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Optimizing Cloud Power In An Open Radio Access
Network Based on Subscriber Behavior

AbdulJalil Lotfi
22241388

Abstract

The fast adoption of 5G has significantly changed mobile communications, due
to the high speed, very low latency, and the ability to serve billions of devices.
However, this rapid expansion comes at the cost of increased energy consumption,
caused by the need for more Radio Units (RU) deployment in high-traffic areas
because of the use of higher-frequency radio waves, which offer shorter transmis-
sion ranges. This challenge has increased the computational load on cloud based
Distributed units and Central units further compromising energy efficiency. Open
Radio Access Network (O-RAN) architecture was a paradigm shift by introducing
disaggregation, virtualization and open interfaces as those features enable more
flexibility and interoperable networks. Additionally, O-RAN introduced RAN In-
telligent Controllers which enables important features such as closed-loop control
and Al-driven decision-making.

This thesis proposes a novel Al-driven solution to optimize energy consumption
in O-RAN networks by predicting RU power states based on subscriber behavior.
What makes our work different from the traditional approaches, static power man-
agement, is the use of Al to adapt in real-time to network changes and user mobility
ensuring more efficient and responsive energy use in 5G networks. To achieve this
goal a virtual network simulation was created and Markov process used to simu-
late realistic user mobility and traffic patterns across different regions and times.
The generated dataset was used to train Random Forest Classifier in AWS Sage-
Maker, resulting in predictive accuracy of 99.09%. Finally, the trained model will
be deployed in a real-time cloud-based environment enabling prediction request and
response through API Gateway and AWS Lambda integration.

1 Introduction

In today’s modern world our dependence on internet usage has significantly increased due
to the wide range of activities that can be done through the internet—from communic-
ation and social media interaction to managing IoT devices. Mobile network operators
(MNOs) played a vital role in maintaining this connectivity especially after the introduc-
tion of 5G technology, with its high speed, low latency, and ability to support billions
of devices, led to more reliance of MNOs. According to |Chahar and Kaur| (2023)) the
number of connected devices could reach 75 billion this year. Based on the foregoing
facts, telecommunication vendors have been working hard in enhancing mobile network
operators focusing on both Radio Access Network elements (RAN) and Core Network



elements (CN). However, in this research we will emphasize the RAN part because we
believe in its importance and its role in connecting subscribers with the core network
through radio connectivity Singh et al. (2020)).

1.1 Background

RAN elements like any technology undergo several development phases due to world
evolution. In this section we will go through this evolution cycle.

1.1.1 RAN Evolution

The RAN system started with its basic design while with the emergence of 4G tech-
nology, a new concept was introduced which is called distributed RAN (D-RAN) based
on |Alam et al. (2024). In this architecture the separation of remote radio head (RRH)
and baseband unit (BBU) was applied, however both were located at the same place.
After that at the late 4G era there was a move towards decoupling the RRH and BBU
where the BBUs are relocated to a centralized data center (DC) to control several RRHs.
This architecture was known as centralized RAN (C-RAN) based on |Alam et al.| (2024)).
While vendors weren’t satisfied with this achievement and thriving towards distributed,
programmable, RAN architecture. With the presence of virtualization and cloud com-
puting concepts, 5G embraces these concepts which lead to a virtualized RAN(V-RAN)
enabling the pooled BBUs of the C-RAN to be deployed as software on general purpose
server not on a dedicated server as it used to be at C-RAN era according to |[Abubakar
et al|(2023). With all this improvement, the MNOs continued to face challenges due to
the lack of openness and RAN functioning as a black box according to [Dryjanski et al.
(2021)) so this encourages a group of researchers and industry leaders to establish ORAN
Alliance introducing new concept known as O-RAN architecture.

1.1.2 Open RAN Concept

Open RAN concept was developed and built on four main key elements. Firstly, as
shown in Figure (1| disaggregation divided the base station into different functional units
resulting to have Central Unit (CU), a Distributed Unit (DU), and a Radio Unit (RU)
(called O-CU, O-DU, and O- RU). This approach accepts deploying different function-
alities to be deployed at different locations using different hardware |Polese et al.| (2022)).
Moving towards the most added value concept in O-RAN architecture: RAN Intelligent
Controllers and Closed-Loop Control. This concept lays the foundation for Artificial
Intelligence and machine learning capabilities. Moreover, this key element contains two
logical controllers. The first one is Near-real-time RIC which is deployed at the edge of
the network with response time range between 10ms and 1s. The second controller is
called non-real-time with response time range more than 1s. The policies and functional-
ities of RICs are mainly dictated by applications called xApps within near-real-time RIC
and rApps inside the non-real-time based on [Polese et al.| (2022). The third key element
is the virtualization where all components of the O-RAN architecture can be delivered
on cloud Polese et al.| (2022)) paving the way for network operators to collaborate with
Cloud service providers. Finally, the last key element which complements virtualization
is openness which ensures that those virtualized components can communicate smoothly
regardless of the vendor who deployed the equipment.
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Figure 1: From Traditional RAN to ORAN Polese et al.| (2022)

1.2 Motivation

One of the key features of the 5G network is its ability to operate using higher frequency
radio waves compared to the previous networks. This high frequency provides advantages
such as increased network capacity and reduced latency. On the other hand, this leads to
have shorter wavelength of radio waves based on |Cheng| (2021). So, the solution was to
deploy more RUs, particularly in high-traffic areas. However, this approach significantly
increases the load on cloud-based CUs and DUs, where the majority of O-RAN’s power
consumption is already concentrated due to data processing and computing demands
according to Abubakar et al.| (2023)). Such an approach conflicts with the mobile network
operators’ and the global focus on energy efficiency and sustainability.

1.3 Research Questions

This research is guided by the following question: How can subscriber behavior be utilized
to predict and optimize Radio Unit power states in Open RAN networks to improve energy
efficiency?

1.4 Research Objectives

1. Find a solution to improve the energy efficiency of an ORAN network based on
user behavior.

2. Implement the proposed solution and evaluate its effectiveness.

1.5 Report Structure

1. Related Work: Reviews relevant work in power optimization in Open RAN net-
works focusing on AI/ML-based techniques, network slicing, and traffic steering.

2. Methodology: Explains in general the steps performed to create a virtual network
environment, dataset generation, and preprocessing.

3. Design Specification: Details of the proposed architecture, including the cli-
ent and business logic layers, virtual network simulation, dataset structure, and
integration with AWS cloud services.

4. Implementation: The Steps under the implementation section includes dataset
preparation, training of a Random Forest Classifier using AWS SageMaker, deploy-
ing of the model into an endpoint, and enabling real-time predictions through the
integration of AWS lambda function and API Gateway.



5. Evaluation: Outline the test performed on the proposed solution and its results.

6. Conclusion and Future Work: Details around the directions of the work done
and the future plans that can be implemented to further enhance power consump-
tion.

2 Related Work

Numerous research studies have been conducted for telecommunication operators aim-
ing to optimize the power usage especially at Radio side. The emergence of Open RAN
standards paves the way for new opportunities in energy efficiency. As stated in our intro-
duction O-RAN introduced more open and flexible architecture, which helps in managing
power consumption effectively through RAN slicing, dynamic resource allocation and net-
work function placement. Additionally, integration of xApps and rApps that leverage the
artificial intelligence (AI) /Machine learning (ML) plays a vital role in predicting user
load, mobility patterns and network load which further enhances power optimization.
This section of the paper reviews state-of-the-art studies on power optimization in cloud-
based Open RAN networks and the use of AI/ML algorithms for network efficiency.

2.1 AlI-Driven RAN Slicing for Intelligent Power Optimization

Network slicing represents a huge leap forward with respect to Network optimization.
This feature was first introduced in the 5G technology |O-RAN Alliance (2021) which
has gained researchers and telecommunication operators’ attention due to its potential in
enhancing resources efficiently. This methodology allows the creation of multiple virtual
networks or “slices” on top of shared physical infrastructure to be tailored and meet spe-
cific service requirements, such as bandwidth, latency, and security, while ensuring logical
separation and reliability |Alam et al.| (2024)). The slicing concept was mainly implemen-
ted at core side due to the challenges that were under the standard RAN part which led
to having most of the RAN slicing limited to research environments based on |Cheng et al.
(2024). However, with the emergence of O-RAN, which split the RAN components while
introducing the RIC that leverage machine learning and artificial intelligence to dynamic-
ally mange optimize and orchestrate slicing concept that helped in having an E2E slicing
implementation [Polese et al| (2022)) as we can see in our example below Figure 2] After
this introduction, that covers the basic slicing concept and its importance, let us explore
the work that has been done in this area by sharing some key studies and examples. To
start with, this research paper |Yeh et al.| (2024)) focuses on optimizing power usage under
the 5G network that adopts an O-RAN architecture taking advantage of RIC presence to
implement intelligent network slicing using a deep reinforcement learning-based frame-
work. The proposed solution has introduced Network Slice Radio Resource Management
(NSRRM) xApp supported by the near-Real-Time RAN Intelligent Controller (near-RT
RIC). This xApp benefits from the real time RAN data such as current traffic load and
Service Level Agreement (SLA) demands to dynamically allocate and prioritize radio re-
sources across different network slices. Therefore, two modules were developed for this
purpose: the first one was the prediction module, which uses deep learning techniques
such as LSTM and TCN in forecasting traffic loads, while the second calculates resource
allocation based on predicted loads and user-specific spectrum efficiency. These modules
work together to dynamically adjust resource allocations at the MAC layer in a manner



that optimizes SLA compliance while minimizing power wastage.The authors who worked
on Motalleb et al. (2019) proposed a method to optimize energy while maintaining the
Quality-of-Service requirements across multiple services in Open RAN systems. To ad-
dress this, they worked to solve the challenges of dynamic allocation and network slicing
to grantee that resources Radio Units (RUs), Physical Resource Blocks (PRBs), and Vir-
tual Network Functions (VNFs) are used efficiently by dynamically balancing user traffic
across slices and allocating power resources proportionally to the traffic demand of each
slice to ensure efficient energy usage. Mentioned road map was achieved by formulating
the problem as a mixed-integer optimization challenge and heuristic methods were used
to solve optimal power allocation across network slices while taking care of the limita-
tions of fronthaul capacity, maximum power limits, and latency requirements. All what
have been discussed is to allow the network to adapt power usage based on real-time user
load, ensuring energy efficiency with QoS degradation. The work we will be discussing
Nagib et al| (2023) doesn’t specifically target ORAN architecture however, the approach
is compatible with ORAN environment and can be applied with the RAN intelligent
Controllers for Al-driven network management. The people who worked on this research
proposed a reinforcement learning framework with predictive transfer learning to enhance
dynamic resource allocation in RAN slicing. This is happening by reusing pre-trained RL
policies from similar scenarios, which enable faster convergence and efficient adaptation
to changes in user demand and SLA priorities. Which lead to optimal slice-level resource
distribution while minimizing performance degradation during transitions between traffic
states. The methodology mentioned indirectly improves energy efficiency by reallocating
resource dynamically and allows underutilized Rus to function into low-power state.
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Figure 2: Example O-RAN Slicing Deployment (based on RIMEDO Labs, |Network Slicing
in O-RAN).
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Table [[Provides a clearer overview between our paper and related work under section
2.1

2.2 Traffic Steering for Dynamic Resource and Power Manage-
ment

Moving to a paper that shares similar concept as the one we are writing,
wvani et al. (2023) proposes an adaptive structure for optimizing resource allocation and
enabling predictive management of bandwidth and power by focusing on traffic steer-
ing (TS), flow-split distribution, and radio resource management for a load balance of
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Table 1: Comparison of Approaches

Aspect Proposed Approach Motalleb et al.|(2019) | Nagib et al.|(2023) Yeh et al.|(2024)
Focus Al-driven power optimiz- | Joint power allocation | Accelerating RL for RAN | Intelligent and auto-
ation for RU states (full, | and network slicing in an | slicing through predictive | mated network slicing in
reduced, idle) based on | ORAN system policy transfer RAN using deep learning
user behavior and xApps for ORAN
compliance
Goal Reduce power consump- | Maximize energy effi- | Improve RL convergence | Automate RAN slicing
tion dynamically ciency and minimize | in dynamic RAN slicing | with AI to ensure SLA
power consumption and | scenarios when SLA pri- | compliance for diverse
resource costs simultan- | orities change services while minimizing
eously costs
Technique Machine Learning model | Heuristic algorithms for | Reinforcement Learning | Deep learning for traffic
Used trained on network beha- | optimizing resource al- | with Transfer Learning | prediction and radio re-
vior data to predict RU | location and slicing, solv- | to  accelerate  policy | source management im-
states ing a mixed-integer prob- | adaptation for changing | plemented as xApps for
lem SLAs near-RT RIC
Scope Dynamic RU power man- | ORAN slicing for mul- | Adaptive RL-based RAN | Automated RAN slicing
agement in Open RAN | tiple services and slices | slicing in 6G networks | at the MAC layer for
systems integrated with | with a focus on downlink | with policy reuse for | SLA-aware  scheduling
AT to optimize real-world | performance and phys- | SLA-driven resource | across network slices
network states ical resources management
Power Man- | Al-based control for RU | Power allocation for RUs | Focused on RL policy | Focused on SLA adher-
agement power states depending | using optimization-based | adaptation for energy- | ence for network slices
on user load predictions | heuristics efficient and SLA- | with efficient resource
compliant RAN slicing planning
Traffic Hand- | Utilizes user movement | Services are mapped to | RL models dynamically | Traffic load prediction
ling patterns and predicted | slices based on traffic re- | adjust resources to bal- | using deep learning for
load to allocate resources | quirements and physical | ance SLAs and traffic de- | dynamic slice-aware
efficiently resource constraints mands scheduling at the MAC
layer
Resource Al- | Focused on optimizing | Maps UEs to services, | Predictive transfer learn- | Dynamic allocation and
location RU wusage and power | services to slices, and | ing accelerates RL for re- | prioritization of radio re-
states using ML predic- | slices to physical data | source allocation in RAN | sources to ensure SLA
tions of user behavior center resources slicing compliance

the QoS requirements between Enhanced Mobile Broadband (eMBB) and Ultra-Reliable
Low Latency Communications (WuRLLC). The Kavehmadavani et al.| (2023) authors used
Long Short-Term Memory (LSTM)-based approach as predictive model to forecast user
traffic patterns and dynamically allocate resources to ensure optimal performance. How-
ever, our work in this paper focuses on power consumption through precise predictions
of Radio Unit (RU) power states by letting the trained machine that was fed a data
set which contains user traffic behavior to automatically predict the power state idle,
reduced, or full power modes, this address energy efficiency directly. As a summary,
while researchers of Kavehmadavani et al. (2023) deals with broader network-scale issues,
such as flow management in general and QoS for both heterogeneous traffic, our work
narrows the focus to power state prediction for RUs. In the realm of telecommunication,
each cell might be covered by multiple Radio Access Technologies (RATSs) so the author
of [Erdol et al| (2022) introduced a Federated Meta-Learning (FML) framework, which
utilizes distributed reinforcement learning to allocate multiple Radio Access Technologies
(RATS) in an intelligent way by training RL agent on tasks like latency, throughput and
caching rates to quickly adapt with the user shifting behavior and traffic load. The study
results show that the framework offers better caching performance and faster adaptation
compared to traditional reinforcement learning techniques. Moreover, the framework
supports traffic steering by dynamically allocating RATSs to users based on their specific
needs, to improve overall network efficiency. Additionally, the paper takes into considera-
tion the security aspects that might happen from transferring the data to a far data center



for analysis, so they emphasize using federated learning to implement localized learning
without transferring data while efficiently managing network resources. In the end optim-
ized resource allocation reduces energy consumption contributing to power-efficient RU
control in ORAN network. |Adamczyk and Kliks| (2021) is a similar work to the previous
work where it used a SARSA-based reinforcement learning algorithm integrated with an
artificial neural network (ANN) to dynamically allocate radio resources in HetNets. The
model can adapt to real time user behavior and network conditions to optimize resource
allocation and balance the network load. And in the end, power efficiency is achieved
through optimized resource usage. The last research under this topic, we would like to
highlight is [Dryjanski et al. (2021). This paper presents an advanced way in dynamic
traffic steering in O-RAN architecture, which takes advantage of deploying the xApp on
the RAN Intelligent Controller implementing policies related to spectrum management,
cell assignment, and resource allocation. The deployed xApps allow real-time adaptation
to user behavior, by prioritizing high-bandwidth mobile broadband (MBB) users in small
cells or balancing network load based on user and network conditions. Additionally, the
RIC predicts and optimizes traffic flow using AI/ML models, achieving enhanced resource
utilization and improved user satisfaction. All methodologies mentioned are not directly
targeting power management; however, the optimization of spectrum and resources leads
to energy efficiency by reducing underutilized resources.

2.3 Subscriber Behavior Prediction for Network Resource Op-
timization

As the users move frequently, they undergo a process called Handover (HO). Handover
is the procedure of switching an ongoing call from one cell to another within a cellular
network while maintaining a seamless connectivity during the switchover [Zhou and Ai
(2014). Based on this the author of Makai and Vargal (2023) took advantage of real-
world signaling data to predict mobility management demands especially focusing on HO
and Tracking Area Update (TAU) signaling traffic. After that they used this data to
train several machine learning models, including linear regression, convolutional neural
networks (CNNs), and long short-term memory (LSTM) networks, to predict signaling
traffic volumes over 15-minute intervals. LSTM model have scored the highest prediction
accuracy leading to more efficient resource allocation in core network by dynamically
scaling Virtual Network Functions (VNFs) to meet traffic demands. Although the paper
focused on optimizing signaling resources in the core network, we have decided to include
it as it is extremely related to our work. The last paper we would like to add to this
literature review is Szostak et al.| (2020]) where the authors propose a machine learning-
based framework for short-term traffic forecasting in optical networks using the Linear
Discriminant Analysis (LDA) classifier. This approach is achieved by splitting traffic
predictions as a classification task and achieving up to 93% accuracy, by simplifying
resource allocation to predict bitrate levels instead of exact traffic volumes. This would
sound like wasting some resources —such as allocating 200 Gbps capacity for actual
traffic of 155 Gbps, leaving 45 Gbps unused. This is true but wasting 45Gbps will
avoid bottlenecks and is a tradeoff for simplicity and speed in prediction and resource
allocation. Although this work focuses on optical system, it was added here because the
methodology can be applied to cellular networks that apply ORAN architecture for its
RAN part, where accurate traffic predictions could guide dynamic RU power adjustments
(e.g., transitioning RUs to reduced or idle states).



3 Methodology

The proposed solution we have worked on in this paper aims to optimize power usage
in an Open RAN network by predicting Radio unit states based on user behavior via a
machine learning approach through several steps. Due to the private and sensitive nature
of mobile operator data, publicly available datasets were not accessible, so we have created
a virtual network to generate the desired dataset. However, to get dataset similar to a
real-world ones we have done two main things in our code. Firstly, user movement within
the network was modeled using Markov process, allowing for realistic transitions between
areas based on time of day and location probabilities. Moreover, residential areas user’s
load was reduced during nighttime, while other areas load wasn’t changed. After that
the generated dataset was used for building a machine learning model and integrating it
with real-time cloud-based predictions. The proposed methodology is demonstrated in
below Figure [3]

| Source: Virtual Network Dataset
Simulation Generation

Dataset
Preparation

Training ML
Model

Deploying the
Model Data is sent for predictions and

L ; results are returned

Model
Predicts RU states in reakHime Endpoi

Triggers the model and processes| Lambda /I—T\
predictions S ’i}]

-

Handles requests from the virtual APl
network Gateway

Figure 3: Methodology Workflow for Open RAN Optimization

e Dataset Generation: Virtual network was created to provide us with the needed
data set presenting user and RU interactions. And the main thing Markov process
was used for user movement which helps us concluding a realistic behavior.

e Dataset Preparation: The simulated data was processed to include Day Type, Hour,
Area, RU type, Capacity, Current load, Load Percentage, and RU Power which were
stored in a structured dataset. After that we have preprocessed it to enhance data
quality through noise addition and balancing techniques.

e Training ML Model: A Random Forest Classifier was trained using AWS SageMaker
in order to predict RU states (Idle, Reduced, Full) based on load and user behavior
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e Deploying the Model: The trained model was deployed as an endpoint, so real-time
predictions can be retrieved during network simulations.

e Lambda function: A Lambda function was created to call the ML endpoint, by
sending the RU data, and receiving predictions in real time. It acts as the interme-
diary between the simulation and the model endpoint.

e API Gateway Integration: AWS API Gateway was configured to handle external
triggers so there will be no need to include AWS security key in any call to the
model endpoint. It provides an interface for the virtual network simulation to send
data for prediction requests.

4 Design Specification

The proposed architecture of the Open RAN power optimization system built to predict
Radio Unit states based on subscriber behavior which consists of two layers: the Client
Layer and the Business Logic Layer, as illustrated in Figure [d] Under the client layer
interaction between the ORAN network and prediction system is represented. This layer
handles the communication of prediction requests and the delivery of results and predic-
tions to the network. On the other hand, the core work is done under the Business logic
layer where collected data are being processed, machine will be trained to have a model
endpoint and finally integrate it with real-time cloud services.

Client Layer

ORAN Resulls &
Network Predictions

Prediction Requests and Responses

Data Training Machine Model
Preparation Learning Model Deployment

! |

APl Gateway

— Lambda Function

Data Collection Business Logic Layer

Figure 4: System Architecture: Client and Business Logic Layers for Open RAN Optim-
ization

After collecting the structured dataset, some of the fields will be reformulated to
be machine readable for example, Day Type was encoded as 0 for weekdays and 1 for
weekends, Area as 0 for office areas, 1 for residential areas, and 2 for garden malls, and
RU Power as 0 for Idle, 1 for Reduced, and 2 for Full. Columns that were not relevant
for prediction, such as RU id, RU x, and RU y, were dropped to streamline the dataset.
Then the dataset was fed to machine to be trained using Random Forest Classifier through
AWS SageMaker to predict RU state. Based on IBM (n.d.) Random Forest was chosen



because it can handle both categorical and continuous data effectively. Also, it combines
the output of multiple decision tree to improve accuracy and reduce the risk of overfitting.
Next step was to deploy Random Forest model as an endpoint in AWS SageMaker. Using
SageMaker was a plus in this project as it simplifies the process of building, training and
deploying machine learning models at scale Shah| (2023). The trained Random Forest
Classifier achieved a testing accuracy of 99.09% proving its effectiveness in predicting
RU states accurately. Furthermore, integrating AWS services was one of the features
that we utilized including Amazon S3 for storing the training/testing datasets and AWS
Lambda which was created to act as an intermediary role between the virtual network
and the deployed model end point with the support of an API Gateway for secure and
seamless communication. As API Gateway provides a public-facing interface that allows
the virtual network simulation to send prediction requests securely without embedding
AWS credentials directly.

5 Implementation

In Figure [5| the workflow of the ORAN power optimization system, shows the process
of data collection to model predictions and resulting power states. As mentioned earlier
we have worked with a dataset generation through a virtual network environment built
using python code. The virtual network generates a dataset with several useful attributes
such as Day Type, Current RU load, Area etc.... After that the dataset was enhanced
by introducing noise to replicate a real-world condition. Gaussian noise was added to
the Current load and Load Percentage attributes. Dataset enhancing has not stopped
here as we have applied Synthetic Minority Over-sampling Technique (SMOTE) to make
sure a balanced representation across the three classes in the dataset. After the forego-
ing modification, the total dataset records increased from 28080 to 31653 reflecting the
addition of synthetic samples to address class imbalance. The 31653 records were split
into 80% training data and 20% as test data. The implementation was made using a
Python script for AWS SageMaker. Firstly, the data will be loaded from the S3 bucket.
Then key features will be extracted, to identify the label column which is RU state.
The Random Forest Classifier was initialized with specified hyperparameters, including
n_estimators and random_state, to control the number of decision trees and reproducibil-
ity. Once training is finished with 99.09% accuracy the model was serialized and saved in
SageMaker’s designated model directory (model.joblib). Finally, the model was deployed
as an endpoint using AWS SageMaker.

On the other hand, an AWS lambda function was created to be between the endpoint
and any external request. On top of that an API Gateway was configured to expose the
Lambda function as a RESTful API. This API gateway was designed to handle HTTP
requests when the virtual network sends data via a POST request. Lambda function will
be triggered through this request and will process the input then send it to the SageMaker
endpoint for inference. Once the model process the request the results will be returned
through API Gateway as a response to the client as per below Figure [7] .

6 Evaluation

The results are evaluated by efficiency of an Al-driven system to optimize energy con-
sumption in an Open Radio network through predicting the RU power state based on

10
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Figure 5: Workflow of the ORAN Power Optimization System

x[ "Current_load'] += np.random.normal(@, ©.5, size=len(x))
x[ "Load_Percentage’] += np.random.normal{e, ©.5, size=len(x))

smote = SMOTE(random_state=42)
X_train_resampled, y_train_resampled = smote.fit_resample(X_train, y_train)]

trainx = pd.DataFrame(X train resampled, columns=features)
trainx[label] = y_train_resampled

testX = pd.DataFrame(X_test, columns=features)
testX[label] = y test

Figure 6: Data Augmentation and Balancing using SMOTE

200 0K

Figure 7: API Gateway POST Request and Response
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user behavior. The work will be assessed from two points of view. The first concern is the
performance comparison between Al-driven and non-Al systems, secondly the predictive
accuracy of the machine learning model and its effect on energy efficiency.

6.1 Experiment /Evaluation of AI-Driven System and Compar-
ison with Non-AI Baseline

The Al-driven system was developed with a Random Forest Classifier which shows excel-
lence in the performance of an Open RAN network. The model achieved 99.09% accuracy
in RU state prediction which is either Idle, Reduced or Full as detailed in Figure [§] For
benchmarking purposes, the performance of a non-Al baseline system was compared
where the RU states are statistically assigned. Unlikely the dynamic adaptability that
the Al-driven system achieved was noticeable. This comparison underlines the fact that
an Al system is more dynamic and can bring more energy efficiency.

Total Rows are: 5616
[TESTING] Model Accuracy is: 99.89188834188634
[TESTING] Testing Report:

precision recall fl-score support

%] 8.98 8.99 8.99 1612

1 8.99 B.98 8.99 2125

2 1.08 1.60 1.08 1879

accuracy 8.99 5616
macro avg 8.99 B8.99 8.99 5616
welghted avg 8.99 .99 8.99 5616

Figure 8: Classification Report

6.2 Discussion

Whereas the Al-based system occasionally leads in the top portions of RUs in the ”full”
and "reduced” power states relative to the non-Al system as shown in Figure [J], this
behavior has shown its ability to adapt to the changes in users’ traffic. This is because the
peak hour requires network performance from an Al system by keeping enough active RUs.
On the other hand, the Al system are greatly compensated by the increased proportions of
RUs in idle states during off-peak hours when the energy savings really make a difference
as shown in Figure [I0] This strategic optimization ensures a net reduction in energy
consumption over time. Using predictive modeling, the Al system dynamically balances
energy efficiency with network quality capability lacking in non-Al systems, which tend to
be static and not responsive. This proves that sometimes the increase in the states ”full”
and "reduced” does not take away from an Al system’s advantages, but rather means
its strong sustainability by balance between the highest possible value of performance
against energy efficiency.
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6.2.1 Limitations

Although the proposed Al-driven solution for optimizing energy consumption in an Open
RAN showed a significant improvement over other traditional approaches, there are spe-
cific limitations that we must highlight.

1. Reliance on Simulated Data

The key limitation was the absence of real-world datasets, so we have generated
the required dataset through a virtual network simulation using Markov process
to replicate user behavior and network patterns. While this method provides a
controlled environment for testing and ensures repeatability, it lacks the complexity
and variability of real-world data. For example, in a real-world dataset usually
includes unpredictable noise, different user mobility patterns which are difficult
to simulate in our virtual network. In the end the simulation demonstrates its
effectiveness under controlled conditions, however it might slightly differ in real-
world scenarios.

2. Scalability Challenges
The deployed model was successfully tested/integrated with our virtual network.
However, scaling the solution to large-scale, real-world deployments may introduce
challenges. Computational overhead of real-time prediction is one of them, espe-
cially in areas with high traffic consumption, which could lead to system overload.
Moreover, integrating our solution under different cloud platforms may require ad-
ditional optimization and adaptation.

Comparison of RU Power States (Al vs. Non-Al)

Scenario
N Al_Optimized
10000 = Non_Al

8000

6000

Count

2000

Reduced Full
RU Power State

Figure 9: Comparison between an Al and non Al systems

7 Conclusion and Future Work

This research has proved its ability to optimize energy consumption in an Open Radio
Access network through an Al-Driven approach by predicting Radio Unit power states
based on user behavior. This Al-Driven approach achieved 99.09% prediction accuracy
using Random Forest Classifier. The proposed solution showed a significant improvement
over a non-Al method by dynamically transitioning RUs to idle state during the off-peak
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Power State Trends Over Time (Al vs Non-Al)

500
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300
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Figure 10: Comparison between an Al and non Al systems

hours while maintaining performance during rush hours, proving its ability to be used by
real mobile network operators. There are several aspects that can be explored to advance
this research. Firstly, developing a machine learning model that predicts user handovers
would allow the system to proactively manage network resources by forecasting reduced
load on specific RUs. Applying this approach the system will redirect users to the nearest
active RU and dynamically adjust RU state to optimize energy efficiency. Secondly, the
proposed solution could be implemented under multi-cloud or hybrid environments to
test and evaluate its compatibility with different infrastructure setups by deploying the
system on different cloud providers would further show its adaptability and readiness for
real-world deployment scenarios. Finally, evaluating the proposed approach using real-
world datasets and advanced simulation frameworks like OMNET++ would provide more
realistic assessment of system’s performance as it replicates real user behavior, protocols
and conditions in real-world networks.
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