~

-"‘f’“
\ National
College

Ireland

Longitudinal risk-based security assessment
of Docker software container images

MSc Research Project
MSc in Cloud Computing

Alric Mendonsa
Student 1D: 21227462

School of Computing
National College of Ireland

Supervisor: Sean Heeney

National College of Ireland National

Project Submission Sheet Col]ege of
School of Computing Ireland
Student Name: Alric Mendonsa
Student ID: 21227462
Programme: MSc in Cloud Computing
Year: 2024-2025
Module: MSc Research Project
Supervisor: Sean Heeney
Submission Due Date: 12/12/2024
Project Title: Longitudinal risk-based security assessment of Docker software
container images
Word Count: 7079
Page Count: 7]

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature: Alric Mendonsa

Date: 25th January 2025

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). O
Attach a Moodle submission receipt of the online project submission, to | [J
each project (including multiple copies).
You must ensure that you retain a HARD COPY of the project, both for | [J
your own reference and in case a project is lost or mislaid. It is not sufficient to keep

a copy on computer.

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only
Signature:

Date:
Penalty Applied (if applicable):

Longitudinal risk-based security assessment of Docker
software container images

Alric Mendonsa
21227462

Abstract

In today’s cloud-pushed software program improvement ecosystem, Docker con-
tainers have emerged as a cornerstone for utility deployment because of their port-
ability and scalability. However, the increase of vulnerabilities inside Docker images
poses vast safety dangers, mainly whilst left unmonitored over time. The study in-
vestigates the longitudinal dangers related to Docker images hosted on DockerHub
with the aid of using a comparative evaluation of open-source vulnerability as-
sessment scanning tools ”Trivy” and ”Grype” towards AWS’s Elastic Container
Registry (ECR) scanning service. A dataset of Docker images was been put to test
to periodic vulnerability checks, with the aim of getting the outcome analyzed for
detection efficiency, coverage, and timeliness. Using AWS offerings which include
EC2, ECR, S3, CodeBuild, and CodePipeline, an automatic CI/CD pipeline turned
into applied to test box photographs and keep outcomes for visualization. The find-
ings show actionable insights into the evolving safety of containerized applications,
which presents a strong method to improve the aspect of vulnerability control prac-
tices. This observe underscores the significance of integrating multi-device checks
to enhance safety controls in containerized environments.

1 Introduction

1.1 Background

The concept of cloud computing, microservice, and CI/CD pipeline is relatively new and
has revolutionized the whole process of writing, deploying, and maintaining software.
One of the primary drivers behind this change is the use of containerization technology,
of which Docker is the most famous. Docker currently offers a thin and virtualization
technology which then simplifies deployment of software application with their dependen-
cies to different operating systems environments. This simplicity has led Docker today as
one of the most crucial tools in DevOps as well as cloud-native applications development.

Nonetheless, similar to virtually all emerging technologies that have gained widespread
popularity within a short period, Docker comes with newly emerged security concerns.
Container images downloaded from registries such as DockerHub may have the associated
risks such as vulnerabilities or misconfiguration that are likely to affect the organizations
which use the containers. For example, Docker containers actually run on top of host
OS kernel, which means that host’s kernel is shared and under all conditions this makes

the attack surface larger if good security measures are not provided. As a result, con-
tainer security especially in Docker containers has become a major issue of concern in
organizations that rely on containers for production applications.

The conventional model of security censed problems to be solved at a particular mo-
ment and does not take account of system changes. Unfortunately for Docker containers,
this is a static method because the images are constantly being rebuilt with new versions
of the software and new patches. These changes can involve creation of new vulnerability
or rectification of existing one which requires the concept of threat management to be
more proactive.

1.2 Problem statement

Docker images themselves may be updated multiple times during the lifespan of the im-
age and the security posture of an image can change over its usage. Currently available
vulnerability assessment tools mainly provide point-in-time assessments for software con-
tainers and fail to consider the dynamic characteristics of the technology. This raises
questions on the prospects of Docker containers’ security over time especially in produc-
tion where new threats accumulate over time. Also, there might be old data in public
registries, most of which are insecure, and which people end up pulling into their local
environments.

Consequently, there is a high demand for a security evaluation that can be carried
out on a frequent basis to detect Docker images that may contain security threats. This
research seeks to fill this lacuna by carrying out a risk-based security analysis of Docker
software container images as they occur, with the view of proposing strategies for security
risk management.

1.2.1 Research question

What specific threats do Docker software container images pose over time and how can
a comparison-based approach using existing Docker container vulnerability scanners be
used to determine the overall efficiency to gain new insights on vulnerabilities to enhance
the security control of these containers ?

1.3 Research aim and objectives

The primary objective of this research is to establish a long-term Docker container image
risk-based security assessment process. This framework will track images over time and
track vulnerabilities as well as risks on an ongoing basis. The specific objectives of the
research are:

1. To carry out a first level vulnerability scan of docker images.

2. To provide a serial research of security threats linked with Docker containers with
an aim to determine recurrent trends and patters.

3. To incorporate the risk analysis to prioritize the different vulnerabilities in order to
prioritize the risks that are most dangerous.

4. In-order for the mitigation strategies to be proposed and evaluated for Docker
containers in the production environments it was necessary.

1.4 Significance of the study

The value of this statement is in the long-term perspective towards security of containers
that was employed in this research. This research does not advocate a once approach
to the security of Docker images but aims at presenting a framework that may be used
continually to ensure that an organization’s environment is secure while using Docker
images. The result of the current investigation will be useful for cloud-native application
developers, Cybersecurity personnel, and DevOps engineers, who implement Docker con-
tainers in production settings. In addition, knowledge derived from the following research
will guide the best practices in containerized workloads security in AWS and other cloud
service providers.

2 Related Work

2.1 Overview of Containerization and Docker

Docker is a form of operating system virtualization called containerization but even it
has antecedents. Advanced as early as chroot in Unix or Linux Containers also known as
LXC introduced some simple methods for the isolation of process and its dependencies.
These stand-point technologies set the stage for enhanced and advanced containerization
innovations proceeding forward. Docker which was launched in the year 2013 took the
previous ideas and foundations and made it easier for the users to create, deploy as well
as to manage containers easily (Hradec et al., 2022).

Docker containers embed an application with all its dependencies allowing some level
of portability across development, test, or production environment. This encapsulation
reduces the famous issue of the ‘it works on my machine’ since applications will work the
same way irrespective of the environment they are run in (Efe et al., 2020).

Docker has a layered structure; however, the kernel is the most important part of
Docker’s architecture which is known as the Docker Engine. Moreover, Docker Hub also
satisfies as another repository through which developers can host their images in cloud.
Docker rightfully possesses the main role in what has been established as the modern
software containerization based on this architecture and has spurred an extensive range
of tools and practices that help implement DevOps and continuous delivery (Khang et
al., 2023).

2.2 Security challenges in Docker

While Docker is beneficial in the deployment of applications, it raises major questions
on the security of containerization that organizations will have to respond to in order to
keep containerization secure.

One is that the containers can be misconfigured and this results in creation of loopholes
for the containerized applications. Many users fail to properly configure security during
the creation of the container or its orchestration; therefore, loses become exposed with
entry points to the attackers. Moreover, it is possible to raise concerns about publicly
available Docker images because in many cases these very images may contain old software
with known holes or other malicious code.

Furthermore, containers longevity is quite short, making basic security practices ex-
tremely challenging. Because containers are often fleeting and created and destroyed

constantly, it becomes challenging to maintain an inventory of security policies and com-
pliance. This dynamic environment also causes weaknesses in the visibility and monit-
orability when it is difficult for an organization to identify and respond to the threat in
real time.

Another concern is concerned with how container containers’ communication is going
to be done. Lacking proper implementations of network segmentation and user access
controls, an adversary is capable of taking advantage of a basic container to obtain full
access into another. Thus, it is important that organizations develop a sound security
plan that would entry the program to constantly monitor, scan and input recommended
measures toward mitigating such risks.

2.3 Vulnerabilities in Docker images

This paper provides the assumption that vulnerability represents one of the main threats
in Docker environments with the Docker images themselves containing vulnerabilities. A
work that examined the sensitivity of the public Docker images and was performed by Efe
et al. (2020) observed that a significant proportion of the Docker images in Docker Hub
exposed significant open vulnerabilities correlated with administrative misconfiguration
and use of outdated libraries. These vulnerabilities render the system prone to attack if
the vulnerabilities are not quickly detected and neutralized and result in compromise of
the host system and its resources (Mills et al., 2023).

In addition, ordinary third-party pictures used in application are often derived from
the internet and do not receive particularly stringent security checks. These images
are deployed from public repositories and vendors where developers do not undertake
strict scrutiny processes hence raising the probability of coding their applications with
vulnerable components. This practice clearly shows why it is essential to have efficient
vulnerability scanning to evaluate the Docker images integrity (Royer et al., 2022).

2.4 Shared kernel vulnerabilities

The other major concern that’s related to Docker are the architecture of Docker based
on the shared kernel model. Unlike other virtual machines that work with own kernel
instance, Docker containers share kernel with the host operating system. This shared
architecture increases the threat of Kernel-level attacks, where an attacker has the ad-
vantage of rooting around inside the host operating systems’ kernel to get a hole into the
container (Schweinar et al., 2024).

Another study by Royer et al. (2022) only proves that docker is vulnerable to privilege
escalation attacks, while kernel security patches for docker should be updated and proper
access controls should be in force. Because of the integration between containers and
the host kernel, incorporating of solid isolation measures forms the core that needs to be
protected in the entire system architecture.

2.5 Registry security issues

Docker Helm charts are used often in distributing Docker images with the help of public
container registries like Docker Hub. But few of these registries have strong security
measures to minimize risks on the organizations that have to rely on them. There is

a notable problem of image manipulation where people attempt to make changes to an
image that will introduce a backdoor or malware (Thorn et al., 2022).

Additionally, the variety of images residing in public registries is not always checked
for vulnerabilities before being published and made available for download. The absence
of adequate security measures beforehand leads to the following supply chain risk for
organizations that rely on these images for their containerized applications (Mens, 2024).
Research has shown that a preeminent registry level scanning and verification mechanism
is needed to improve overall security of container environments (Kim et al., 2024).

2.6 Existing vulnerability assessment tools

Due to characteristic security issues of Docker, some tools had been designed to check
vulnerabilities of Docker images and containers. Different of these tools work in different
ways and come with different functionalities to enable organizations to choose the best
tool to use when it comes to putting into practice security measures.

2.6.1 AWS Inspector

AWS Inspector is one of the most used security assessment services that work well with
Docker containers running on AWS. This service seeks to go through a containers search
for common vulnerabilities and compile a report of what it discovers. As an AWS service,
AWS Inspector excels at pinpointing static risks but it does not have the functionality
for real-time risk monitoring (Schouten et al., 2023).

Consequently, the adoption of AWS Inspector should be backed up by other tools, pro-
cedures to continually monitor the security conditions of containerized applications.

2.6.2 Clair and Anchore

Clair and Anchore are very specific tools developed for processing vulnerability scans of
Docker images. Clair scans images for threats that are inherent in the software that may
be included within the images that developers use. However, Anchore introduces another
level of checks as it provides policy-based assessments, to check that images used meet
the security policies of the firm (Khang et al., 2023).

However, both Clair and Anchore have the ability to be built into the CI/CD pipeline to
ensure that there are tests for secure images during the build. This integration enhances
the timely identification of vulnerabilities so that developers can solve security problems
without going to the production contexts (Kim et al., 2024).

2.6.3 Snyk

Another beneficial tool that Snyk is that it offers a constant check on Docker containers.
It works in parallel with container repositories and scans images for newly found vulner-
abilities non-stop, and notifies users every time a new vulnerability has been found (Mills
et al., 2023). The ability to monitor an image over time also fits under the maturity
concept of longitudinal security assessment that makes the Snyk solution fundamental to
evaluate the security posture in the containerized environment (Mens, 2024).

Together with Snyk, other tools for vulnerability assessment can be used to improve the
security situation in organizations and prevent new threats endangering containerized
applications.

2.7 Longitudinal security analysis

Longitudinal security analysis involves the regularity and periodical examination of sys-
tems as opposed to the conventional once over glance at the system. This is even more
valuable in environments of change such as Docker where images and containers are often
evolving (Sion et al., 2023).

2.7.1 Dynamic-risk profiles

It is important to point out that another strength of Longitudinal analysis is the capacity
for assessment of variation in risk of the particular system in time. As software packages
or the patch is updated on the Docker images, the risk level constantly changes, due to
the introduction of new and/or avoidance of some. In that way, longitudinal assessments
can contribute to defining patterns of vulnerability occurrences so that the forecasts and
the preemptive actions could fit them adequately (Thorn et al., 2022).

For instance, a longitudinal study may show that, or kinds of vulnerabilities occur at
given times or after some updates are made. This paper seeks to identify paradigm shifts
in organizations that, when understood, will enable organizations to employ security
measures effectively to meet their needs.

2.7.2 Longitudinal security of containers

There have been studies on longitudinal security analysis in the traditional software sys-
tems; however, relatively few studies have focused on the Docker containers case.” Jenkins
et al. in their work indicate that continuous monitoring can go a long way in improving
the security of the containerized systems. However, many of them are conducted at a
specific period and, therefore, leave gaps that require the development of more compre-
hensive frameworks for long- term analysis (Royer et al., 2022).

Therefore, more studies are needed to identify approaches that enable continuous assess-
ment of security in containerized environments to allow the organization to change from
one implementation to another as threats and risks evolve over time.

2.8 Risk-based assessment of Docker containers

Risk management approach to security evaluation categorizes the risks by the likelihood
of their being exploited. This means that through this method, resources can be used
appropriately since the main threats of an organization are addressed in different stages
first (Khang et al., 2023).

Let’s take a look at the 5 parts that make up the CVSS

This is a generally appreciated structure for characterizing the significance of security
openings called the Common Vulnerability Scoring System (CVSS). When calculating a
given vulnerability’s CVSS, organizations are given scores that depend on features such
as exploitability and impact, allowing them to determine which vulnerability is best to
handle first (Thorn et al., 2022). In the case of Docker containers, including CVSS in
risk-based evaluations guarantee timely mitigation of highly vulnerable situations, redu-
cing the possibility of exploitation.

CVSS scores can be used as the basis for the formation of proper security policies and pro-
cedures that organizations may need to manage container security threats in connection
with their business goals (Kim et al., 2024).

2.8.1 Risk-based approaches applied to containers

Risk based solutions applied to the Docker containers have had a variable level of success.
Kim et al. (2024) established that it is possible to elevate the efficiency of security
evaluations by integrating CVSS metrics with other characteristics peculiar to a container,
including the frequency of their utilization or the level of data security in applications
that employ the container.

Including contextual data into risk evaluation allows making more efficient decisions
concerning which risks should be prioritized and where organizational security resources
should be invested. It has been found that this particular approach makes organisations
benefit from general container security and helps them manage their risks more efficiently.

2.9 Encryption of services in cloud platforms - AWS ECS/EKS

With orchestration platform service like Amazon ECS and EKS, there are other kinds
of security challenges to consider. These platforms deal with a set of containers and
control their deployment, scaling, and operations; if not controlled, this might increase
the number of vulnerabilities (Hradec et al., 2022).

2.9.1 Configuration management and policy enforcement

Secure configuration management is critical to container orchestration environments se-
curity. AWS Configurations and AWS TAM enable the desire security practices and
policies to be implemented for container clusters. Through constant checks of the config-
urations, it is possible to detect situations where certain configurations are outside the
standardized policies and thus avoid compromises from misconfigurations (Sion et al.,
2023).

Furthermore, to deal with the access control problem, RBAC is also adopted in orchestra-
tion platforms to minimize the users and services’ permissions so that it is less vulnerable
to threats on containerized applications (Khang et al., 2023).

2.9.2 Protecting networks with container orchestration

Another general component of container orchestration platforms security is the network
security. Security groups, network ACLs, and service meshes are effective ways that can
allow for secure connections between containers and control view access to resources they
require (Mills et al., 2023).

Furthermore, network segmentation within the orchestration platforms can assist in dif-
ferentiating the containers according to sensitivity and their roles would make the envir-
onment to be more secure according to Mens (2024).

The literature presents several studies and models that demonstrate the interaction
between the key benefits of using Docker containers and security issues of this approach.
Though there is increasing research on assessing the security of containers, current and
future trends in containers call for further study on the area. Given the rising openness
of organizational applications to containerization, adequate incorporation of continuous
monitoring, risk assessment, and strong security principles will be critical in protecting a
given organizational containerized setting.

2.9.3 Longitudinal security of containers

There have been limited studies on applying longitudinal security assessment techniques
to Docker containers. Most research on Docker security focuses on snapshot-based vul-
nerability assessment tools or the analysis of static risks associated with containerization.
Jenkins et al. (2023) explored the application of longitudinal assessment techniques to
software systems in general and highlighted their potential for predicting risk trends.
While their work primarily dealt with traditional systems, the insights provided are ap-
plicable to containerized environments. For instance, Jenkins et al. demonstrated how
longitudinal analysis could track changes in security postures and link them to specific
updates or patches.

In the context of Docker, researchers like Schweinar et al. (2024) have stressed the
importance of adopting a time-sensitive approach to container security. Their study
examined how frequent vulnerability scans could help organizations detect security re-
gressions caused by system updates. Additionally, their work pointed out that continuous
monitoring of container images over time could provide actionable insights for preemptive
threat mitigation.

Mens et al. (2024) also emphasized the utility of longitudinal approaches in tracking
vulnerabilities that evolve or persist across multiple updates. Their findings suggest that
implementing such techniques can help organizations understand and address recurring
vulnerabilities, ultimately improving their overall security posture. Despite these prom-
ising findings, there remains a gap in practical implementation, particularly in automating
longitudinal assessments for Docker container environments.

3 Methodology

This section outlines the research methodology employed for conducting a longitudinal
risk-based security assessment of Docker container images. By leveraging a structured
approach that integrates both quantitative and qualitative analyses, this study aims to
systematically evaluate the security posture of Docker images over time. The methodo-
logy comprises four key stages: tool selection, data collection, vulnerability analysis, and
risk assessment. Each stage is detailed below to elucidate the systematic process and
ensure replicability.

4 Design Specification

The research adopts a mixed-method approach to effectively address the research ob-
jectives. This design allows for the integration of numerical data analysis with in-depth
interpretative insights, ensuring a comprehensive understanding of the security landscape.
The following subsections detail the major components of the research design.

4.1 Architectural diagram

Below is the architectural diagram of the solution implemented in AWS :-

Rule fires ro
____1’_‘999[anevent

Amazon EventBridge AWS CodePipeline GitHub repo
! (containing the buidispec ymi
Monitor image 3 & script file to run
push events into ' Trivy & Grype scan)
ECR !
! Mative image scanning '
: results exported !
Dataset Amazon ECR ' i
repo pushed ' H
into ECR Trigger a script | :
from EC2 fo 55Hinte !
ECZtopulli | v
mage from |
 ECR | a I‘-'l <f>
| ey S
|
AmazonEC2 | e) $3 bucket Python script AWS Inspector
Run scans (Sore results & maintain (Parse scan results (Compare visualized
using tools scan reporis) from S3 for visualization scan results from
confugured & analyzing trends) Python script with ECR
- native scan findings)
Dataset docker trivy
repo pulled Docker Engine
from DockerHub
i Open-source
vulnerability

scanning tools

High-level architectural diagram

Figure 1: Architectural diagram

4.2 Tool selection

The selection of appropriate tools is critical for achieving accurate and reliable results in
vulnerability scanning and analysis. For this study, a combination of widely recognized
and robust tools is employed:

e AWS Inspector : Known for its seamless integration with cloud-based environments,
AWS Inspector provides automated security assessments of container images. Its
ability to detect common vulnerabilities and exposures (CVEs) makes it a vital tool
for this research.

e Synk : A developer-centric security tool, Snyk specializes in identifying vulnerabil-
ities in open-source dependencies and Docker images. Its frequent updates ensure
the inclusion of newly identified threats, enhancing the precision of the analysis.

e Clair : Clair is an open-source tool specifically designed for static analysis of vul-
nerabilities in container images. Its layered approach allows for the identification
of issues at various stages of the image creation process.

e Anchore : Offering both vulnerability scanning and policy compliance checks, An-
chore is integral for evaluating security and adherence to best practices in Docker
image configurations.

By utilizing a combination of these tools, the study ensures a multidimensional eval-
uation, reducing the likelihood of oversight due to tool-specific limitations. Additionally,
cross-validation of results from multiple tools enhances the reliability of the findings.

4.3 Data collection

The data collection phase involves curating a comprehensive dataset of Docker images
from public registries, with a primary focus on Docker Hub. This platform is chosen due
to its extensive repository of images and its status as the most widely used container
registry. The data collection process follows these steps:

e Identificatiuvon of Docker images : A diverse set of Docker images is selected, rep-
resenting various use cases such as web applications, data processing, and machine
learning. This diversity ensures the inclusion of images with different levels of
complexity and security requirements.

e Popularity-based sampling : Images are categorized based on their download counts
and community ratings to represent a mix of highly popular and less frequently used
images. This stratified sampling approach allows for the analysis of security trends
across different popularity levels.

e Metadata documentation : Each Docker image’s metadata, including its creation
date, last update, base image, and associated dependencies, is recorded. This in-
formation is crucial for contextualizing the vulnerability analysis.

e Version-control : To facilitate longitudinal analysis, multiple versions of the same
Docker image are tracked over time. This step involves documenting changes in the
image’s configuration, libraries, and dependencies across different versions.

The curated dataset provides a solid foundation for conducting a detailed security assess-
ment, enabling the identification of temporal trends and patterns.

A structured approach is employed to ensure the systematic gathering of relevant
data, allowing for meaningful insights into the evolving security landscape of containerized
environments. The process involves image selection, metadata compilation, and a planned
scanning schedule, each outlined below.

e Image selection To ensure a representative dataset, Docker images are selected
based on a variety of criteria designed to capture a broad spectrum of use cases and
configurations. The selection process involves the following things:

1. Popularity metrics : Images with varying levels of popularity are included by ana-
lyzing their download counts and user ratings on Docker Hub. Popular images
are prioritized because they are more likely to be deployed widely and represent
potential high-value targets for attackers.

2. Official and Community images : Both official and community-contributed images
are included to compare their security postures. Official images, typically main-
tained by software vendors or trusted organizations, are expected to exhibit higher
security standards compared to community images, which may have more variabil-
ity in maintenance practices.

3. Use-case diversity : Images are categorized into key use cases such as web serv-
ers (e.g., Nginx, Apache), databases (e.g., MySQL, PostgreSQL), and development
tools (e.g., Node.js, Python). This ensures the inclusion of a wide range of func-
tionalities, each with unique security implications.

10

By balancing these factors, the dataset aims to reflect the diversity of Docker images in
real-world applications, providing a solid foundation for longitudinal security analysis.

e Metadata compilation Metadata collection is a critical step in contextualizing the
security analysis. For each Docker image, detailed metadata is compiled, including;:

1. Image identification : Unique identifiers such as the image ID and version are
documented to distinguish between different images and track changes over time.

2. Dependemcy information : The dependencies associated with each image, including
base images and libraries, are recorded. This information is essential for identifying
vulnerabilities originating from insecure or outdated dependencies.

3. Tagging and labels : Tags and labels associated with the images are noted to
categorize them based on attributes like environment (e.g., production, testing) or
architecture (e.g., x86, ARM).

4. Update history : Information about the last update of each image is gathered
to evaluate how actively the image is maintained. Actively updated images are
generally less prone to vulnerabilities compared to neglected ones.

The collected metadata serves multiple purposes, including enabling detailed tracking of
security changes, identifying dependency-related risks, and providing insights into main-
tenance practices.

e Scanning schedule A carefully designed scanning schedule is implemented to observe
the evolution of vulnerabilities and assess changes in security posture over time. Key
elements of the scanning process include the following things :

1. Frequency : Images are scanned bi-weekly for a duration of three months. This
interval strikes a balance between capturing sufficient temporal data and avoiding
excessive redundancy in scan results.

2. Tool utilization : The selected vulnerability scanning tools—AWS Inspector, Snyk,
Clair, and Anchore—are employed to perform scans during each interval. Using
multiple tools enhances the reliability of the results by cross-validating findings.

3. Periodic comparisons : Results from successive scans are compared to identify
trends such as the emergence of new vulnerabilities, the resolution of previously
identified issues, or changes in the number and severity of vulnerabilities.

4. Version monitoring : Updated versions of the same Docker images are scanned to
assess the impact of updates on their security posture. This helps in determining
whether updates mitigate vulnerabilities or introduce new risks.

This longitudinal scanning approach provides a dynamic view of the security landscape,
enabling the identification of patterns and trends that might not be apparent from a

single-point-in-time analysis.

e Ethical and practical considerations To ensure the integrity and ethical compliance
of the data collection process, the following measures are adopted:

11

1. Permission and accessibility : Only publicly available Docker images are included
in the dataset. This avoids any legal or ethical concerns associated with accessing
proprietary or restricted resources.

2. Responsible reporting : In cases where critical vulnerabilities are identified, they
will be responsibly disclosed to the image maintainers or relevant stakeholders. This
aligns with ethical research practices and contributes to improving overall security.

3. Data integrity : Rigorous documentation practices are followed to ensure the ac-
curacy and reliability of the collected data. All scans and metadata are securely
stored to facilitate reproducibility and validation.

The structured data collection process outlined above is integral to the success of this
research. By carefully selecting images, compiling detailed metadata, and adhering to
a consistent scanning schedule, the methodology ensures a comprehensive and reliable
assessment of Docker image security. This systematic approach not only facilitates the
identification of temporal security trends but also provides actionable insights for im-
proving the security practices of Docker image maintainers and users.

4.3.1 Longitudinal analysis

A key aspect of this research is the longitudinal assessment of Docker images to observe
changes in their security posture over time. The process involves periodic scanning of
selected Docker images using the tools identified earlier.

e Defined observation period : A specific time frame is established for the longitudinal
study, during which scans are conducted at regular intervals (e.g., monthly). This
approach ensures consistent data collection and allows for the tracking of evolving
vulnerabilities.

e Temporal data analysis : The results of each scan are compared to detect changes
in the number, type, and severity of vulnerabilities. Patterns such as the emergence
of new vulnerabilities or the resolution of existing ones are documented.

e Dynamic dependency tracking : As many vulnerabilities originate from outdated or
insecure dependencies, changes in the dependency tree of each image are analyzed
over time. This step highlights the impact of updates or lack thereof on the overall
security of the image.

This longitudinal approach provides valuable insights into the lifecycle of vulnerabilities
and their persistence, resolution, or exacerbation over time.

4.3.2 Risk-based assessment

Risk assessment is the culminating stage of the methodology, where vulnerabilities iden-
tified during the scanning process are analyzed and prioritized based on their potential
impact. This step guides the formulation of mitigation strategies.

e Severity analysis : Each vulnerability is classified according to its severity using
standardized scoring systems such as the Common Vulnerability Scoring System
(CVSS). High-severity vulnerabilities that pose significant risks are prioritized for
immediate action.

12

e Exploitability evaluation : The likelihood of a vulnerability being exploited in real-
world scenarios is assessed based on factors such as availability of exploit scripts
and the complexity of exploitation. This evaluation helps in distinguishing between
theoretical and practical threats.

e Impact assessment : The potential impact of each vulnerability on the containerized
application is analyzed. This includes considerations such as data breaches, service
disruptions, and financial losses.

e Risk prioritzation : Vulnerabilities are ranked based on their severity, exploitability,
and impact. This prioritization aids in the allocation of resources for remediation
efforts, ensuring that critical issues are addressed first.

The risk-based assessment also involves identifying trends in vulnerability emergence and
resolution, providing actionable insights for improving Docker image security.

4.4 Vulnerability scanning and analysis

Vulnerability scanning and analysis form the core of this research, enabling a compre-
hensive evaluation of Docker image security over time. This stage involves systematically
scanning Docker images using selected tools and analyzing the results to extract key met-
rics. These metrics will shed light on the nature, severity, and evolution of vulnerabilities,
providing a foundation for risk assessment and mitigation strategies.

4.4.1 Scan results categorization

The results of each vulnerability scan are categorized using the Common Vulnerability
Scoring System (CVSS), which provides a standardized framework for evaluating and
quantifying security vulnerabilities. This categorization aids in understanding the poten-
tial impact of vulnerabilities and prioritizing them for remediation.

Detected vulnerabilities are grouped into three severity categories based on their CVSS
scores:

1. Low severity : CVSS scores ranging from 0.1 to 3.9. These vulnerabilities pose
minimal risk and often require specific conditions to exploit.

2. Medium severity : CVSS scores ranging from 4.0 to 6.9. These vulnerabilities
represent moderate risks and may have broader exploitability.

3. High severity : CVSS scores of 7.0 and above. These vulnerabilities are critical,
potentially allowing attackers to compromise systems with significant impact.

This classification helps in focusing efforts on addressing vulnerabilities that pose the
greatest threat.

4.4.2 Key metrics extracted

From the scan results, the following metrics will be extracted and analyzed to provide a
detailed understanding of the security posture of Docker images:

13

1. Number of vulnerabilities
The total count of vulnerabilities detected in each scan is recorded.o A breakdown
by severity level is also documented to highlight the distribution of risks.o The
number of vulnerabilities serves as an indicator of the overall security state of an
image and its potential exposure to threats.

2. Risk score
A weighted risk score is calculated to quantify the severity of vulnerabilities.This
score uses CVSS scores as weights, ensuring that vulnerabilities with higher poten-
tial impact contribute more significantly to the overall risk profile. The risk score
provides a single, actionable metric to compare the security of different images and
prioritize mitigation strategies.

3. Change patterns
By comparing results across multiple scans, patterns in vulnerability behavior are
identified :-
Persistent vulnerabilities : Vulnerabilities that remain unresolved across mul-
tiple scans are flagged. These indicate potential maintenance issues or inherent
risks in the image.
Emergent vulnerabilities : Vulnerabilities that appear in subsequent scans after
image updates are documented. This can highlight potential risks introduced by
new dependencies or unaddressed security issues in updates.
Resolved vulnerabilities : Vulnerabilities that are no longer detected in later
scans are also tracked, providing evidence of effective mitigation efforts.

4.4.3 Scanning tools and techniques

The analysis leverages multiple industry-standard tools to ensure robust and compre-
hensive vulnerability detection:

e AWS Inspector : Known for its integration with cloud-native applications, AWS
Inspector provides detailed insights into software vulnerabilities and configuration
issues.

e Synk : A developer-friendly tool that focuses on open-source vulnerabilities and
offers actionable remediation steps.

e Clair : An open-source tool designed specifically for container security, Clair ana-
lyzes images for known vulnerabilities in dependencies.

e Anchore : Anchore excels in providing policy-based compliance checks along with
vulnerability analysis.

Using a combination of these tools ensures that vulnerabilities are identified with high
accuracy and consistency. Cross-validation of results among tools further enhances the
reliability of the findings.

4.4.4 Analytical insights

The insights derived from the vulnerability scanning process go beyond merely identifying
security flaws. They also provide actionable intelligence for improving Docker image
security.

14

e Severity trends : Analyzing the prevalence of low, medium, and high-severity vul-
nerabilities over time reveals patterns in image maintenance practices and potential
areas for improvement.

e Update effectiveness : By examining vulnerabilities that persist or emerge after
updates, the research evaluates how well maintainers address security issues during
image updates.

e High-risk images : Identifying images with consistently high-risk scores helps pri-
oritize efforts to secure critical components of the container ecosystem.
4.4.5 Ethical considerations

While conducting vulnerability scans, the research adheres to ethical guidelines to ensure
responsible handling of sensitive information

e Permission compliance: Only publicly available Docker images are scanned, avoid-
ing potential legal or ethical violations.

e Confidentiality: All findings are anonymized in the reporting process to prevent
unintentional disclosure of sensitive vulnerabilities.

e Responsible disclosure : If critical vulnerabilities are identified, they will be respons-
ibly disclosed to the maintainers of the affected images to facilitate remediation.

The vulnerability scanning and analysis methodology outlined above provides a robust
framework for evaluating the security posture of Docker images. By leveraging industry-
standard tools, extracting key metrics, and analyzing change patterns over time, the
research generates actionable insights into container security. This systematic approach
not only highlights existing vulnerabilities but also offers a pathway for enhancing the
security practices of Docker image maintainers and users.

4.5 Risk prioritization

A risk-based approach will be used to prioritize vulnerabilities based on the below factors:

e Impact assessment : Each vulnerability’s potential impact on confidentiality, integ-
rity, and availability (CIA) will be evaluated.

e Exploitability analysis : The likelihood of exploitation, considering factors such as
available patches and exploit code, will be analyzed.

e Risk ranking : Vulnerabilities will be ranked to guide the prioritization of remedi-

ation efforts.

4.6 Mitigation strategies

Based on the findings, mitigation strategies will be proposed which would address the
following things:

e Patch management : Ensuring timely application of security patches to mitigate
known vulnerabilities.

15

5

Dependency management : Avoiding the use of outdated or insecure dependencies
in container images.

Best practices : Recommendations for secure image creation, including the use of
minimal base images and multi-stage builds.

Implementation

The implementation process involved various key steps including configuration and in-
stallation of both the vulnerability assessment tools alongwith the infrastructure required
to setup the necessary things on AWS cloud to ensure that everything from the integra-
tion from initial stages uptil the final stage was completed.

Below mentioned was the process followed throughout :-

Dataset preparation

First, the dataset of Docker images required for conducting the experiments and
analysis was gathered from DockerHub ensuring to aim at different kinds of appplic-
ation stacks and configurations.

Setting up the toolsets

Open-source vulnerability scanning tools Trivy and Grype had been configured on
the EC2 instance running on Ubuntu Operating System and these those tools were
integrated with scripts to pull images from DockerHub and later push it to ECR,

CI/CD pipeline

AWS CodePipeline and CodeBuild were used to automate the scanning process of
the Docker images. The pipeline had been configured to be triggered by changes
committed to a GitHub repository containing the buildspec.yml file containing the
instructions and custom scripts for having scans executed on Docker images hosted
in ECR using Trivy and Grype.

Data storage
The results obtained from the scans conducted were stored in JSON format in an
S3 bucket with the ImageDigest tags for further analysis.

Visualization and Comparison

By using a Python script on a Visual Studio Code IDE terminal, the results from
the S3 bucket were downloaded on the local system to enable visualization of vul-
nerabilities. The script made use of in-built Python libraries like ”pandas” and
"matplotlib” to generate bar charts against metrics.

AWS integration

Scans on Docker images present in ECR were also performed using ECR’s native
scanning feature alongwith configuration of AWS Inspector in the AWS region to
perform scanning of images for getting better insights on vulnerabilities on indi-
vidual basis as and when they are pushed to ECR

16

v > docker]
Images (6) @ Delete Details View push commands
\/ Q Search artifacts \ 1 S
O | Imagetag v | Artifact type Pushed at v | Size(MB) v | ImageURI Digest
O apache_couchdb-3.2.2 Image December 11, 2024, 16:56:31 (UTC-00) 86.87 15 Copy URI 6] sha256:bfob666cTbaac7a.
O amazonlinux-2022 Image December 11, 2024, 16:54:47 (UTC-00) 57.87 5 Copy URI 5} sha256:54c95c89f52ffSe.
[0 amazon_dynamodb-local-1.20.0 Image December 11, 2024, 16:47:33 (UTC-00) 211.24 15 Copy URI) sha256:49962472¢4c995...
O bitnami_mariadb-10.8.66 Image December 11, 2024, 03:58:53 (UTC-00) 11368 15 Copy URI 0] sha256:5d77c2a4921985...
(m] centos-centos8.4.2105 Image December 11, 2024, 03:52:10 (UTC-00) 83.52 1T Copy URI [0 sha256:a1801b843b1bfaf...
O linuxserver_oscam-version-11718 Image December 11, 2024, 03:46:38 (UTC-00) 14.50 1) Copy URI [0 sha256:a05¢6c738406a7...

Figure 2: Docker images in ECR

6 Evaluation

The efficiency of Trivy, Grype alongwith AWS ECR’s native scanning to detect vulner-
abilities present in Docker images was tested throughout against metrics and below are
the findings sunnarized :-

e Efficiency in detection
While both Trivy and Grype were able to detect vulnerabilities present in Docker
images based on metrics like LOW, MEDIUM, CRTITICAL and HIGH, Trivy com-
paratively showed higher speed in identifying vulnerabilities and Grype generated
more detailed level reports. AWS ECR scanning took even lesser amount of time
than the other two in finding vulnerabilties while displaying much broader level of
vulnerabilities

e Coverage
Some results from the comparative analysis revealed that Trivy and Grype were able
to detect unique vulnerabilities which were not identified by ECR which suggested
that use of multiple tools is something that is required.

e Longitudinal analysis Certain amount of scans conducted throughout on images
scanned previously showed the presence some new vulnerabilities which drew some
emphasis on the need of continuous monitoring. Bar charts were used to depict
levels of vulnerabilities in Docker images and have a comparison between results
obtained from Trivy and Grype

e Implications. On academic grounds, the study conducted for the research process
tries to contribute to the area of container security by validating the efficiency of
open-source vulnerability scanning assessment tools against AWS cloud services.

6.1 Experiments

Below demonstrated are the tests/experiments that were used during the implementation
process

6.2 Discussion

The initial scans revealed a significant number of vulnerabilities across the selected Docker
images. Community-maintained images exhibited higher vulnerability counts compared

17

Developer Tools > CodePipeline > Pipelines > trivy-test-pipeline-3

trivy-test-pipeline-3

v2 : QUEUED

© Source

Succeeded

Pipeline execution ID: 0a96f535-3354-4071-8042-2681605d647

Source
it lia OAuth ane) B
© Succeeded - 2hours 200

2202 2

View details

2292225 2 Source: Update buldspecyml

l Disable transition

@ Build succeeded

Pipeline execution ID: 0a96f535-3354-4071-8042-268160¢50647

Build
AWS CodeBuild

© Succeeded - 2hoursag0

Start rollback

Figure 3:

CI/CD pipeline for automating vulnerability scans

vuln-reports/

Objects Properties

I5 Copy S3 URI

Objects (2) info

@ (IO copys3url) (g CopyURL) (¥ Download

Obijects are the fundamental entities stored in Amazon S3. You can use Amazon S3 inventory [to get a list of all objects in your bucket. For others to access your objects, you'll need to explicitly

grant them permissions. Learn more [3

[Q Find objects by prefix J LS BRI]
(J | Name a | Type v | Last modified v | Ssize v | Storage class v
0O D grype/ Folder - S
0O DO tivy/ Folder - oL

Figure 4: S3 bucket containing the scan directories

trivy/ TG Copy 53 Ul

Objects Properties

Objects (6) info

@ I5 Copy S3 URI

grant them permissions. Learn more [

[Q. Find objects by prefix]

0| Name
i)

scan_results_sha256_49962472

O c4c9950e6ee0d0194ff050ead7?
8a3ccbfdefe09fcecd39467268d
e9.json

u]
scan_results_sha256_54c95c89f

[0 52ff5eBeBda0bBd4408eSfce8da
125c2133126¢62c3891c3 Tfeee
3d.json

a | Type

scan_results_sha256_5d77c2a4

[0 921985dd3d3ec2da21125cf468
5dd6837dd64306c28da135744
d579c

k]

scan_results_sha256_a05¢6c738
O 4063706e0374cc84dcff3557b0

358a06c5e0912b5bh4e47ec8904

TG Copy URL + Download Open

v | Last modified

December 11, 2024, 21:27:01
(UTC+00:00)

December 11, 2024, 21:27:16
(UTC+00:00)

December 11, 2024, 21:27:32
(UTC+00:00)

December 11, 2024, 21:27:46
(UTC+00:00)

Objects are the fundamental entities stored in Amazon $3. You can use Amazon 53 inventtory [? to get a list of all objects in your bucket. For others to access your objects, you'll need to explicitly

v | size

v

20MB

59.5 KB

1.1MB

292.2KB

Storage class

Standard

Standard

Standard

Standard

1]

Figure 5:

18

JSON output files in S3 of Trivy scans

grype/

Objects Properties

00 Copy 53 Ul

Objects (6) info

@ (T0 Copy S3 URI) (l‘u Copy URL) (< Download) (Open [2) (Delete) (Actions ¥) (Create folder) -

Objects are the fundamental entities stored in Amazon S3. You can use Amazon S3 inventory [2 to get a list of all objects in your bucket. For others to access your objects, you'll need to explicitly

grant them permissions. Learn more [2

[Q. Find objects by prefix

[0 | Name a|

i]
scan_results_sha256_49962472

O c4c9950e6ee0d019410510ead?
BaBcebfSefe05fcecd39467268d
e9json

0O
scan_results_sha256_54c95¢89f

[52ffse8e8da0bed4408esfceBda
125c2133126c62c3891c3 1feee
3d.json

i]
scan_results_sha256_5d77c2ad

O 9a1985dd3d3ec2da21125cf468
5dd6837dd64306c28da135744
d579cjson

0O
scan_results_sha256_a05c6c738

[0 4063706e0374ccB4dcff3557b0
358206¢5¢0912bSh4e47ec8904
Tad.json

Type

json

json

json

¥ | Last modified

December 11, 2024, 21:25:19
(UTC+00:00)

December 11, 2024, 21:25:39
(UTC+00:00)

December 11, 2024, 21:25:53
(UTC+00:00)

December 11, 2024, 21:26:09
(UTC+00:00)

v | Size

v | Storage class v

2.0MB Standard

59.5KB

Standard

1.1 MB

Standard

292.2KB Standard

Figure

6: JSON output files in S3 of Grype scans

Comparison of Vulnerabilities Detected by Trivy and Grype

800 -

600 -

Count

400 -

200 A

&

Scanner
. Trivy
mm Grype

>

L
\"\0

o)

Figure 7:

Visualize scan results through Python script

Inspector > Dashboard
summary we

Viewing data from all accounts.

Environment coverage
our accouncs,inances, and repositres st s ctvatad with Inpecior

f—
070 st
s frctrs
o,
0%
072 t3mbca ncirs

Findings with exploit available and fix available
View e g with xpl bl s f vaible covrage.

Findings with public exploit available:

Cys——

Container repositories

100%

2/2 repositories

Critical findings

A sctve et ircing nyoureronment

ECR container

18

525 total findings

EC2instance

Ocver

0total findings

Findings with fix avalable

524 s s

Figure 8: AWS Inspector findings - Summary dashboard

19

Inspector » Findings > By container image

Findings: By container image s

Sorted by container images with the most ritical findings.

By container image (4) Create suppression rule

Choose a row to view the container image's details and associated findings

Q Add filter ‘

Image tags Repository Image AWS account WCitical v | WHigh v | Al v

apache_couchdb-3.2.2 dock g h: fbdac7as... 761681521237 14 31 103
amazon_dynamodb-local-1.... docker-images-assessment sha256:49962472c4c9950e... 761681521237 3 13 353

bitnami_mariadb-10.8.66 dock

g ha256:5d77c2a4921985dd. .. 761681521237 1 21 61

amazonlinux-2022 dock g ha256:54c95c89f52ffSese... 761681521237 0 5 8

Figure 9: AWS Inspector findings - By container image

to official images, highlighting the importance of source credibility. The majority of
vulnerabilities were medium or high severity, necessitating immediate attention.

6.2.1 Longitudinal vulnerability trends

Over the observation period, certain patterns emerged which are highlighted below :

7 Conclusion and Future Work

This research highlights the importance of longitudinal security assessments in addressing
the dynamic nature of Docker container vulnerabilities. By monitoring changes over time
and adopting a risk-based approach, organizations can proactively manage container
security risks.

Some recommendations derived from the study in this research include the following :

e Continuous monitoring
Implement tools like Snyk for real-time vulnerability tracking.

e Patch management
Establish automated workflows for applying patches to container dependencies.

e Secure development practices
Adopt minimal base images and follow secure coding practices.

Future research could explore integrating Al and machine learning techniques to predict
vulnerability trends and enhance the effectiveness of longitudinal assessments. Addition-
ally, studying the impact of emerging technologies, such as confidential computing, on
container security could provide valuable insights.

20

References
Hradec, J., Craglia, M., Di Leo, M., De Nigris, S., Ostlaender, N., & Nicholson, N. (2022).
Multipurpose synthetic population for policy applications. No. JRC128595

Khang, A., Rana, G., Tailor, R. K., & Abdullayev, V. (Eds.). (2023). Data-centric

Al solutions and emerging technologies in the healthcare ecosystem.

Kim, H., Kim, Y., & Kim, S. (2024). A Study on the Security Requirements Analysis
to build a Zero Trust-based Remote Work Environment. arXiv preprint arXiv:2401.03675.

Mens, T. (2024, April). Mitigating Security Issues in GitHub Actions. In 2024 ACM /IEEE
4th Interna-tional Workshop on Engineering and Cybersecurity of Critical Systems (En-
CyCriS) and 2024 IEEE/ACM 2nd International Workshop on Software Vulnerability.
ACM/IEEE.

Mills, A., White, J., & Legg, P. (2023). Longitudinal risk-based security assessment
of docker soft-ware container images. Computers & Security, 135, 103478.

Efe, Do,c. Dr. Ahmet, & Aslan, Ulas & Kara, Aytekin. (2020). Securing Vulner-
abilities in Docker Images. International Journal of Innovative Engineering Applications.
4. 31-39. 10.46460/ijiea.617181.

Royer, P. D., Du, W., & Schneider, K. (2022). Rapid evaluation and response to impacts
on crit-ical end-use loads following natural hazard-driven power outages: A modular and
responsive geospatial technology. International Journal of Disaster Risk Science, 13 (3),
415-434.

Schouten, G., Arena, G., van Leeuwen, F., Heck, P., Mulder, J., Aalbers, R., ... &
BT oing-Messing, F. (2023). Data Analytics in Action. In Data Science for Entrepren-
eurship: Principles and Methods for Data Engineering, Analytics, Entrepreneurship, and
the Society (pp. 205-233). Cham: Springer International Publishing

Schweinar, A., Wagner, F., Klingner, C., Festag, S., Spreckelsen, C., & Brodoehl, S.
(2024). Simplifying Multimodal Clinical Research Data Management: Introducing an
Integrated and User-Friendly Database Concept. Applied Clinical Informatics.

Sion, L., Van Landuyt, D., Yskout, K., Verreydt, S., & Joosen, W. (2023). Ctam:
A Tool for Continuous Threat Analysis and Management. In CyberSecurity in a DevOps
Environment: From Requirements to Monitoring (pp. 195-223). Cham: Springer Nature
Switzerland.

Strandberg, P. E., Afzal, W., & Sundmark, D. (2022). Software test results explora-
tion and visual-ization with continuous integration and nightly testing. International
Journal on Software Tools for Technology Transfer, 24 (2), 261-285.

Thorn, J., Strandberg, P. E., Sundmark, D., & Afzal, W. (2022). Quality assuring the

quality assurance tool: applying safety-critical concepts to test framework development.
PeerJ Computer Science, 8, e1131.

21

	Introduction
	Background
	Problem statement
	Research question

	Research aim and objectives
	Significance of the study

	Related Work
	Overview of Containerization and Docker
	Security challenges in Docker
	Vulnerabilities in Docker images
	Shared kernel vulnerabilities
	Registry security issues
	Existing vulnerability assessment tools
	AWS Inspector
	Clair and Anchore
	Snyk

	Longitudinal security analysis
	Dynamic-risk profiles
	Longitudinal security of containers

	Risk-based assessment of Docker containers
	Risk-based approaches applied to containers

	Encryption of services in cloud platforms - AWS ECS/EKS
	Configuration management and policy enforcement
	Protecting networks with container orchestration
	Longitudinal security of containers

	Methodology
	Design Specification
	Architectural diagram
	Tool selection
	Data collection
	Longitudinal analysis
	Risk-based assessment

	Vulnerability scanning and analysis
	Scan results categorization
	Key metrics extracted
	Scanning tools and techniques
	Analytical insights
	Ethical considerations

	Risk prioritization
	Mitigation strategies

	Implementation
	Evaluation
	Experiments
	Discussion
	Longitudinal vulnerability trends

	Conclusion and Future Work

