

Performance Evaluation of AWS and Azure Cloud

Platforms

Using TensorFlow Framework

MSc Research Project

Master of Science in Cloud Computing

Hima Shree Manyam Sunil

Student ID: X23189851

School of Computing

National College of Ireland

Supervisor: Shreyas Setlur Arun

National College of Ireland

MSc Project Submission Sheet

School of Computing

Student
Name:

Hima Shree Manyam Sunil
………

Student ID:

X23189851
………..……

Programme:

MSc in Cloud computing
………………………………………………………………

Year:

2024/2025
…………………………..

Module:

MSc Research Project
…….………

Supervisor:

Shreyas Setlur Arun
…….………

Submission
Due Date:

12/12/2024
…….………

Project Title:

Performance Evaluation of AWS and Azure Cloud Platforms

Using TensorFlow Framework
…….………

Word Count:

7295
……………………………………… Page Count………22……………………………….……..

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.
ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author's written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature:

Hima Shree Manyam Sunil

……

Date:

12-12-24
……

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple
copies)

□

Attach a Moodle submission receipt of the online project

submission, to each project (including multiple copies).

□

You must ensure that you retain a HARD COPY of the project,
both for your own reference and in case a project is lost or mislaid. It is
not sufficient to keep a copy on computer.

□

Assignments that are submitted to the Programme Coordinator Office must be placed
into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

1

Performance Evaluation of AWS and Azure Cloud

Platforms

Using TensorFlow Framework

Hima Shree Manyam Sunil

x23189851@student.ncirl.ie
Dataset Link: https://rb.gy/rlcs74

Abstract

This paper presents a comparative analysis of two leading cloud computing platforms: Amazon

Web Services (AWS) and Microsoft Azure. The focus of this analysis is on the implementation

of TensorFlow, a widely used machine learning framework. The objective is to evaluate both

platforms based on several criteria, including performance, cost-efficiency, scalability, and

ease of implementation. Through benchmarking tests obtained through the cloud monitors and

application performance assessments, this study aims to provide insights into which platform

is more suitable for TensorFlow-based applications.

1. Introduction

Software and machine learning industries have benefitted from cloud systems, as it allows for

a greater possibility of model deployment in a cost-effective and flexible manner. When it

comes to the cloud service providers that support deep learning frameworks like TensorFlow,

Microsoft Azure and Amazon Web Services rank highest. Both of these platforms provide

fully-featured IaaS and PaaS solutions allowing easy deployment, scaling, and management of

machine learning models for data scientists and research scientists.

However, insufficient attention has been given to the training phase of deep learning across the

considered platforms which employs CPU resources. This is where the presented work fits in

by focusing on a critical review of two Cloud Platforms AWS ec2 and Azure VM. The

assessment will cover issues of CPU load, disk I/O operations, memory consumption, cost per

task, time per task, and accuracy of the task performance employing GoogleNet based deep

learning.

1.1 Motivation for the Study

In recent years machine learning (ML) and deep learning (DL) algorithms have invaded many

fields like healthcare, finance, and computer vision among others. Nevertheless, the majority

of deep learning modeling requires enough computational power which lends considerable

interest to cloud services. Powerful computing capabilities are available on demand, such as

those provided by AWS and Azure, but their effectiveness and cost depend on the type of

workload used in the application.

With regard to ecommerce cloud applications, both AWS and Azure have a considerable

number of options that facilitate training of machine learning models. It is worth underscoring

that AWS EC2 instances are recognized for their versatility and efficient scaling which makes

them a better match for training machine learning models with a high resource demand. On the

other side, Azure VM instances are normally cheaper and have easier integration which makes

them suitable for small applications. Nevertheless, since TensorFlow can be utilized in both, it

is fundamental to assess the training costs, times, and performance metrics using processor-

based resources in both platforms.

1.2 Research Questions and Objectives

 How does AWS EC2 compare with Azure VMs in terms of CPU Utilization, read

write operations, memory used, costs and application performance when training

deep learning models in TensorFlow?

The specific areas of this research are:

1. To benchmark the CPU performance of AWS EC2 and Azure VM instances while

training a GoogleNet deep learning model.

2. To evaluate read /write operations and their impact on training time and efficiency.

3. To measure memory utilization during training and assess how effectively each

platform handles our selected datasets.

4. To compare the cost efficiency of training deep learning models on different platforms,

considering various instance types and pricing models.

5. To analyze the training time and model accuracy to determine which platform delivers

the best performance in terms of speed and output quality.

1.3 Hypothesis

The study hypothesizes that:

 AWS EC2 instances will perform better in terms of CPU utilization, scalability, and

training time, but at a higher cost.

 Azure VM instances will provide a cost-effective solution for smaller machine learning

workloads, with comparable accuracy but potentially slower training times due to less

efficient CPU scaling.

1.4 Contribution to the Literature

This research contributes significantly to the scientific literature by offering a thorough

comparison between AWS EC2 and Azure VM for TensorFlow-based deep learning tasks that

utilize CPU resources. Unlike previous studies that focused solely on GPU usage, this report

highlights the often-overlooked training processes in machine learning [4]. The objective of

this study is to analyse how CPU, disk read/write operations, memory, training duration, and

model performance can inform the selection of a cloud platform that aligns best with specific

resource needs and business objectives.

Additionally, this study fills a crucial gap in the literature by examining the cost-effectiveness

of using AWS compared to Azure for CPU-based training—an area that has not received ample

attention in prior research, such as the works of [4] and [5].

1.5 Innovation

A fresh comparison evaluation of AWS and Azure's deep learning CPU-based performance

exists in this study. This research examines Google Net training whereas the majority of past

work has mainly examined GPU-driven processes.

This experiment will uniquely shift the focus to under-explored areas like:

• CPU Utilization: Cloud platforms show optimal utilization of their CPUs when

performing deep learning training operations.

• Cost-Efficiency: A detailed examination exists within this paper to show how

performance intersects with cost considerations for CPU workloads.

• I/O Operations on Disk: Elastic Block Store by AWS requires examination against

Azure Premium SSD when analyzing read/write operations specifically for processing

abundant volumes of data.

• Real-world Data: Years of research at Stanford have led to the development of binary-

classified elbow X-ray medical data which shows potential real-world impact for healthcare

delivery and business operations.

The combination provides practical understanding to organizations selecting CPUs as their

focus or those working within budget constraints.

Three recent research papers [1] [2] [3] examined different cloud platforms using generalized

machine learning workload criteria. Few studies investigate the precise usage patterns of

CPUs and memory behavior in deep learning model implementation on cloud infrastructure

platforms such as Google Net This situation allows for a performance evaluation between

these systems when training tasks are run through CPU resources.

2. Related Work

Cloud computing has transformed the training and deployment of machine learning models,

especially for deep learning models. Among the leading cloud platforms in this area are

Amazon Web Services (AWS) and Microsoft Azure, both offering scalability, flexibility, and

cost-effectiveness. However, when it comes to training deep learning models using CPU

resources, the platform choice can significantly impact performance, cost, and usability [8].

This study compares the performance of AWS EC2 and Azure VM instances using the

GoogleNet deep learning model for image classification. Key metrics evaluated include CPU

utilization, disk I/O operations, memory usage, training time, accuracy, and cost efficiency.

These metrics are essential for assessing cloud platforms designed for CPU-based workloads

in deep-learning tasks.

2.1 Cloud Platforms and Resource Utilization in Deep Learning

Some important services where machine learning model deployment can be done for both AWS

and Azure come mainly in CPU-based deep learning tasks, such as via instance deployment

between virtual circuits for its performance via AWS EC2 instances on AWS and VM instances

on Azure. Both of these techniques actually serve well on great substantial flexible ways of

provisioning resources based on their specific demands upon the training of the models but

result in vary in efficiency and cost-effective depending on either the platform or type of

workload [6]. Efficient use of these resources cuts training time and saves funds. Therefore,

the right choices regarding platforms are important among different workload requirements.

Hence, Johnson and Lee noticed that AWS and Azure could equally optimize CPU resources

usable by TensorFlow-based training. Instead, each platform's specific management of those

resources makes a difference when speaking about performance.

For CPU-bound workloads, memory usage and disk I/O are the most relevant metrics. [2]

compare AWS and Azure for machine learning workloads and note that AWS EC2 instances

are particularly optimized for CPU-bound operations, where scaling resources during training

phases is more flexible. However, Azure's VM instances, with their predictable performance

and cost-efficient resource allocation, are noted to offer good performance for smaller-scale

deep learning models.

2.2 Performance Metrics for Cloud-based Machine Learning

In machine learning, training time, along with accuracy, is probably the most critical

performance indicator while dealing with CPU resources. [5] discuss the following metrics,

taking into consideration the impact thereby caused by cloud resources: the performance of

AWS EC2 instances is usually superior due to the rapid model-training ability, since instance-

type flexibility and availability for heavy computation is higher. These instances are more

expensive, especially if used for extended periods, which becomes relevant in the context of

long-running machine learning projects.

On the other hand, Azure VM instances have shown to be very good in terms of accuracy rates,

especially for smaller datasets. Brown and Taylor further reiterated that while Azure sometimes

may fall short on times of training when compared to AWS, making it cost lower in the general

perspective makes it very cost-efficient and simple to use through certain services: Azure

Machine Learning Studio this places it competitive in some teams where smaller computation

loads are made.

[7] outlined that the training time served as an indicator for model deployment, while many

cloud-based services, such as AWS or Azure, often supported automatic scaling and resource

provisioning, directly influencing the time it takes to train a model in the case of resources like

CPU and memory being allocated on demand.

2.3 Disk Read/Operation Operations and Memory Usage

Another important factor concerning training machine learning models on cloud platforms is

the Disk I/O operations. [8] have pointed out that during training with large datasets, disk

read/write operations create a bottleneck. AWS deploys EBS, or Elastic Block Store, for

storage; this feature of AWS is highly useful in handling high-throughput data operations. [3]

have discussed how EBS volumes allow for extremely fast read/write operations on AWS,

reducing the overall time required for pre-processing and training a model.

Azure, on the other hand, relies on Azure Blob Storage to handle data storage, which, though

similar in many ways to EBS, has been found in a number of studies to perform slightly slower

in terms of disk I/O operations when dealing with large datasets. However, [9] present an

alternative view arguing that Azure’s Blob Storage is economical for use in small datasets. In

this regard, it also makes Azure more relatively attractive for research experiments with small

data or those on a smaller scale.

With regards to the memory requirements, Amazon and Azure have vm instances which are

configurable to particular memory needs. [10] have demonstrated that memory usage correlates

with the training stage of deep learning models where larger models like GoogleNet are highly

memory intensive. Instances of AWS EC2 are more favorable for high memory bandwidth but

even in this case, Azure VMs are favored because of integration into existing enterprise tools,

making them easier to manage in organizations that are already in the Microsoft environment.

2.4 Cost Efficiency and Usability

Cost is one of the factors worth looking at when selecting a cloud platform for deep learning

workloads. [1] found that Azure was cheaper for smaller workloads that did not need higher

computing power. Their findings indicate that for CPU-bounded models deployed by an

organization or researcher on smaller databases, Azure may be more cost effective than AWS.

On the contrary, larger and resource demanding jobs can be run on AWS at a higher cost but

with more scalability and performance.

Another important aspect is ease of use. According to [11], Azure's Machine Learning Studio

has a more user-friendly interface which is easier to use by people with low technical expertise.

On the other hand, AWS SageMaker is feature-rich but more technical to set up and really

appeals to those users who understand the ins and outs of cloud infrastructure and machine

learning environments.

2.5 Need for This Research

This research aims to address a gap in the literature by comparing AWS and Azure for deep

learning tasks using CPUs. The following points highlight the key aspects of the study

 AWS and Azure Support Deep Learning Models: Both platforms provide significant

advantages based on workload requirements.

 Cloud platforms strengths: check which of the platforms offers scalability, disk I/O

performance, and fast training speed in identical environments and which one is more

economical for smaller and large scale tasks and features a simpler interface for non-

technical users [15].

 Gap in Comparative Studies: There is a lack of direct comparative studies on AWS

and Azure for deep learning tasks using CPUs, especially concerning cost-performance

trade-offs, resource utilization, and application accuracy.

 Key Metrics for Evaluation: Critical factors include CPU utilization, disk read/write

operations, memory usage, and training time matrices.

 Research Contribution: This study fills the gap by providing a benchmarking

comparison of AWS EC2 with EBS storage and Azure VM instances with Premium

SSD LRS [16].

 Benchmarking Focus: The comparison considers CPU usage, memory percentage,

disk I/O, training time, and accuracy, all vital for selecting a suitable cloud platform for

TensorFlow-based deep learning models.

Comparison

Parameter

Related Work

Findings
Our Research Goal

Monitoring

Tools/Methods

CPU Utilization

AWS generally shows

higher CPU utilization

for large-scale

workloads, scalable

Compare CPU usage

during the training of the

GoogleNet model on both

platforms. Measure CPU

AWS CloudWatch,

Azure Monitor,

Custom CloudWatch

Alarms for CPU

utilization > 90%.

Comparison

Parameter

Related Work

Findings
Our Research Goal

Monitoring

Tools/Methods

resource provisioning

[6].

usage and scalability for

TensorFlow tasks.

Memory

Consumption

AWS EC2 instances

show better handling

of large memory

requirements for deep

learning tasks [3].

Measure memory

consumption during

GoogleNet training,

focusing on memory

consumption on both

platforms.

AWS CloudWatch

with CW agent, and

Azure Monitor for

tracking memory usage

Disk

Read/Write

Operations

(OPS)

AWS EBS volumes

show high throughput

for disk read/write

operations for large

datasets [8].

Evaluate disk I/O

performance for data

loading, read/write

operations, and impact on

training time.

AWS CloudWatch,

Azure Monitor for disk

I/O operations and

latency.

Deep Learning

Model Training

Time

AWS EC2 typically

leads in training time

due to faster resource

scaling, especially for

large datasets [2]

Compare training times

for GoogleNet on both

platforms using CPU

resources, with a focus on

efficiency for deep

learning tasks.

AWS CloudWatch,

Azure Monitor for

tracking training time

and resource usage.

Cost Efficiency

Azure offers more

cost-effective pricing

models for smaller

workloads compared

to AWS [12]

Compare the cost of

training on both

platforms, focusing on

instance pricing for CPU

usage and storage costs.

compare cost for EC2.

VM instances are long

with storage and

monitoring tools.

Model

Accuracy

AWS EC2 models

show faster training

times, but Azure VM

yields competitive

results in smaller tasks

[13]

Evaluate the model

accuracy of GoogleNet on

both platforms, with the

goal of identifying the

platform with optimal

performance.

Terminal displays the

accuracy after the

model is trained

 Table: Key Findings

3 Methodology

This section provides a comprehensive explanation of the research procedures, evaluation

strategies, tools, and techniques employed to compare the performance of AWS and Azure for

CPU-based deep learning model training.

3.1 Research Approach

The research will adopt a comparative analysis approach, focusing on quantitative metrics that

evaluate the performance and cost-effectiveness of both cloud platforms [19]. The scientific

process will be followed in implementing the deep learning model of GoogleNet on AWS and

Azure, observing system resource utilization, and analyzing the training results.

3.2 Research Objectives and Metrics

 The research aims to evaluate the platforms based on the following metrics:

 CPU usage during training with respect to computational efficiency.

 Memory consumption to evaluate resource allocation.

 Disk read/write performances.

 Time required for training to analyze model execution speed [20].

 The accuracy of the model on test data obtained time consumption to complete model

alterations.

 Analysis of the training process cost by using respective pricing calculators.

3.3 Data Collection Process

Dataset Selection

• The Stanford University Elbow X-ray dataset was selected for training the GoogleNet

model.

• The dataset consists of well-labeled images categorized into Negative and Positive,

featuring a binary classification task available for the model.

3.4 Data Preprocessing stages

The model's performance depends on the input data being preprocessed effectively. The elbow

X-ray dataset was prepared using the following methods:

 Image Resizing: OpenCV was used to resize all of the images to 224x224 pixels. input

size that the model anticipates. Consistency in input dimensions is guaranteed by

resizing. This is crucial for training batch processing.

 Data Augmentation: Methods like rotation zooming shearing and width/height

shifting are examples of data augmentation techniques. We used the

ImageDataGenerator in TensorFlow to apply horizontal flip. augmentation. adds

variability to the dataset improving the model’s ability to generalize. and lessen the

overfitting.

 Train-Test Split: The dataset was split into subsets that were 20% for testing and 80%

for training. with the train_test_split function from scikit-learn. This division

guarantees that the model is trained on a. a sizable amount of the data while maintaining

enough samples for objective assessment.

 Normalization: Pixel values were divided by 255. 0 to bring them into the [0 1] range.

During training the convergence rate is accelerated by this common preprocessing step.

 Hyperparameters: A batch size of 16 was used for the models 80 epoch training. The.

In order to balance model and training time hyperparameters are selected through

empirical testing. show.

 Compilation: The Adam optimizer which is appropriate was used to compile the model

to manage sparse gradients and dynamically modify learning rates.

3.5 Experimental Setup

1. Cloud Platforms
o AWS Configuration:

 An EC2 instance (t3.2xlarge) with 8 vCPUs and 32 GB memory was

used for training.

 Data storage utilized Elastic Block Store (EBS).

 Operating system with Python and TensorFlow libraries and framework

 CloudWatch monitoring and custom alarm.

o Azure Configuration:

 A Standard_D8_v3 VM with 8 vCPUs and 32 GB memory was

configured.

 Data storage relied on Azure standard storage.

 Azure monitoring with custom alarm.

 Operating system with Python and TensorFlow framework and libraries

2. Monitoring Tools

o AWS CloudWatch: Tracked CPU utilization, memory usage, and disk I/O

operations.

o Azure Monitor: Monitored similar metrics, with alerts configured for high

CPU utilization.

 3.6 Data Analysis Techniques

1. Monitoring Metrics

 Cloud platform tools observed CPU, memory usage, and disk read and write

operations during training.

 A custom CloudWatch alarm and Azure Monitor alert were set up to trigger when

CPU usage exceeded 90%.

2. Training Time vs. Accuracy

 Training time was recorded on each platform, enabling insights into computational

efficiency.

 Model accuracy was evaluated using the classification report and confusion matrix

developed with scikit-learn.

3. Cost Analysis

 Costs were computed as the overall cost both cloud platforms consumed in order to

complete the whole experiment.

4. Statistical Analysis

 Descriptive statistics summarized metrics like CPU utilization, memory usage, and

training time.

 Graphs and heatmaps were created using Microsoft Excel to visualize the results.

3.7 Evaluation Procedure

1. Execution of Experiment

 The GoogleNet model was trained on AWS and Azure platforms with identical

configurations to ensure fairness.

 System metrics were logged in real time using CloudWatch and Azure Monitor

during the training process.

 Application-level metrics captured detailed runtime values, including time taken for

each epoch completion and accuracy achieved during every iteration.

2. Result Validation

 Any anomalies were flagged and investigated to reduce bias in the results.

4 Design Architecture Specification

Figure: Architecture diagram

4.1 Architecture Description

The Layered Architecture Pattern is employed here, with distinct layers dedicated to data

processing, storage, and monitoring. Additionally, the system follows the Microservices

Architecture Pattern, with independent services (EC2, Azure VM, CloudWatch, Azure

Monitoring) working in tandem, offering flexibility and fault isolation. Each component within

the architecture is loosely coupled, enabling independent scaling and management.

1. Data Preprocessing Layer: The architecture begins with a Data Preprocessing Layer

where raw datasets, sourced from Stanford University in the healthcare domain, are

ingested. This layer is primarily responsible for extracting relevant data, in this case,

the elbow dataset used for classification. The data is then labeled as either "positive"

(nonfractured) or "negative" (fractured) images, preparing it for machine learning

operations.

2. AWS Cloud Architecture: After preprocessing the data, it is transferred to AWS for

additional processing. The AWS architecture employs an EC2 instance that is set up

with the required roles through IAM Roles to ensure secure access and operations. This

EC2 instance is linked to EBS for reliable data storage. Given the close interaction

between EC2 and EBS, the diagram represents them within the same boundary.

Furthermore, the CloudWatch service is integrated with both EC2 and EBS for

monitoring purposes. Additionally, a custom alarm is established to monitor specific

thresholds related to the EC2 instance, offering valuable insights into the performance

of the machine learning model hosted on AWS.

3. Azure Cloud Architecture: In the Azure environment, Azure Active Directory is

employed within the authentication and identity management framework. The Azure

Virtual Machine (VM) parallels the role of EC2 in AWS. It connects to Premium SSD

LRS, delivering high-speed storage for data-heavy applications. Like AWS, Azure

Monitoring is implemented to oversee system performance and log activity.

Additionally, a custom alarm is established to define particular thresholds, guaranteeing

that any discrepancies from expected performance levels are promptly resolved.

4.7 Deep Learning Model Architecture and Training Process

This section provides a detailed explanation of the deep learning model's architecture, outlining

the steps taken during its development and training. The chosen architecture for this project is

GoogleNet, selected over other deep learning models like VGG and ResNet due to its efficient

design. This approach enables the model to develop a hierarchical representation of the input

data, effectively discerning both fine and coarse features.

4.7.1 Deep Learning Model Attributes and Architectural Diagram

In this project, the GoogleNet architecture integrates various elements such as convolutional

layers, inception blocks, pooling layers, fully connected layers, and an output layer to

categorize elbow X-ray images into two groups: Negative and Positive. The subsequent

subsections elaborate on the characteristics and structure of the model as per the provided

figure deep learning Model architecture.

Figure: Deep Learning Model architecture

Data Preprocessing and Augmentation
 All images were resized to 224x224 pixels using OpenCV.

 Pixel values were normalized to a range of [0, 1] by dividing by 255.0 to improve

training stability.

 Data augmentation techniques (rotation, zoom, shear, width/height shift, and horizontal

flip) were applied using ImageDataGenerator to improve generalization and prevent

overfitting.

Input Layer

 Accepts input images resized to 224x224x3 (RGB).

 This size is chosen to align with the standard input dimensions for deep learning

models, ensuring compatibility with the model architecture.

Convolutional Layers

 A 3x3 kernel with strides of 2 is used for max-pooling after the first convolutional layer

applies a 7x7 kernel with 64 filters.

 The features are refined using a 1x1 convolution layer with 64 filters then a 3x3

convolution layer with 192 filters and same padding.

 Low-level features like edges textures and patterns are captured by these layers.

Inception Blocks

The model uses nine inception blocks, each designed to extract features at multiple scales.

Each inception block consists of the following branches:

1. Branch 1: A 1x1 convolution for localized feature extraction.

2. Branch 2: A 1x1 convolution followed by a 3x3 convolution to capture mid-level

features.

3. Branch 3: A 1x1 convolution followed by a 5x5 convolution for broader spatial

features.

4. Branch 4: A 3x3 max-pooling layer, followed by a 1x1 convolution to preserve spatial

relationships.

The outputs of these branches are concatenated into a single tensor, combining features from

all scales.

Pooling Layers
 Max-pooling layers are interspersed after certain inception blocks to reduce spatial

dimensions while retaining critical features.

 A Global Average Pooling (GAP) layer is applied after all inception blocks to

summarize spatial information across the entire feature map into a single vector.

Fully Connected Layers
 After the inception blocks, the GAP layer’s output is flattened and passed through a

fully connected layer.

 A dropout layer with a rate of 0.4 is applied to reduce overfitting by randomly

deactivating neurons during training.

Output Layer
 The final layer consists of a dense layer with two neurons (corresponding to Negative

and Positive classes).

 A softmax activation function is applied to output class probabilities.

Training Configuration

 Compilation:

o The model was compiled using the Adam optimizer with a learning rate of 1e-

4.

o Binary cross-entropy was used as the loss function for binary classification

tasks.

 Training Parameters:

o The model was trained for 80 epochs with a batch size of 16.

o The training process involved monitoring metrics like CPU utilization, memory

consumption, and disk read/write operations.

4.7.2 Training Results and Application-level Matrices

The model's performance was evaluated on the test dataset, and the following outputs were

generated:

1. Model Accuracy: The primary metric for evaluation was accuracy, which reflects the

proportion of correctly classified images in the test dataset.

2. Classification Report and Confusion Matrix: A detailed classification report was

generated to provide precision, recall, and F1-score metrics for each class. The confusion

matrix was visualized using Seaborn to assess the distribution of predictions and identify

any misclassifications.

3. Model Saving: The trained model was saved as Elbow_GNet.h5 using Keras’s

model.save() function for future use or deployment.

4. App-level logs: Time duration of training model, time taken to complete epoch alterations,

model accuracy.

Stage Details

Data

Preprocessing

Resized images to 224x224 pixels, applied data augmentation, and

normalized pixel values.

Dataset Split 80% training, and 20% testing using scikit-learn’s train_test_split.

Model

Compilation
Adam optimizer, binary cross-entropy loss function.

Training

Configuration
80 epochs, batch size of 16.

Monitoring

Time duration of training model, time taken to complete epoch, model

accuracy (no explicit monitoring in the code for memory or CPU utilization

as it is measured through the cloud matrices)

charts Epoch time and accuracy per each alteration, confusion matrix.

Model Saving Saved as Elbow_GNet.h5 for reuse or deployment.

Table: Model Training Workflow

4.8 Cloud Platform Configuration

The setup of cloud resources on AWS EC2 and Azure VM for GoogleNet deep learning model

training is described in this section. For CPU-based tasks the configurations are specifically

designed to benchmark performance metrics such as CPU utilization memory usage disk I/O

operations cost effectiveness and training outcomes. The configurations also make use of

alarms and monitoring tools to efficiently track resource usage. The cloud configurations ar e

compiled in the table below which also highlights the features resource kinds and monitoring

configurations for both platforms.

Attribute AWS EC2 Azure VM

Instance Type

t3.2xlarge: General-purpose

instance with 8 vCPUs and 32 GB

memory.

Standard_D8_v3: General-purpose VM

with 8 vCPUs and 32 GB memory.

Compute

Resources

CPU-based compute optimized for

training and inference tasks.

CPU-based compute optimized for

small to medium workloads.

Storage

Elastic Block Store (EBS): High-

throughput, low-latency block

storage for the dataset.

Premium SSD LRS: fast, secure, and

cost-effective object storage for the

dataset.

Monitoring

Tools

AWS CloudWatch: Tracks CPU

utilization, memory usage, and disk

read/write operations.

Azure Monitor: Monitors CPU usage,

memory consumption, and disk read

write operations.

Custom

Alarms

Trigger an alarm if CPU utilization

exceeds 90%, with notifications

sent via email/SNS.

Configure alerts to notify when CPU

utilization exceeds 90%, with

automated notifications.

Cost

Estimation

Tool

AWS Pricing Calculator: Calculates

the cost of EC2 instance and EBS

storage usage.

Azure Pricing Calculator: Estimates

costs for VM instances and standard

storage and Azure monitoring tool.

Operating

System

Windows_Server-2022-English-

Full-Base-2024.11.13
2022-datacenter-azure-edition

Attribute AWS EC2 Azure VM

Data

Handling

Dataset stored on EBS for fast

access during training.

Dataset is stored on standard storage for

access.

TensorFlow

Setup

TensorFlow 2.12.0 installed via pip

in a Python 3.9 environment.

TensorFlow 2.12.0 installed via pip in a

Python 3.9 environment.

Monitoring

Metrics

- CPU Utilization (%).

- Memory Usage (%).

- Disk Read/Write OPS (count).

- CPU Utilization (%).

- Memory Usage (%).

- Disk Read/Write OPS (operational

seconds).

Primary Use

Case

CPU-based training of GoogleNet

for deep learning tasks.

CPU-based training of GoogleNet for

deep learning tasks.

Table: Cloud platform configurations

5 Implementation Steps for Deploying the Model on AWS

and Azure

The following steps outline the sequence of actions taken to deploy and train the deep learning

model on both AWS and Azure cloud platforms, incorporating the necessary terminal

commands and configurations used for environment setup and connection.

5.1 Infrastructure Setup

AWS Setup

 Instance Configuration:

o AWS EC2 t3.2xlarge instance was launched. It has 8 vCPUs and 32 GB of

memory, which is suitable for training deep learning models.

o Operating System: The instance was set up with Windows_Server-2022-

English-Full-Base-2024.11.13.

 Storage Configuration:

o Elastic Block Store (EBS) was attached to the instance for persistent storage.

The dataset was stored on the EBS volume for efficient access during model

training.

Azure Setup

 VM Configuration:

o A Standard_D8_v3 VM was created on Azure, equipped with 8 vCPUs and 32

GB of memory.

o Operating System: The VM ran 2022-datacenter-azure-edition.

 Storage Configuration:

o Premium SSD LRS storage was configured for fast read/write operations during

model training.

Software Installation

 Python Setup:

o Python 3.9 was installed on both AWS and Azure instances.

 TensorFlow Setup:

o TensorFlow version 2.12.0 was installed.

5.2 Cloud Connectivity Setup of AWS and Azure

 VM Connection:

o The AWS EC2 instance and Azure VM were connected to the local machine to

initiate and control the training process.

o For Remote Desktop Connection (RDP), the following steps were performed

to enable access to the target machine:

 Enabled Remote Desktop on the remote Windows machine by

navigating to System > Remote Desktop and toggling it On.

 Configured the Windows Firewall to allow Remote Desktop by going to

Control Panel > Windows Defender Firewall > Allow an app or feature.

 Connected using Remote Desktop Connection (mstsc command) and

entered the IP address of the remote machine

5.3 Dataset Transfer and Storage

 Dataset Upload:

o The dataset, which contains radiology images, was transferred from the local

machine to the cloud instance (EBS on AWS and Premium SSD LRS on Azure).

o The dataset was stored in directories on both platforms, ensuring fast and

efficient access during the training process.

5.4 Model Training Initialization

 Run Command to Launch Training:

o After setting up the environment and ensuring that all dependencies were

installed, the training process was initiated by running the following command

on both platforms:

o py train_model.py

o The model training process was started from the local machine, and the logs

were monitored in real-time using CloudWatch on AWS and Azure Monitor on

Azure.

 Training Configuration:

o The model was trained with the following hyperparameters:

 Batch Size: 16

 Epochs: 80

 Learning Rate: 0.0001

5.5 Performance Monitoring and Logging

 AWS CloudWatch:

o CloudWatch was used to monitor performance metrics during training, such as:

 CPU Utilization of EC2 resources in percentage

 Memory consumption of the resource in percentage

 Read/write Operation performed in EBS volume.

o Custom CloudWatch alarms were configured to notify the if the CPU utilization

hits above 90% usage.

 Azure Monitoring:

o Azure Monitor tracked similar metrics, including:

 CPU Utilization of EC2 resource in percentage

 Memory consumption of the resource in percentage

 OS Read/write operation performed.

o Custom alarms were also set in Azure Monitor to alert the team in case of system

performance degradation.

5.6 Model Evaluation

 Training Completion:

o After the model finished training, the weights were saved as Elbow_GNet.h5.

o The model metrics were evaluated using accuracy, loss, time taken to complete

model training, and time taken to complete each epoch alteration as mentioned

in the evaluation section.

o

6 Outputs Evaluation

6.1 CPU Utilization outputs

Test Case: Evaluate CPU utilization for both AWS and Azure platforms.

Figure: AWS CPU utilization from CloudWatch

Figure: Azure CPU Utilization from Azure

monitoring

AWS:

The average CPU utilization is consistently close to 90%, with minimal fluctuations between

the average and maximum values, indicating stable resource usage. Total training time on AWS

is approximately 6 hours and 30 minutes, showing efficiency in CPU usage.

Azure:

The average CPU utilization also peaks around 85-90%, but the chart indicates slightly more

variability in CPU usage compared to AWS. Total training time on Azure is approximately

above 9 hours, making it slower than AWS for the same workload.

observation:

 AWS performs better in terms of CPU utilization efficiency and training speed. Its

consistent high CPU usage translates into faster training times, which is crucial for large

workloads.

 Azure, while stable, is slower overall, making AWS a better choice for tasks requiring

high CPU scalability and efficiency

6.2 Memory Utilization

Test Case: Assess memory utilization for both platforms under identical workload conditions.

Figure: Azure Memory consumption

Figure: AWS Memory consumption

AWS Memory Consumption (memory percentage against time)

 AWS's maximum memory usage reaches 47%, and it maintains consistent usage at

or near this value throughout the recorded time.

 There are no significant fluctuations, indicating efficient and stable memory

management during the workload.

Azure Memory Consumption (memory percentage against time)

 Azure's maximum memory usage reaches 53%, and for half of the time, it remains

below 49% for the remaining period.

 While Azure demonstrates higher peak memory usage, this can indicate over-

allocation or inefficient utilization of memory resources for the workload.

Observation:

AWS exhibits more consistent and predictable memory usage, with a clear cap at 47% and

no excessive spikes. This makes it a more stable and reliable option for memory-bound

tasks where stability is critical. For workloads requiring memory efficiency and stability,

AWS is better suited as it provides more predictable resource allocation, meeting non-

functional requirements for consistency and resource optimization.

6.3 Read Operations Performance

Test Case: Measure read operation performance (Average and Maximum) across AWS and

Azure.

Figure: Azure OS Read OPS

Figure: AWS Volume read Ops

 AWS (CloudWatch): The AWS chart shows a massive initial spike in read operations,

followed by extremely low activity for the remainder of the training period, with a

minor spike toward the end. The maximum read operations vastly exceed the average.

 Azure (Azure Monitor): The Azure chart displays read operations per second with a

consistently low rate throughout training. There's a significant spike near the end of the

training period.

Metric
AWS (CloudWatch)

(Approximate)
Azure (Azure Monitor)

Peak Read

Operations/sec
Extremely High (18000+) ~14 ops/sec

Average Read

Operations/sec
Very Low ~0.5-1 ops/sec

Consistency of

Read Operations

Very Low (Large initial spike

and a tiny spike at the end,

otherwise near 0)

Relatively High (Mostly

low, but with one large

spike at the end)

Observation Table: AWS provides better average throughput for read-intensive applications.

6.4 Write Operations Performance

Test Case: Analyze write operation performance for both platforms.

Figure: Azure OS Disk Write operation

Figure: AWS Volume Write Ops

 AWS (CloudWatch measures): The AWS chart shows write operations with a very

high initial spike, dropping to a relatively low and fluctuating baseline for the duration

of training before spiking again at the end. The maximum number of write

operations/second is much higher than the average.

 Azure (Azure Monitor): The Azure chart displays write operations per second

(ops/sec) with a significantly lower and more consistent rate throughout the training

period. The spikes are less pronounced than in the AWS chart. The difference between

average and maximum ops/sec remains relatively small throughout the training process.

6.5 Model Training Output

Test Case: Train a machine learning model on both AWS and Azure to evaluate training speed,

accuracy, and classification metrics.

Outcome:

AWS:

 Accuracy: 78%

 Training Time: 6 hours 29 mins

 Precision, Recall, F1-Score:

Negative Class: Precision (0.92), Recall (0.74), F1-Score (0.82)

Positive Class: Precision (0.58), Recall (0.84), F1-Score (0.69)

Weighted Avg: Precision (0.82), Recall (0.77), F1-Score (0.78)

Azure

 Accuracy: 78%

 Training Time: 9 hours 31 mins

 Precision, Recall, F1-Score:

Negative Class: Precision (0.94), Recall (0.74), F1-Score (0.83)

Positive Class: Precision (0.59), Recall (0.88), F1-Score (0.70)

Weighted Avg: Precision (0.83), Recall (0.78), F1-Score (0.79)

 Observation: Both platforms performed equally in accuracy. Azure slightly

outperformed in overall precision and recall, while AWS showed comparable results in

F1-Score.

6.6 Epoch alterations time comparison

Figure: Epoch Time comparison

The chart displays the time taken to complete each epoch during the training of a deep learning

model on both AWS EC2 and Azure VM instances. The x-axis represents the epoch number

(1 to 79), and the y-axis represents the time taken in seconds to complete each epoch.

Key Observations:
 Consistent Epoch Times: Both AWS EC2 and Azure VM show relatively consistent

epoch times throughout the training process. There's minimal fluctuation in the time

taken for each epoch.

 AWS Slightly Faster: On average, the AWS EC2 instance completes each epoch

slightly faster than the Azure VM. The average time for AWS is approximately 270

seconds, whereas Azure's average is around 390 seconds.

 Overall Difference: While AWS is faster per epoch, the difference isn't dramatic. The

overall difference in time taken for the complete training process would depend on the

total number of epochs processed.

The chart indicates that the AWS EC2 instance demonstrates a slight performance advantage

over the Azure VM in terms of the time taken to process each epoch. This suggests that the

AWS environment offers slightly faster training speeds per epoch. However, the difference

isn't substantial, indicating that both platforms provide relatively comparable training

performance on a per-epoch basis. The total training time would, however, be considerably

different given the approximate 120-second difference in time per epoch.

7 Results Evaluation

In this section, we evaluate the performance of AWS and Azure based on the experiments

conducted during model training. The results are analyzed with respect to the research

objectives, which include assessing the time efficiency of both platforms during model training,

comparing resource utilization, and determining the optimal cloud platform for machine

learning tasks. The evaluation summarizes all the key findings from the implementation, and

research objectives and concludes with the platform that performs best overall.

Based on the experiments conducted, the following outcomes were drawn:

Test Case
AWS

Performance

Azure

Performance
Winner Result Arguments

AI Deep learning

model training

Time

6 hours 29 mins
9 hours 31

mins
AWS

AWS has faster training

time

Time per Epoch

(Average)
270 seconds 401 seconds AWS

AWS took fewer seconds

per epoch than Azure.

Memory Usage

(Average)
47% (Stable)

53-46 %

(Fluctuating)
AWS

AWS showed consistent

memory usage, while

Azure fluctuated.

CPU Utilization Above 90%
Below 90%

(Stable)

AWS,

Azure

high CPU usage

translates into faster

training times.

Performance

Stability

(Fluctuations)

No significant

fluctuations

Minor dips

observed
AWS

AWS was more stable in

performance.

Resource Scaling
Auto-scaling

efficient

Auto-scaling

available

AWS,

Azure

Both platforms are

efficient in auto-scaling.

Cost Efficiency € 23.54 €11.58 Azure
Aws resources are

expensive

Overall Model

Accuracy
78% 78%

AWS,

Azure

Azure slightly

outperformed in overall

precision and recall

Table: Evaluation Results

Detailed Evaluation:

1. Time per Epoch Comparison: AWS showed better performance in terms of training

speed. The time per epoch for AWS was consistently lower than that for Azure,

indicating that AWS had superior computational power or better optimization for the

specific model. As shown in the table, AWS was faster by 128-133 seconds per epoch

alteration on average.

2. Memory and CPU Utilization: Both platforms had similar memory usage, the

performance stability was better on AWS. Azure experienced minor drops in memory

usage, which could be indicative of temporary scaling or inefficient resource

management compared to AWS for this experiment. In terms of CPU utilization, both

platforms were nearly identical, with no major differences in processing power being

noted.

3. Performance Stability: AWS demonstrated better stability, as indicated by its

consistent memory and CPU utilization across epochs. Azure’s occasional memory

dips, while not significant, suggest that AWS offers a more reliable environment for

long-term model training.

4. Training Speed and Scalability: AWS allowed for faster completion of training,

processing more epochs per hour. This performance optimized resource management

on AWS evaluating the 1.5x training speed of Azure in terms of compiling all the

technicalities in the experiment. AWS can handle resource-intensive tasks more swiftly,

meeting the need for faster processing and quicker turnaround times in large-scale

machine learning workloads.

5. Cost Efficiency: Azure resources are much more affordable than AWS indicating a

high relief when it comes to the use of VMs, monitoring tools, and cloud storages.

6. Model Accuracy: Both AWS and Azure showed near-identical results in terms of

model accuracy, with AWS achieving 78% and Azure 78%. Azure slightly

outperformed in overall precision and recall while running the experiment making a

little edge to lead in this process.

8 Conclusion

 Considering deep learning model training in AWS and Azure, the comparison reveals

crucial performance metrics that make them suitable for machine learning in particular

scenarios. AWS did better than Azure in many aspects including training efficiency,

the number of epochs that were processed in an hour and efficient use of resources with

respect to the number of CPUs and memory available.

 AWS took a training time of six hours while Azure took nine and a half hours which

indicates that it is more appropriate for large computations. In addition, AWS had a

more stable utilization rate of the CPU, while Azure had small variations which

suggested possible weakness in resource management.

 On the other hand, Windows Azure was cheaper with cost per task being much lower

than that of AWS and this was preferable for smaller or budget constrained projects.

 However, this and other positives of Azure all had a drawback in that it was designated

cheaper and slower by the fact that when speed was a factor, AWS’s superior

capabilities shone through.

 The accuracy of the model for both platforms was similar at 78% with variable levels

of precision and recall for positive class on Azure and AWS respectively. In this case

however, the slight advantage in accuracy for AWS didn’t matter as training was faster

and more consistent in terms of performance.

 To sum up, for massive deep learning tasks that require more training time and effective

scaling, the cloud computing platform of choice is AWS, whereas for smaller projects

with comparable accuracy, Azure is still more cost-effective.

9 References

[1] H. Johnson and S. Lee, "Cost Efficiency and Scalability of Cloud Platforms for

Machine Learning Workloads," Cloud Computing and Big Data, vol. 15, no. 1, pp. 45-

59, 2021.

[2] Ramirez, "Scalability of TensorFlow on AWS and Azure: A Comparative Study.,"

Journal of Machine Learning Infrastructure, vol. 21, no. 2, pp. 67-81, 2023.

[3] L. e. a. Foster, "Comparative Analysis of Disk I/O Performance in Cloud Platforms for

Machine Learning," Cloud Performance Studies, vol. 14, no. 3, pp. 235-249, 2020.

[4] S. e. a. Khan, "The Usability of Cloud Platforms for Machine Learning Development:

A Comparison of AWS and Azure.," Journal of Cloud Technology, vol. 10, no. 2, pp.

85-94., 2020.

[5] E. e. a. Roberts, "Benchmarking TensorFlow Performance on AWS and Azure," Cloud

Performance Studies, vol. 14, no. 3, pp. 237-246, 2021.

[6] P. e. a. Zhang, "TensorFlow on Cloud Platforms: AWS vs Azure.," International

Journal of Machine Learning, vol. 8, no. 2, pp. 85-98, 2019.

[7] Q. e. a. Wang, "Automating TensorFlow Model Deployment on AWS.," AI Deployment

Quarterly, vol. 7, no. 2, pp. 92-102, 2021.

[8] A. Miller and R. Singh, "AutoML and Model Deployment on Azure: A Comparative

Review," International Journal of Cloud Applications, vol. 14, no. 1, pp. 18-33, 2023.

[9] J. e. a. Smith, "Cloud Computing and Machine Learning: A Comparative Review,"

Journal of Cloud Engineering, vol. 12, no. 4, pp. 112-130, 2020.

[10] E. e. a. Roberts, "Benchmarking TensorFlow Performance on AWS and Azure," Cloud

Performance Studies, vol. 14, no. 3, pp. 237-24, 2021.

[11] J. Lee and S. Gupta, "Cost Analysis of Machine Learning on AWS and Azure,"

Computing Resources Quarterly, vol. 6, no. 2, pp. 203-215, 2020.

[12] G. e. a. Hernandez, "Predictable Pricing Models for Machine Learning in the Cloud,"

Journal of Cloud Economics, vol. 17, no. 1, pp. 43-52, 2023.

[13] D. e. a. Kim, "Advanced Customization in Cloud-Based Machine Learning," Cloud

Engineering Journal, vol. 8, no. 3, pp. 165-178, 2020.

[14] P. Williams and J. Taylor, "Ease of Use and Usability of Cloud Platforms for Machine

Learning," Cloud Platforms Review, vol. 8, no. 4, pp. 77-85, 2019.

[15] L. Garcia and H. Lopez, "Optimizing TensorFlow for Cloud Training," Journal of

Cloud Development, vol. 11, no. 4, pp. 334-349, 2022.

[16] R. e. a. Jones, "Cloud-Based TensorFlow Optimization," Journal of Applied AI, vol. 15,

no. 1, pp. 104-121, 2023.

[17] M. Patel and V. Gupta, "Cost Comparison of Cloud Platforms: AWS vs. Azure for

Machine Learning," Journal of Cloud Economics, vol. 17, no. 3, pp. 45-56, 2019.

[18] K. Brown and S. Taylor, "The User Experience of Machine Learning Platforms: A

Comparison of AWS and Azure," UX Research Journal, vol. 19, no. 2, pp. 55-68, 2021.

[19] J. Ravanello, L. E. B. Desharnais, A. A. Villalpando and A. Gherbi, "Performance

Measurement for Cloud Computing Applications Using ISO 25010 Standard

Characteristics," [Online].

[20] L. Davis and M. Liu, "Scaling Deep Learning Models with AWS SageMaker,"

Proceedings of the Cloud Computing Symposium, vol. 45, no. 1, pp. 23-29, 2021.

	1. Introduction
	1.1 Motivation for the Study
	1.2 Research Questions and Objectives
	1.3 Hypothesis
	1.4 Contribution to the Literature
	1.5 Innovation
	2. Related Work
	Cloud computing has transformed the training and deployment of machine learning models, especially for deep learning models. Among the leading cloud platforms in this area are Amazon Web Services (AWS) and Microsoft Azure, both offering scalability, f...
	2.1 Cloud Platforms and Resource Utilization in Deep Learning
	2.2 Performance Metrics for Cloud-based Machine Learning
	2.3 Disk Read/Operation Operations and Memory Usage
	2.4 Cost Efficiency and Usability
	2.5 Need for This Research
	3 Methodology
	3.1 Research Approach
	3.2 Research Objectives and Metrics
	3.3 Data Collection Process
	Dataset Selection
	3.4 Data Preprocessing stages
	3.5 Experimental Setup
	3.6 Data Analysis Techniques
	3.7 Evaluation Procedure
	4 Design Architecture Specification
	4.1 Architecture Description
	4.7 Deep Learning Model Architecture and Training Process
	4.7.1 Deep Learning Model Attributes and Architectural Diagram
	4.7.2 Training Results and Application-level Matrices

	4.8 Cloud Platform Configuration
	5 Implementation Steps for Deploying the Model on AWS and Azure
	5.1 Infrastructure Setup
	AWS Setup
	Azure Setup
	Software Installation

	5.2 Cloud Connectivity Setup of AWS and Azure
	5.3 Dataset Transfer and Storage
	5.4 Model Training Initialization
	5.5 Performance Monitoring and Logging
	5.6 Model Evaluation

	6 Outputs Evaluation
	6.1 CPU Utilization outputs
	6.2 Memory Utilization
	6.3 Read Operations Performance
	6.4 Write Operations Performance
	6.5 Model Training Output
	6.6 Epoch alterations time comparison

	7 Results Evaluation
	8 Conclusion
	9 References

