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Abstract 
 
This paper presents a comparative analysis of two leading cloud computing platforms: Amazon 

Web Services (AWS) and Microsoft Azure. The focus of this analysis is on the implementation 

of TensorFlow, a widely used machine learning framework. The objective is to evaluate both 

platforms based on several criteria, including performance, cost-efficiency, scalability, and 

ease of implementation. Through benchmarking tests obtained through the cloud monitors and 

application performance assessments, this study aims to provide insights into which platform 

is more suitable for TensorFlow-based applications. 

1. Introduction 
 

Software and machine learning industries have benefitted from cloud systems, as it allows for 

a greater possibility of model deployment in a cost-effective and flexible manner. When it 

comes to the cloud service providers that support deep learning frameworks like TensorFlow, 

Microsoft Azure and Amazon Web Services rank highest. Both of these platforms provide 

fully-featured IaaS and PaaS solutions allowing easy deployment, scaling, and management of 

machine learning models for data scientists and research scientists. 

 

However, insufficient attention has been given to the training phase of deep learning across the 

considered platforms which employs CPU resources. This is where the presented work fits in 

by focusing on a critical review of two Cloud Platforms AWS ec2 and Azure VM. The 

assessment will cover issues of CPU load, disk I/O operations, memory consumption, cost per 

task, time per task, and accuracy of the task performance employing GoogleNet based deep 

learning. 

1.1 Motivation for the Study 
 

In recent years machine learning (ML) and deep learning (DL) algorithms have invaded many 

fields like healthcare, finance, and computer vision among others. Nevertheless, the majority 

of deep learning modeling requires enough computational power which lends considerable 

interest to cloud services. Powerful computing capabilities are available on demand, such as 

those provided by AWS and Azure, but their effectiveness and cost depend on the type of 

workload used in the application. 

With regard to ecommerce cloud applications, both AWS and Azure have a considerable 

number of options that facilitate training of machine learning models. It is worth underscoring 

that AWS EC2 instances are recognized for their versatility and efficient scaling which makes 

them a better match for training machine learning models with a high resource demand. On the 



other side, Azure VM instances are normally cheaper and have easier integration which makes 

them suitable for small applications. Nevertheless, since TensorFlow can be utilized in both, it 

is fundamental to assess the training costs, times, and performance metrics using processor-

based resources in both platforms. 

1.2 Research Questions and Objectives 
 

 How does AWS EC2 compare with Azure VMs in terms of CPU Utilization, read 

write operations, memory used, costs and application performance when training 

deep learning models in TensorFlow? 

The specific areas of this research are: 

1. To benchmark the CPU performance of AWS EC2 and Azure VM instances while 

training a GoogleNet deep learning model. 

2. To evaluate read /write operations and their impact on training time and efficiency. 

3. To measure memory utilization during training and assess how effectively each 

platform handles our selected datasets. 

4. To compare the cost efficiency of training deep learning models on different platforms, 

considering various instance types and pricing models. 

5. To analyze the training time and model accuracy to determine which platform delivers 

the best performance in terms of speed and output quality. 

1.3 Hypothesis 
 

The study hypothesizes that: 

 AWS EC2 instances will perform better in terms of CPU utilization, scalability, and 

training time, but at a higher cost. 

 Azure VM instances will provide a cost-effective solution for smaller machine learning 

workloads, with comparable accuracy but potentially slower training times due to less 

efficient CPU scaling. 

1.4 Contribution to the Literature 

 

This research contributes significantly to the scientific literature by offering a thorough 

comparison between AWS EC2 and Azure VM for TensorFlow-based deep learning tasks that 

utilize CPU resources. Unlike previous studies that focused solely on GPU usage, this report 

highlights the often-overlooked training processes in machine learning [4]. The objective of 

this study is to analyse how CPU, disk read/write operations, memory, training duration, and 

model performance can inform the selection of a cloud platform that aligns best with specific 

resource needs and business objectives. 

Additionally, this study fills a crucial gap in the literature by examining the cost-effectiveness 

of using AWS compared to Azure for CPU-based training—an area that has not received ample 

attention in prior research, such as the works of [4] and [5]. 

 

1.5  Innovation  
 

A fresh comparison evaluation of AWS and Azure's deep learning CPU-based performance 

exists in this study. This research examines Google Net training whereas the majority of past 

work has mainly examined GPU-driven processes.  

This experiment will uniquely shift the focus to under-explored areas like: 



 

• CPU Utilization: Cloud platforms show optimal utilization of their CPUs when 

performing deep learning training operations. 

• Cost-Efficiency: A detailed examination exists within this paper to show how 

performance intersects with cost considerations for CPU workloads. 

• I/O Operations on Disk: Elastic Block Store by AWS requires examination against 

Azure Premium SSD when analyzing read/write operations specifically for processing 

abundant volumes of data. 

• Real-world Data: Years of research at Stanford have led to the development of binary-

classified elbow X-ray medical data which shows potential real-world impact for healthcare 

delivery and business operations. 

The combination provides practical understanding to organizations selecting CPUs as their 

focus or those working within budget constraints. 

 

Three recent research papers [1] [2] [3] examined different cloud platforms using generalized 

machine learning workload criteria. Few studies investigate the precise usage patterns of 

CPUs and memory behavior in deep learning model implementation on cloud infrastructure 

platforms such as Google Net This situation allows for a performance evaluation between 

these systems when training tasks are run through CPU resources. 
 

2. Related Work 

Cloud computing has transformed the training and deployment of machine learning models, 

especially for deep learning models. Among the leading cloud platforms in this area are 

Amazon Web Services (AWS) and Microsoft Azure, both offering scalability, flexibility, and 

cost-effectiveness. However, when it comes to training deep learning models using CPU 

resources, the platform choice can significantly impact performance, cost, and usability [8]. 

This study compares the performance of AWS EC2 and Azure VM instances using the 

GoogleNet deep learning model for image classification. Key metrics evaluated include CPU 

utilization, disk I/O operations, memory usage, training time, accuracy, and cost efficiency. 

These metrics are essential for assessing cloud platforms designed for CPU-based workloads 

in deep-learning tasks. 

2.1 Cloud Platforms and Resource Utilization in Deep Learning 
 

Some important services where machine learning model deployment can be done for both AWS 

and Azure come mainly in CPU-based deep learning tasks, such as via instance deployment 

between virtual circuits for its performance via AWS EC2 instances on AWS and VM instances 

on Azure. Both of these techniques actually serve well on great substantial flexible ways of 

provisioning resources based on their specific demands upon the training of the models but 

result in vary in efficiency and cost-effective depending on either the platform or type of 

workload [6]. Efficient use of these resources cuts training time and saves funds. Therefore, 

the right choices regarding platforms are important among different workload requirements. 

Hence, Johnson and Lee noticed that AWS and Azure could equally optimize CPU resources 

usable by TensorFlow-based training. Instead, each platform's specific management of those 

resources makes a difference when speaking about performance. 

For CPU-bound workloads, memory usage and disk I/O are the most relevant metrics. [2] 

compare AWS and Azure for machine learning workloads and note that AWS EC2 instances 

are particularly optimized for CPU-bound operations, where scaling resources during training 



phases is more flexible. However, Azure's VM instances, with their predictable performance 

and cost-efficient resource allocation, are noted to offer good performance for smaller-scale 

deep learning models. 

 

2.2 Performance Metrics for Cloud-based Machine Learning 
 

In machine learning, training time, along with accuracy, is probably the most critical 

performance indicator while dealing with CPU resources. [5] discuss the following metrics, 

taking into consideration the impact thereby caused by cloud resources: the performance of 

AWS EC2 instances is usually superior due to the rapid model-training ability, since instance-

type flexibility and availability for heavy computation is higher. These instances are more 

expensive, especially if used for extended periods, which becomes relevant in the context of 

long-running machine learning projects. 

On the other hand, Azure VM instances have shown to be very good in terms of accuracy rates, 

especially for smaller datasets. Brown and Taylor further reiterated that while Azure sometimes 

may fall short on times of training when compared to AWS, making it cost lower in the general 

perspective makes it very cost-efficient and simple to use through certain services: Azure 

Machine Learning Studio this places it competitive in some teams where smaller computation 

loads are made. 

[7] outlined that the training time served as an indicator for model deployment, while many 

cloud-based services, such as AWS or Azure, often supported automatic scaling and resource 

provisioning, directly influencing the time it takes to train a model in the case of resources like 

CPU and memory being allocated on demand. 

2.3 Disk Read/Operation Operations and Memory Usage 

Another important factor concerning training machine learning models on cloud platforms is 

the Disk I/O operations. [8] have pointed out that during training with large datasets, disk 

read/write operations create a bottleneck. AWS deploys EBS, or Elastic Block Store, for 

storage; this feature of AWS is highly useful in handling high-throughput data operations. [3] 

have discussed how EBS volumes allow for extremely fast read/write operations on AWS, 

reducing the overall time required for pre-processing and training a model. 

Azure, on the other hand, relies on Azure Blob Storage to handle data storage, which, though 

similar in many ways to EBS, has been found in a number of studies to perform slightly slower 

in terms of disk I/O operations when dealing with large datasets. However, [9] present an 

alternative view arguing that Azure’s Blob Storage is economical for use in small datasets. In 

this regard, it also makes Azure more relatively attractive for research experiments with small 

data or those on a smaller scale. 

With regards to the memory requirements, Amazon and Azure have vm instances which are 

configurable to particular memory needs. [10] have demonstrated that memory usage correlates 

with the training stage of deep learning models where larger models like GoogleNet are highly 

memory intensive. Instances of AWS EC2 are more favorable for high memory bandwidth but 

even in this case, Azure VMs are favored because of integration into existing enterprise tools, 

making them easier to manage in organizations that are already in the Microsoft environment.  



2.4  Cost Efficiency and Usability 

Cost is one of the factors worth looking at when selecting a cloud platform for deep learning 

workloads. [1] found that Azure was cheaper for smaller workloads that did not need higher 

computing power. Their findings indicate that for CPU-bounded models deployed by an 

organization or researcher on smaller databases, Azure may be more cost effective than AWS. 

On the contrary, larger and resource demanding jobs can be run on AWS at a higher cost but 

with more scalability and performance. 

Another important aspect is ease of use. According to [11], Azure's Machine Learning Studio 

has a more user-friendly interface which is easier to use by people with low technical expertise. 

On the other hand, AWS SageMaker is feature-rich but more technical to set up and really 

appeals to those users who understand the ins and outs of cloud infrastructure and machine 

learning environments. 

 

 

2.5  Need for This Research 

This research aims to address a gap in the literature by comparing AWS and Azure for deep 

learning tasks using CPUs. The following points highlight the key aspects of the study 

 

 AWS and Azure Support Deep Learning Models: Both platforms provide significant 

advantages based on workload requirements. 

 Cloud platforms strengths: check which of the platforms offers scalability, disk I/O 

performance, and fast training speed in identical environments and which one is more 

economical for smaller and large scale tasks and features a simpler interface for non-

technical users [15]. 

 Gap in Comparative Studies: There is a lack of direct comparative studies on AWS 

and Azure for deep learning tasks using CPUs, especially concerning cost-performance 

trade-offs, resource utilization, and application accuracy. 

 Key Metrics for Evaluation: Critical factors include CPU utilization, disk read/write 

operations, memory usage, and training time matrices. 

 Research Contribution: This study fills the gap by providing a benchmarking 

comparison of AWS EC2 with EBS storage and Azure VM instances with Premium 

SSD LRS [16]. 

 Benchmarking Focus: The comparison considers CPU usage, memory percentage, 

disk I/O, training time, and accuracy, all vital for selecting a suitable cloud platform for 

TensorFlow-based deep learning models. 

 

 

Comparison 

Parameter 

Related Work 

Findings 
Our Research Goal 

Monitoring 

Tools/Methods 

CPU Utilization 

AWS generally shows 

higher CPU utilization 

for large-scale 

workloads, scalable 

Compare CPU usage 

during the training of the 

GoogleNet model on both 

platforms. Measure CPU 

AWS CloudWatch, 

Azure Monitor, 

Custom CloudWatch 

Alarms for CPU 

utilization > 90%. 



Comparison 

Parameter 

Related Work 

Findings 
Our Research Goal 

Monitoring 

Tools/Methods 

resource provisioning 

[6]. 

usage and scalability for 

TensorFlow tasks. 

Memory 

Consumption 

AWS EC2 instances 

show better handling 

of large memory 

requirements for deep 

learning tasks [3]. 

Measure memory 

consumption during 

GoogleNet training, 

focusing on memory 

consumption on both 

platforms. 

AWS CloudWatch 

with CW agent, and 

Azure Monitor for 

tracking memory usage 

Disk 

Read/Write 

Operations 

(OPS) 

AWS EBS volumes 

show high throughput 

for disk read/write 

operations for large 

datasets [8]. 

Evaluate disk I/O 

performance for data 

loading, read/write 

operations, and impact on 

training time. 

AWS CloudWatch, 

Azure Monitor for disk 

I/O operations and 

latency. 

Deep Learning 

Model Training 

Time 

AWS EC2 typically 

leads in training time 

due to faster resource 

scaling, especially for 

large datasets [2] 

Compare training times 

for GoogleNet on both 

platforms using CPU 

resources, with a focus on 

efficiency for deep 

learning tasks. 

AWS CloudWatch, 

Azure Monitor for 

tracking training time 

and resource usage. 

Cost Efficiency 

Azure offers more 

cost-effective pricing 

models for smaller 

workloads compared 

to AWS [12] 

Compare the cost of 

training on both 

platforms, focusing on 

instance pricing for CPU 

usage and storage costs. 

compare cost for EC2. 

VM instances are long 

with storage and 

monitoring tools. 

Model 

Accuracy 

AWS EC2 models 

show faster training 

times, but Azure VM 

yields competitive 

results in smaller tasks 

[13] 

Evaluate the model 

accuracy of GoogleNet on 

both platforms, with the 

goal of identifying the 

platform with optimal 

performance. 

Terminal displays the 

accuracy after the 

model is trained 

                                                                 Table: Key Findings 

 

3 Methodology 
 

This section provides a comprehensive explanation of the research procedures, evaluation 

strategies, tools, and techniques employed to compare the performance of AWS and Azure for 

CPU-based deep learning model training. 

3.1 Research Approach 
 

The research will adopt a comparative analysis approach, focusing on quantitative metrics that 

evaluate the performance and cost-effectiveness of both cloud platforms [19]. The scientific 

process will be followed in implementing the deep learning model of GoogleNet on AWS and 

Azure, observing system resource utilization, and analyzing the training results. 



3.2 Research Objectives and Metrics 

 The research aims to evaluate the platforms based on the following metrics: 

 CPU usage during training with respect to computational efficiency. 

 Memory consumption to evaluate resource allocation. 

 Disk read/write performances. 

 Time required for training to analyze model execution speed [20]. 

 The accuracy of the model on test data obtained time consumption to complete model 

alterations. 

 Analysis of the training process cost by using respective pricing calculators. 

 

 

3.3 Data Collection Process 

Dataset Selection 

• The Stanford University Elbow X-ray dataset was selected for training the GoogleNet 

model. 

• The dataset consists of well-labeled images categorized into Negative and Positive, 

featuring a binary classification task available for the model. 

 

3.4 Data Preprocessing stages 

The model's performance depends on the input data being preprocessed effectively. The elbow 

X-ray dataset was prepared using the following methods: 

 Image Resizing: OpenCV was used to resize all of the images to 224x224 pixels. input 

size that the model anticipates. Consistency in input dimensions is guaranteed by 

resizing. This is crucial for training batch processing.  

 Data Augmentation: Methods like rotation zooming shearing and width/height 

shifting are examples of data augmentation techniques. We used the 

ImageDataGenerator in TensorFlow to apply horizontal flip. augmentation. adds 

variability to the dataset improving the model’s ability to generalize. and lessen the 

overfitting.  

 Train-Test Split: The dataset was split into subsets that were 20% for testing and 80% 

for training. with the train_test_split function from scikit-learn. This division 

guarantees that the model is trained on a. a sizable amount of the data while maintaining 

enough samples for objective assessment.  

 Normalization: Pixel values were divided by 255. 0 to bring them into the [0 1] range. 

During training the convergence rate is accelerated by this common preprocessing step.  

 Hyperparameters: A batch size of 16 was used for the models 80 epoch training. The. 

In order to balance model and training time hyperparameters are selected through 

empirical testing. show.  

 Compilation: The Adam optimizer which is appropriate was used to compile the model 

to manage sparse gradients and dynamically modify learning rates. 



3.5 Experimental Setup 
 

1. Cloud Platforms 
o AWS Configuration: 

 An EC2 instance (t3.2xlarge) with 8 vCPUs and 32 GB memory was 

used for training. 

 Data storage utilized Elastic Block Store (EBS). 

 Operating system with Python and TensorFlow libraries and framework 

 CloudWatch monitoring and custom alarm. 

o Azure Configuration: 

 A Standard_D8_v3 VM with 8 vCPUs and 32 GB memory was 

configured. 

 Data storage relied on Azure standard storage. 

 Azure monitoring with custom alarm. 

 Operating system with Python and TensorFlow framework and libraries  

 

2.  Monitoring Tools 

o AWS CloudWatch: Tracked CPU utilization, memory usage, and disk I/O 

operations. 

o Azure Monitor: Monitored similar metrics, with alerts configured for high 

CPU utilization. 

 

 3.6 Data Analysis Techniques 
 

1. Monitoring Metrics 

 Cloud platform tools observed CPU, memory usage, and disk read and write 

operations during training. 

 A custom CloudWatch alarm and Azure Monitor alert were set up to trigger when 

CPU usage exceeded 90%. 

2. Training Time vs. Accuracy 

 Training time was recorded on each platform, enabling insights into computational 

efficiency. 

 Model accuracy was evaluated using the classification report and confusion matrix 

developed with scikit-learn. 

3. Cost Analysis 

 Costs were computed as the overall cost both cloud platforms consumed in order to 

complete the whole experiment. 

4. Statistical Analysis 

 Descriptive statistics summarized metrics like CPU utilization, memory usage, and 

training time. 

 Graphs and heatmaps were created using Microsoft Excel to visualize the results. 
 

3.7  Evaluation Procedure 
 

1. Execution of Experiment 

 The GoogleNet model was trained on AWS and Azure platforms with identical 

configurations to ensure fairness. 



 System metrics were logged in real time using CloudWatch and Azure Monitor 

during the training process. 

 Application-level metrics captured detailed runtime values, including time taken for 

each epoch completion and accuracy achieved during every iteration. 

 

2. Result Validation 

 Any anomalies were flagged and investigated to reduce bias in the results. 

 

 

 

4 Design Architecture Specification 

 
Figure: Architecture diagram 

4.1 Architecture Description 

The Layered Architecture Pattern is employed here, with distinct layers dedicated to data 

processing, storage, and monitoring. Additionally, the system follows the Microservices 

Architecture Pattern, with independent services (EC2, Azure VM, CloudWatch, Azure 

Monitoring) working in tandem, offering flexibility and fault isolation. Each component within 

the architecture is loosely coupled, enabling independent scaling and management. 

1. Data Preprocessing Layer: The architecture begins with a Data Preprocessing Layer 

where raw datasets, sourced from Stanford University in the healthcare domain, are 



ingested. This layer is primarily responsible for extracting relevant data, in this case, 

the elbow dataset used for classification. The data is then labeled as either "positive" 

(nonfractured) or "negative" (fractured) images, preparing it for machine learning 

operations. 

2. AWS Cloud Architecture: After preprocessing the data, it is transferred to AWS for 

additional processing. The AWS architecture employs an EC2 instance that is set up 

with the required roles through IAM Roles to ensure secure access and operations. This 

EC2 instance is linked to EBS for reliable data storage. Given the close interaction 

between EC2 and EBS, the diagram represents them within the same boundary. 

Furthermore, the CloudWatch service is integrated with both EC2 and EBS for 

monitoring purposes. Additionally, a custom alarm is established to monitor specific 

thresholds related to the EC2 instance, offering valuable insights into the performance 

of the machine learning model hosted on AWS. 

3. Azure Cloud Architecture: In the Azure environment, Azure Active Directory is 

employed within the authentication and identity management framework. The Azure 

Virtual Machine (VM) parallels the role of EC2 in AWS. It connects to Premium SSD 

LRS, delivering high-speed storage for data-heavy applications. Like AWS, Azure 

Monitoring is implemented to oversee system performance and log activity. 

Additionally, a custom alarm is established to define particular thresholds, guaranteeing 

that any discrepancies from expected performance levels are promptly resolved. 

4.7  Deep Learning Model Architecture and Training Process 

This section provides a detailed explanation of the deep learning model's architecture, outlining 

the steps taken during its development and training. The chosen architecture for this project is 

GoogleNet, selected over other deep learning models like VGG and ResNet due to its efficient 

design. This approach enables the model to develop a hierarchical representation of the input 

data, effectively discerning both fine and coarse features. 

4.7.1 Deep Learning Model Attributes and Architectural Diagram 

In this project, the GoogleNet architecture integrates various elements such as convolutional 

layers, inception blocks, pooling layers, fully connected layers, and an output layer to 

categorize elbow X-ray images into two groups: Negative and Positive. The subsequent 

subsections elaborate on the characteristics and structure of the model as per the provided 

figure deep learning Model architecture. 



 
Figure: Deep Learning Model architecture 

 

Data Preprocessing and Augmentation 
 All images were resized to 224x224 pixels using OpenCV. 

 Pixel values were normalized to a range of [0, 1] by dividing by 255.0 to improve 

training stability. 

 Data augmentation techniques (rotation, zoom, shear, width/height shift, and horizontal 

flip) were applied using ImageDataGenerator to improve generalization and prevent 

overfitting. 

Input Layer 

 Accepts input images resized to 224x224x3 (RGB). 

 This size is chosen to align with the standard input dimensions for deep learning 

models, ensuring compatibility with the model architecture. 

Convolutional Layers 

 A 3x3 kernel with strides of 2 is used for max-pooling after the first convolutional layer 

applies a 7x7 kernel with 64 filters. 

 The features are refined using a 1x1 convolution layer with 64 filters then a 3x3 

convolution layer with 192 filters and same padding. 

 Low-level features like edges textures and patterns are captured by these layers. 

 

Inception Blocks 

The model uses nine inception blocks, each designed to extract features at multiple scales.  

Each inception block consists of the following branches: 

1. Branch 1: A 1x1 convolution for localized feature extraction. 



2. Branch 2: A 1x1 convolution followed by a 3x3 convolution to capture mid-level 

features. 

3. Branch 3: A 1x1 convolution followed by a 5x5 convolution for broader spatial 

features. 

4. Branch 4: A 3x3 max-pooling layer, followed by a 1x1 convolution to preserve spatial 

relationships. 

The outputs of these branches are concatenated into a single tensor, combining features from 

all scales.  

 

Pooling Layers 
 Max-pooling layers are interspersed after certain inception blocks to reduce spatial 

dimensions while retaining critical features. 

 A Global Average Pooling (GAP) layer is applied after all inception blocks to 

summarize spatial information across the entire feature map into a single vector. 

 

Fully Connected Layers 
 After the inception blocks, the GAP layer’s output is flattened and passed through a 

fully connected layer. 

 A dropout layer with a rate of 0.4 is applied to reduce overfitting by randomly 

deactivating neurons during training. 

 

Output Layer 
 The final layer consists of a dense layer with two neurons (corresponding to Negative 

and Positive classes). 

 A softmax activation function is applied to output class probabilities. 

 

Training Configuration 

 Compilation: 

o The model was compiled using the Adam optimizer with a learning rate of 1e-

4. 

o Binary cross-entropy was used as the loss function for binary classification 

tasks. 

 Training Parameters: 

o The model was trained for 80 epochs with a batch size of 16. 

o The training process involved monitoring metrics like CPU utilization, memory 

consumption, and disk read/write operations. 

4.7.2 Training Results and Application-level Matrices  

The model's performance was evaluated on the test dataset, and the following outputs were 

generated: 

1. Model Accuracy: The primary metric for evaluation was accuracy, which reflects the 

proportion of correctly classified images in the test dataset. 

2. Classification Report and Confusion Matrix: A detailed classification report was 

generated to provide precision, recall, and F1-score metrics for each class. The confusion 

matrix was visualized using Seaborn to assess the distribution of predictions and identify 

any misclassifications. 

3. Model Saving: The trained model was saved as Elbow_GNet.h5 using Keras’s 

model.save() function for future use or deployment. 

4. App-level logs: Time duration of training model, time taken to complete epoch alterations, 

model accuracy. 



 

Stage Details 

Data 

Preprocessing 

Resized images to 224x224 pixels, applied data augmentation, and 

normalized pixel values. 

Dataset Split 80% training, and 20% testing using scikit-learn’s train_test_split. 

Model 

Compilation 
Adam optimizer, binary cross-entropy loss function. 

Training 

Configuration 
80 epochs, batch size of 16. 

Monitoring 

Time duration of training model, time taken to complete epoch, model 

accuracy (no explicit monitoring in the code for memory or CPU utilization 

as it is measured through the cloud matrices) 

charts Epoch time and accuracy per each alteration, confusion matrix. 

Model Saving Saved as Elbow_GNet.h5 for reuse or deployment. 

Table: Model Training Workflow 

4.8  Cloud Platform Configuration 

The setup of cloud resources on AWS EC2 and Azure VM for GoogleNet deep learning model 

training is described in this section. For CPU-based tasks the configurations are specifically 

designed to benchmark performance metrics such as CPU utilization memory usage disk I/O 

operations cost effectiveness and training outcomes. The configurations also make use of 

alarms and monitoring tools to efficiently track resource usage. The cloud configurations ar e 

compiled in the table below which also highlights the features resource kinds and monitoring 

configurations for both platforms. 

 

Attribute AWS EC2 Azure VM 

Instance Type 

t3.2xlarge: General-purpose 

instance with 8 vCPUs and 32 GB 

memory. 

Standard_D8_v3: General-purpose VM 

with 8 vCPUs and 32 GB memory. 

Compute 

Resources 

CPU-based compute optimized for 

training and inference tasks. 

CPU-based compute optimized for 

small to medium workloads. 

Storage 

Elastic Block Store (EBS): High-

throughput, low-latency block 

storage for the dataset. 

Premium SSD LRS: fast, secure, and 

cost-effective object storage for the 

dataset. 

Monitoring 

Tools 

AWS CloudWatch: Tracks CPU 

utilization, memory usage, and disk 

read/write operations. 

Azure Monitor: Monitors CPU usage, 

memory consumption, and disk read 

write operations. 

Custom 

Alarms 

Trigger an alarm if CPU utilization 

exceeds 90%, with notifications 

sent via email/SNS. 

Configure alerts to notify when CPU 

utilization exceeds 90%, with 

automated notifications. 

Cost 

Estimation 

Tool 

AWS Pricing Calculator: Calculates 

the cost of EC2 instance and EBS 

storage usage. 

Azure Pricing Calculator: Estimates 

costs for VM instances and standard 

storage and Azure monitoring tool. 

Operating 

System 

Windows_Server-2022-English-

Full-Base-2024.11.13 
2022-datacenter-azure-edition 



Attribute AWS EC2 Azure VM 

Data 

Handling 

Dataset stored on EBS for fast 

access during training. 

Dataset is stored on standard storage for 

access. 

TensorFlow 

Setup 

TensorFlow 2.12.0 installed via pip 

in a Python 3.9 environment. 

TensorFlow 2.12.0 installed via pip in a 

Python 3.9 environment. 

Monitoring 

Metrics 

- CPU Utilization (%).  

- Memory Usage (%).  

- Disk Read/Write OPS (count). 

- CPU Utilization (%).  

- Memory Usage (%).  

- Disk Read/Write OPS (operational 

seconds). 

Primary Use 

Case 

CPU-based training of GoogleNet 

for deep learning tasks. 

CPU-based training of GoogleNet for 

deep learning tasks. 

Table: Cloud platform configurations 

 

5 Implementation Steps for Deploying the Model on AWS 

and Azure 
 

The following steps outline the sequence of actions taken to deploy and train the deep learning 

model on both AWS and Azure cloud platforms, incorporating the necessary terminal 

commands and configurations used for environment setup and connection. 

5.1  Infrastructure Setup 

AWS Setup 

 Instance Configuration:  

o AWS EC2 t3.2xlarge instance was launched. It has 8 vCPUs and 32 GB of 

memory, which is suitable for training deep learning models. 

o Operating System: The instance was set up with Windows_Server-2022-

English-Full-Base-2024.11.13. 

 Storage Configuration:  

o Elastic Block Store (EBS) was attached to the instance for persistent storage. 

The dataset was stored on the EBS volume for efficient access during model 

training. 

Azure Setup 

 VM Configuration:  

o A Standard_D8_v3 VM was created on Azure, equipped with 8 vCPUs and 32 

GB of memory. 

o Operating System: The VM ran 2022-datacenter-azure-edition. 

 Storage Configuration:  

o Premium SSD LRS storage was configured for fast read/write operations during 

model training. 

Software Installation 

 Python Setup: 

o Python 3.9 was installed on both AWS and Azure instances. 

 TensorFlow Setup: 

o TensorFlow version 2.12.0 was installed. 



5.2  Cloud Connectivity Setup of AWS and Azure 

 VM Connection:  

o The AWS EC2 instance and Azure VM were connected to the local machine to 

initiate and control the training process. 

o For Remote Desktop Connection (RDP), the following steps were performed 

to enable access to the target machine:  

 Enabled Remote Desktop on the remote Windows machine by 

navigating to System > Remote Desktop and toggling it On. 

 Configured the Windows Firewall to allow Remote Desktop by going to 

Control Panel > Windows Defender Firewall > Allow an app or feature.  

 Connected using Remote Desktop Connection (mstsc command) and 

entered the IP address of the remote machine 

5.3  Dataset Transfer and Storage 

 Dataset Upload:  

o The dataset, which contains radiology images, was transferred from the local 

machine to the cloud instance (EBS on AWS and Premium SSD LRS on Azure).  

o The dataset was stored in directories on both platforms, ensuring fast and 

efficient access during the training process. 

5.4  Model Training Initialization 

 Run Command to Launch Training: 

o After setting up the environment and ensuring that all dependencies were 

installed, the training process was initiated by running the following command 

on both platforms:  

o py train_model.py 

o The model training process was started from the local machine, and the logs 

were monitored in real-time using CloudWatch on AWS and Azure Monitor on 

Azure. 

 Training Configuration: 

o The model was trained with the following hyperparameters:  

 Batch Size: 16 

 Epochs: 80 

 Learning Rate: 0.0001 

5.5  Performance Monitoring and Logging 

 AWS CloudWatch: 

o CloudWatch was used to monitor performance metrics during training, such as:  

 CPU Utilization of EC2 resources in percentage 

 Memory consumption of the resource in percentage 

 Read/write Operation performed in EBS volume. 

o Custom CloudWatch alarms were configured to notify the if the CPU utilization 

hits above 90% usage. 

 Azure Monitoring: 

o Azure Monitor tracked similar metrics, including:  

 CPU Utilization of EC2 resource in percentage 

 Memory consumption of the resource in percentage 

 OS Read/write operation performed. 



o Custom alarms were also set in Azure Monitor to alert the team in case of system 

performance degradation. 

5.6  Model Evaluation 

 Training Completion:  

o After the model finished training, the weights were saved as Elbow_GNet.h5. 

o The model metrics were evaluated using accuracy, loss, time taken to complete 

model training, and time taken to complete each epoch alteration as mentioned 

in the evaluation section. 

o  

6 Outputs Evaluation 

6.1  CPU Utilization outputs 

Test Case: Evaluate CPU utilization for both AWS and Azure platforms. 

 

 

 

 

 
Figure: AWS CPU utilization from CloudWatch 

 
Figure: Azure CPU Utilization from Azure 

monitoring 

 

AWS: 

The average CPU utilization is consistently close to 90%, with minimal fluctuations between 

the average and maximum values, indicating stable resource usage. Total training time on AWS 

is approximately 6 hours and 30 minutes, showing efficiency in CPU usage. 

Azure: 

The average CPU utilization also peaks around 85-90%, but the chart indicates slightly more 

variability in CPU usage compared to AWS. Total training time on Azure is approximately 

above 9 hours, making it slower than AWS for the same workload. 

observation: 

 AWS performs better in terms of CPU utilization efficiency and training speed. Its 

consistent high CPU usage translates into faster training times, which is crucial for large 

workloads. 

 Azure, while stable, is slower overall, making AWS a better choice for tasks requiring 

high CPU scalability and efficiency 



6.2  Memory Utilization  

Test Case: Assess memory utilization for both platforms under identical workload conditions.  

 

 
 

Figure: Azure Memory consumption 

 

Figure: AWS Memory consumption 

AWS Memory Consumption (memory percentage against time) 

 AWS's maximum memory usage reaches 47%, and it maintains consistent usage at 

or near this value throughout the recorded time. 

 There are no significant fluctuations, indicating efficient and stable memory 

management during the workload. 

Azure Memory Consumption (memory percentage against time) 

 Azure's maximum memory usage reaches 53%, and for half of the time, it remains 

below 49% for the remaining period. 

 While Azure demonstrates higher peak memory usage, this can indicate over-

allocation or inefficient utilization of memory resources for the workload. 

Observation: 

AWS exhibits more consistent and predictable memory usage, with a clear cap at 47% and 

no excessive spikes. This makes it a more stable and reliable option for memory-bound 

tasks where stability is critical. For workloads requiring memory efficiency and stability, 

AWS is better suited as it provides more predictable resource allocation, meeting non-

functional requirements for consistency and resource optimization. 

 

6.3  Read Operations Performance 

Test Case: Measure read operation performance (Average and Maximum) across AWS and 

Azure. 



 

Figure: Azure OS Read OPS 

 

Figure: AWS Volume read Ops 

 

 

 AWS (CloudWatch): The AWS chart shows a massive initial spike in read operations, 

followed by extremely low activity for the remainder of the training period, with a 

minor spike toward the end. The maximum read operations vastly exceed the average. 

 Azure (Azure Monitor): The Azure chart displays read operations per second with a 

consistently low rate throughout training. There's a significant spike near the end of the 

training period. 

 

Metric 
AWS (CloudWatch) 

(Approximate) 
Azure (Azure Monitor) 

Peak Read 

Operations/sec 
Extremely High (18000+) ~14 ops/sec 

Average Read 

Operations/sec 
Very Low ~0.5-1 ops/sec 

Consistency of 

Read Operations 

Very Low (Large initial spike 

and a tiny spike at the end, 

otherwise near 0) 

Relatively High (Mostly 

low, but with one large 

spike at the end) 

 

Observation Table: AWS provides better average throughput for read-intensive applications. 

 

6.4  Write Operations Performance 

Test Case: Analyze write operation performance for both platforms. 

 



 

Figure: Azure OS Disk Write operation 

 

 

Figure: AWS Volume Write Ops 

 

 

 AWS (CloudWatch measures): The AWS chart shows write operations with a very 

high initial spike, dropping to a relatively low and fluctuating baseline for the duration 

of training before spiking again at the end. The maximum number of write 

operations/second is much higher than the average. 

 Azure (Azure Monitor): The Azure chart displays write operations per second 

(ops/sec) with a significantly lower and more consistent rate throughout the training 

period. The spikes are less pronounced than in the AWS chart. The difference between 

average and maximum ops/sec remains relatively small throughout the training process. 

6.5  Model Training Output 

Test Case: Train a machine learning model on both AWS and Azure to evaluate training speed, 

accuracy, and classification metrics. 

Outcome:  

AWS:  

 Accuracy: 78% 

 Training Time: 6 hours 29 mins 

 Precision, Recall, F1-Score:  

Negative Class: Precision (0.92), Recall (0.74), F1-Score (0.82) 

Positive Class: Precision (0.58), Recall (0.84), F1-Score (0.69) 

Weighted Avg: Precision (0.82), Recall (0.77), F1-Score (0.78) 

 

Azure 

 Accuracy: 78% 

 Training Time: 9 hours 31 mins 

 Precision, Recall, F1-Score:  

Negative Class: Precision (0.94), Recall (0.74), F1-Score (0.83) 

Positive Class: Precision (0.59), Recall (0.88), F1-Score (0.70) 

Weighted Avg: Precision (0.83), Recall (0.78), F1-Score (0.79) 

 Observation: Both platforms performed equally in accuracy. Azure slightly 

outperformed in overall precision and recall, while AWS showed comparable results in 

F1-Score. 

6.6  Epoch alterations time comparison 

 



 

Figure: Epoch Time comparison 
 

The chart displays the time taken to complete each epoch during the training of a deep learning 

model on both AWS EC2 and Azure VM instances. The x-axis represents the epoch number 

(1 to 79), and the y-axis represents the time taken in seconds to complete each epoch. 

Key Observations: 
 Consistent Epoch Times: Both AWS EC2 and Azure VM show relatively consistent 

epoch times throughout the training process. There's minimal fluctuation in the time 

taken for each epoch. 

 AWS Slightly Faster: On average, the AWS EC2 instance completes each epoch 

slightly faster than the Azure VM. The average time for AWS is approximately 270 

seconds, whereas Azure's average is around 390 seconds. 

 Overall Difference: While AWS is faster per epoch, the difference isn't dramatic. The 

overall difference in time taken for the complete training process would depend on the 

total number of epochs processed. 

The chart indicates that the AWS EC2 instance demonstrates a slight performance advantage 

over the Azure VM in terms of the time taken to process each epoch. This suggests that the 

AWS environment offers slightly faster training speeds per epoch. However, the difference 

isn't substantial, indicating that both platforms provide relatively comparable training 

performance on a per-epoch basis. The total training time would, however, be considerably 

different given the approximate 120-second difference in time per epoch. 

 

 

 
 

7 Results Evaluation 
 

In this section, we evaluate the performance of AWS and Azure based on the experiments 

conducted during model training. The results are analyzed with respect to the research 

objectives, which include assessing the time efficiency of both platforms during model training, 

comparing resource utilization, and determining the optimal cloud platform for machine 

learning tasks. The evaluation summarizes all the key findings from the implementation, and 

research objectives and concludes with the platform that performs best overall. 

Based on the experiments conducted, the following outcomes were drawn: 



Test Case 
AWS 

Performance 

Azure 

Performance 
Winner Result Arguments 

AI Deep learning 

model training 

Time 

6 hours 29 mins 
9 hours 31 

mins 
AWS 

AWS has faster training 

time 

Time per Epoch 

(Average) 
270 seconds 401 seconds AWS 

AWS took fewer seconds 

per epoch than Azure. 

Memory Usage 

(Average) 
47% (Stable) 

53-46 % 

(Fluctuating) 
AWS 

AWS showed consistent 

memory usage, while 

Azure fluctuated. 

CPU Utilization Above 90% 
Below 90% 

(Stable) 

AWS, 

Azure 

high CPU usage 

translates into faster 

training times. 

Performance 

Stability 

(Fluctuations) 

No significant 

fluctuations 

Minor dips 

observed 
AWS 

AWS was more stable in 

performance. 

Resource Scaling 
Auto-scaling 

efficient 

Auto-scaling 

available 

AWS, 

Azure 

Both platforms are 

efficient in auto-scaling. 

Cost Efficiency € 23.54 €11.58 Azure 
Aws resources are 

expensive 

Overall Model 

Accuracy 
78% 78% 

AWS, 

Azure 

Azure slightly 

outperformed in overall 

precision and recall 

Table: Evaluation Results 

 

Detailed Evaluation: 

1. Time per Epoch Comparison: AWS showed better performance in terms of training 

speed. The time per epoch for AWS was consistently lower than that for Azure, 

indicating that AWS had superior computational power or better optimization for the 

specific model. As shown in the table, AWS was faster by 128-133 seconds per epoch 

alteration on average. 

2. Memory and CPU Utilization: Both platforms had similar memory usage, the 

performance stability was better on AWS. Azure experienced minor drops in memory 

usage, which could be indicative of temporary scaling or inefficient resource 

management compared to AWS for this experiment. In terms of CPU utilization, both 

platforms were nearly identical, with no major differences in processing power being 

noted. 

3. Performance Stability: AWS demonstrated better stability, as indicated by its 

consistent memory and CPU utilization across epochs. Azure’s occasional memory 

dips, while not significant, suggest that AWS offers a more reliable environment for 

long-term model training. 

4. Training Speed and Scalability: AWS allowed for faster completion of training, 

processing more epochs per hour. This performance optimized resource management 

on AWS evaluating the 1.5x training speed of Azure in terms of compiling all the 

technicalities in the experiment. AWS can handle resource-intensive tasks more swiftly, 

meeting the need for faster processing and quicker turnaround times in large-scale 

machine learning workloads. 



5. Cost Efficiency: Azure resources are much more affordable than AWS indicating a 

high relief when it comes to the use of VMs, monitoring tools, and cloud storages. 

6. Model Accuracy: Both AWS and Azure showed near-identical results in terms of 

model accuracy, with AWS achieving 78% and Azure 78%. Azure slightly 

outperformed in overall precision and recall while running the experiment making a 

little edge to lead in this process. 

 

8 Conclusion 
 

 Considering deep learning model training in AWS and Azure, the comparison reveals 

crucial performance metrics that make them suitable for machine learning in particular 

scenarios. AWS did better than Azure in many aspects including training efficiency, 

the number of epochs that were processed in an hour and efficient use of resources with 

respect to the number of CPUs and memory available.  

 AWS took a training time of six hours while Azure took nine and a half hours which 

indicates that it is more appropriate for large computations. In addition, AWS had a 

more stable utilization rate of the CPU, while Azure had small variations which 

suggested possible weakness in resource management. 

  On the other hand, Windows Azure was cheaper with cost per task being much lower 

than that of AWS and this was preferable for smaller or budget constrained projects. 

  However, this and other positives of Azure all had a drawback in that it was designated 

cheaper and slower by the fact that when speed was a factor, AWS’s superior 

capabilities shone through.  

 The accuracy of the model for both platforms was similar at 78% with variable levels 

of precision and recall for positive class on Azure and AWS respectively. In this case 

however, the slight advantage in accuracy for AWS didn’t matter as training was faster 

and more consistent in terms of performance. 

 To sum up, for massive deep learning tasks that require more training time and effective 

scaling, the cloud computing platform of choice is AWS, whereas for smaller projects 

with comparable accuracy, Azure is still more cost-effective. 
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