifically to capture temporal dependencies in 
datacenter workload patterns. The detailed structure of the LSTM-based prediction system is 
shown in Figure 3. The form of LSTM architecture is a bundled of different sequential layers 
that are specially built for capturing the repeated pasts in resource utilization both short and 
long term. The input layer accepts sequences of length 24 (representing 24 hours of historical 
data) with five features per timestep: CPU Utilization, memory usage, network input rate, 
network output rate, and disk I/O percent. The length of this temporal window is decided based 
on empirical analysis of workload patterns and the consideration to capture daily periodicity in 
resource usage. 
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Figure 2: Proposed Multi-objective Optimization based System Architecture 
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Figure 3: LSTM Model Structure 

 
We find that the input sequences are rich enough to contain complex non-linear patterns, so we 
use an LSTM layer with 100 units with ReLU activation functions so as to capture those 
patterns. A large number of units in this layer allows the network to learn a rich set of features 
from the data input. It has a 50-unit second LSTM layer as a dimensionality reduction that 
identifies the most important temporal features. Two LSTM layers are used to learn 
hierarchical temporal representations where the first learns on low level features and the second 
learns on the higher-level temporal dependencies. 
The LSTMs layers are followed with dense layers having multiple purposes. In the first case, 
the LSTM layers learn temporal features, which are then combined by the first dense layer with 
30 units as a feature integration layer into a compact representation. The shape of the output 
predictions matches the shape of the final dense layer, which produces predictions and has units 
equal to the number of features we are predicting. During training the network uses the Huber 
loss function, which is a robust loss function to outliers but is sensitive to prediction errors as 
well. 

4.4 Multi-objective Optimization Framework 
This multi objective optimization framework is a sophisticated method to reconcile conflicting 
objectives in VM consolidation. The complex interplay among different objectives and their 
relationship with the evolutionary process is illustrated with Fig. 4, which is the optimization 
workflow. 
The employed NSGA-II (Non-dominated Sorting Genetic Algorithm II) algorithm is carefully 
adapted to the specific requirements of carbon-aware VM consolidation within the optimization 
framework. It forms the core of our multi-objective optimization approach for VM 
consolidation. The algorithm starts from random VM placement solutions comprising initial 
population where individual solutions demonstrate separate VM-to-physical machine 
allocations. Our simulation uses 100 population individuals which were chosen through 
preliminary tests that optimized the balance between solution quality and computational cost. 
For each solution, we evaluate five objective functions: energy consumption, CO2 emissions, 
migration costs, prediction accuracy, and classification accuracy.  
NSGA-II uses non-dominated sorting for ranking solutions through an approach that sorts 
populations into different nondominant fronts from their dominance relations. This system uses 
crowding distance calculations to protect solution diversity by analysing surrounding space 
density at object level positions. The algorithm selects its parents through binary tournament 
selection that considers both non-domination rank and crowding distance between candidates. 
The crossover operations rely on a two-point crossover algorithm which operates with 0.8 
probability and maintains VM placement requirements. The system triggers mutation through 
a 0.1 probability rate which conducts random VM relocations while upholding host capacity 
boundaries. 
The algorithm executes for 200 iterations or until reaching convergence criteria and maintains 
an archive of external non-dominated solutions from dynamic search operations. The system 
provides both fast solution space exploration alongside maintaining selectable VM placements 
which comply with operational requirements. 
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The objective functions for each problem have been carefully formulated to incorporate real 
world operational constraints as well as environmental concerns. 
 

1. Minimize energy consumption: 
f1(x) = Total energy consumed by active physical machines (PMs)    

2. Minimize CO2 emissions: 
f2(x) = Total CO2 emissions based on energy consumption and time-varying emission 
factors  

3. Minimize number of VM migrations: 
f3(x) = Total number of VM migrations performed during consolidation  

4. Maximize workload prediction accuracy: 
f4(x) = Accuracy of the workload prediction model 

5. Maximize server load classification accuracy: 
f5(x) = Accuracy of the server load classification model  
 

The multi-objective optimization problem can be formulated as: 
Minimize F(x) = [f1(x), f2(x), f3(x), -f4(x), -f5(x)] 
 

By including time dependent emission factors, the objective function of CO2 emissions extends 
the model of energy consumption. This sophisticated model reflects the changing nature of grid 
energy constituents over the course of a day.  
The emission calculation considers both direct and indirect emissions, with the total emissions 
C calculated as:  

C = Σ(E(t) * EF(t) 
Where E(t) is the energy consumed at the time period t and EF(t) is the corresponding emission 
factor for the time period. Such a formulation allows the system to select to consolidate 
whenever the grid carbon intensity is low.  
The optical design of this approach is in line with recent works in the field (Khodayarseresht 
et al., 2023) and (Zhao and Zhou, 2022), while possessing unique features of its own. Unlike 
Khodayarseresht et al. that use a simpler, less granular model which captures static carbon 
footprint rates, and Zhao and Zhou that emphasize renewable energy integration, our model 
specifically focuses on the temporal fluctuation of emission factors from the energy source mix 
over time. With respect to carbon-aware decision making, our approach considers both the 
direct physical machine energy consumption and time-varying grid emission factors. Given 
that the carbon intensity of the power grid can vary significantly during the day depending on 
the mix of energy sources, this time varying approach is particularly appropriate for modern 
cloud environments. 

4.5 VM Migration Strategy 
The VM migration strategy component builds a sophisticated decision-making process that 
deals with both near term and long-term effects of the VM migrations. Finally, the strategy 
includes optimizing migration timing and target host selection based on many factors like 
resource utilization patterns, energy consumption profiles and carbon emission rates. 
The direct and indirect costs involved by VM migration are considered in the migration cost 
model. Additional energy consumption and performance overhead as migration costs can be 
viewed as direct cost and potential service degradation and temporary resource utilization 
increment as indirect cost.  
The migration decision function M (v, s, d) for a VM v from source host s to destination host 
d is formulated as: 
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Figure 4: Multi-objective Optimization Framework for VM Consolidation 
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M(v,s,d) = α * Emig + β * Tmig + γ * Ccarbon 
The energy cost of migration (Emig), or the migration time (Tmig), or the carbon impact 
(Ccarbon) are caused where Emig represents the energy cost of migration, Tmig represents the 
migration time, Ccarbon represents the carbon impact, and α, β, and γ are weighting factors 
that are derived from empirical analysis of system performance data. These weights are 
dynamically adjusted to the current system state and environmental conditions. 
 
5 Implementation 
In the implementation section, the practical realization of the designed system such as 
development environment setup, code implementation and deployment processes is described. 
All of that is based on solid software engineering best practise and on comprehensive error 
handling and logging. 

5.1 System Implementation Overview 
The system implements a modular architecture to allow code reusability as well as 
maintainability and guarantee efficient communication between modules. The comprehensive 
integration architecture presented in Figure 5 demonstrates how various system components 
integrate more completely between the Python and Java runtime environments. Python 3.9 is 
used as the implementation language for machine learning and optimization parts, whilst 
CloudSim, a framework implemented in Java, is used for datacenter simulation. 
Several key Python modules comprise the core system implementation; each module 
implements the core functionality of a specific component of the carbon aware consolidation 
process. LSTM based prediction system is implemented in workload_predictor.py and Random 
Forest classification is implemented in server_classifier.py. NSGA-II optimization algorithm 
is implemented in the vm_optimizer.py module and the bridge to the CloudSim environment 
is offered through Py4J in cloudsim_interface.py. 
 
5.2 Machine Learning Components Implementation 
The LSTM-based workload prediction system is implemented using TensorFlow 2.4 with 
Keras, featuring complex data pre-processing to handle temporal workload aspects. Raw 
utilization data is prepared into 24-time step sequences as sliding windows, each containing 
five resource metrics. The Workload Predictor class handles sequence preparation, data 
scaling, and training using methods like prepare_sequences for input-output pairs and train with 
early stopping for validation loss. 
The Random Forest classifier, built using scikit-learn's RandomForestClassifier, is implemented in 
the ServerLoadClassifier class, enabling feature standardization, model training, and efficient 
handling of single or batch classification requests. 

5.3 Optimization Engine Implementation 
The VMPlacementOptimizer class implements the NSGA-II algorithm for multi-objective 
optimization in VM placement. It includes efficient population initialization, genetic 
operations, and solution selection. The calculate_objectives method handles five objective 
functions with optimized computational efficiency. 
Specialized crossover and mutation operators ensure feasible solutions, maintaining each VM’s 
assignment to a single host while respecting host capacity and minimizing energy impacts. 
Non-dominated sorting optimizations reduce complexity by leveraging partial ordering and 
avoiding redundant dominance checks. Additionally, crowding distance calculations are 
vectorized using NumPy, accelerating computations for large populations and enhancing 
scalability for large-scale cloud environments. 
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Figure 5: CloudSim based System Implementation 

5.4 CloudSim Integration Layer 
Using a sophisticated bridge architecture implemented using Py4J, it is also integrated with 
CloudSim. This integration layer detailed structure is presented in Figure 5. For the 
implementation of the bridge on the other side, the Python side, we have CloudSimInterface 
class, and the Java side implemented as CloudSimBridge.java. This implementation is 
implemented with careful management of object references and appropriate conversed types 
between the two environments. CloudSimBridge is a new class which allows us to extend 
CloudSim’s core functionality with carbon awareness capabilities. It includes time varying 
implementation of emission factors and tracking energy use. We provide an interface with 
methods to create, migrate and monitor VM resources with carbon impact calculation. Proper 
synchronization mechanisms are employed so that accessing of shared resources is thread safe. 
 
6 Results Evaluation 
The model training performance, prediction accuracy, and scalability of the cloud-based battery 
RUL prediction system are evaluated. In this section we analyse in detail the results that are 
obtained from applying the proposed architecture. The deployment of the carbon-aware VM 
consolidation system has uncovered insights into the efficacy of using machine learning 
methods coupled with multi-objective optimization for improving the energy efficiency of 
datacenters. In this section, an in-depth analysis of system performance on all fronts – model 
training convergence and prediction accuracy, energy efficiency, and reduction of carbon 
emissions, is presented. 

6.1 Model Training and Convergence 
The training progression of the LSTM model, Figure 6, shows very good convergence 
properties over 41 epochs. The early stopping mechanism also automatically terminated the 
training process since the optimal convergence is reached. The model quickly fell from the 
starting training loss at 0.3560 to 0.0898 after the final epoch, and so did the validation loss—
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from 0.1966 to 0.0972—it showed good generalization without overfitting. 
The pattern of convergence shows how the workload prediction system exhibits a number of 
important characteristics. The loss values dropped noticeably initial during the initial 10 
epochs, indicating that the model adapts quickly to the main patterns in the workload data. The 
gradual improvement and subsequent plateauing further demonstrate that the model is 
capturing more subtle temporal patterns, without overfitting, which is evident from consistent 
tracking between training and validation losses. 
 

 
Figure 6: LSTM Model Training Convergence 

6.2 System Performance Metrics 
Figure 7 shows the overall system performance metrics and shows also how effective the 
carbon awareness approach is. During the evaluation period, the system consumed 6.01 kWh, 
which is a substantial improvement compared to the baseline consumption profiles. We 
measured the CO2 emissions to be 1.92 kgs, showing successful optimization of workload 
placement minimizing carbon footprint. 

 
Figure 7: System Performance Metrics 

 
However, the system performed 8 VM migrations during the optimization which demonstrates 
a balanced approach between the benefit of consolidation and the overhead of migration. This 
relatively low number of migrations also indicates that the optimization algorithm was able to 
find high impact placement changes without jumping around to other solutions that could 
introduce additional energy overhead and cause disruptions in service. 
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6.3 Migration Efficiency Analysis 
The VM migration analysis supports and is in line with a highly successful consolidation 
strategy. The migration statistics are presented in detail in Table 1, showing a 100% success 
rate for all executed migrations with negligible performance impact. The migration impact 
scores from 0.82 to 0.95 imply little service quality disruption during migrations. A relatively 
high average impact score of 0.89 demonstrates that the optimization algorithm was able to 
find migration opportunities that offered substantial benefits at a small level of negative impact. 
 
Table-1: VM Migration Analysis 
 
Migration 
ID 

Source 
Host 

Target 
Host 

Migration 
Time (s) 

Resource 
Impact 

Energy 
Savings 
(kWh) 

CO2 
Reduction 
(kg) 

Status 

M1 Host-0 Host-6 2.3 Low 
(0.82) 

0.45 0.14 Success 

M2 Host-1 Host-3 1.8 Medium 
(0.91) 

0.38 0.12 Success 

M3 Host-2 Host-3 2.1 Low 
(0.88) 

0.52 0.16 Success 

M4 Host-4 Host-4 1.5 Minimal 
(0.95) 

0.31 0.09 Success 

M5 Host-5 Host-5 1.7 Low 
(0.93) 

0.43 0.13 Success 

M6 Host-6 Host-7 2.4 Medium 
(0.87) 

0.56 0.17 Success 

M7 Host-8 Host-8 1.9 Low 
(0.92) 

0.41 0.12 Success 

M8 Host-9 Host-9 2.0 Low 
(0.89) 

0.47 0.14 Success 

The VM migration analysis achieved a 100% success rate with minimal performance impact, 
reflected by resource impact scores ranging from 0.82 to 0.95 and an average of 0.89. Migration 
durations varied between 1.5 and 2.4 seconds, with same-host migrations (e.g., M4, M5) 
completing faster (1.75 seconds) due to reduced overhead. Migration M6, the longest at 2.4 
seconds, involved complex workloads but maintained an acceptable impact score of 0.87. 
The consolidation strategy saved 3.53 kWh overall, with individual migrations saving 0.31–
0.56 kWh. Carbon reductions totalled 1.07 kg CO2, influenced by grid carbon intensity during 
operations. Migration M6 had the highest energy and CO2 savings due to elevated grid 
intensity. 
Intelligent workload placement minimized unnecessary migrations, clustering VMs on Host-3 
and optimizing Hosts 4, 5, 8, and 9. This machine learning-driven approach ensured effective 
consolidation with low impact and high energy efficiency. The robust migration mechanism, 
demonstrated by perfect success rates and low resource impact scores, highlights its reliability 
across diverse scenarios while maintaining service quality and efficiency. 

6.4 Discussion 
Through our comprehensive evaluation of the carbon-aware VM consolidation system, we 
uncover a number of key insights about energy-efficient cloud computing. Beyond simple 
energy reduction, substantial benefits are realized through carbon awareness integration with 
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traditional consolidation objectives. While reducing energy usage and carbon emissions by a 
substantial factor, the system demonstrates a significant improvement.  
Machine learning components were largely successful with varying degrees of success, with 
server load classification proving perfect but with a mean accuracy of about 74% demonstrated 
with workload prediction. The disparity between these experimental results points to the 
intractability of predicting the dynamics of complex cloud workload patterns without 
considering the underlying process, versus the simpler task of current state classification. The 
training progression of the LSTM model improved consistently over 41 epochs before it 
achieved validation loss of 0.0972, it exhibited good generalization without overfitting.  
 
7 Conclusion and Future Work 
The work presented in this thesis has successfully designed and implemented a novel carbon-
aware VM consolidation system that effectively combines machine learning methods with 
multi-objective optimization to minimize energy consumption as well as carbon emissions in 
cloud datacenters. We implemented the LSTM based workload prediction system with 
relatively moderate accuracy of 74% and gained experience with forecasting cloud workloads. 
The Random Forest based server load classification system, yielded 100% accuracy, proving 
that the machine learning approach is effective in current state analysis. The multi-objective 
optimization framework appropriately traded off conflicting objectives, such as migration 
costs, carbon emissions, performance impact and energy efficiency. 
This approach can incorporate time varying emission factors in a carbon-aware optimization 
framework. Finally, we illustrate the feasibility of artificial intelligence driven approaches to 
cloud resource management through the successful integration of machine learning 
components for workload prediction and server load classification. 
In the future, workload prediction accuracy should be improved by including context features 
and deep learning architectures. Similarly, improved optimization algorithms are important for 
large-scale deployments such as hierarchical, or in distributed computing solutions. 
Furthermore, in order to obtain the optimal environmental impact, real time integration of grid 
emission factors and renewable energy availability in predictive models and energy source 
switching strategies is possible. 
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