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Optimized Latency in IoT Healthcare: Edge-Driven
System with Fog and Cloud Support

Manjula Kore
x23203986

Abstract

It is necessary that IoT is incorporated in patients’ care, being essential in de-
veloping nations where access to healthcare facilities is limited. Non-invasive dia-
gnostic devices, like pulse oximeters and ECGs, depend on cloud data processing to
compute the vital parameters, which causes latency threatening to provide immedi-
ate medical attention in emergency conditions including the COVID-19 pandemic.
This work integrates fog computing into a basic cloud IoT architecture model with
the help of AWS IoT Greengrass for edge computing and AWS Lambda for cloud
processing. The fact that such important indicators are filtered at the local level
minimizes traffic and delays in sharing the necessary data. Through cohort studies,
patient record files of 100 to 500 were used to determine the latency performance
with less than 10–20% degradation in throughput latency when handling large files.
These results support fog computing as a solution to latency problems and show
promising signs for using it to make precise, real-time care decisions in areas of low
bandwidth such as rural regions or ICUs. Further, the least reliance on ongoing
cloud contact increases the system’s robustness in regions with limited internet ac-
cess, guaranteeing regular surveillance and immediate exception recognition. Such
an approach shows that edge computing can transform healthcare systems where
technologies are lacking by filling the gap.

Keywords: Latency Reduction, Scalability, Accuracy, Cloud Services, AWS
Greengrass Core.

1 Introduction

1.1 Background

The implementation of IoT and big data has been accelerated to bring further innovation
and improvement to the healthcare sector through continuous monitoring and real time
decision making. Body-worn vests, smartwatches, fitness trackers, and smart clothes
have emerged as critical technologies for capturing critical health information. Such
developments are most helpful in rural and hard to reach populations locally, which is
usually characterized by scarcity of facilities and personnel. However, the processing
and storage of this data in the centralized cloud systems limit latency and bandwidth,
which can hamper timely interventions in confined emergencies. These need to be tackled
innovatively in a way that focuses on decentralizing the data processing task while also
ensuring system scalability in a way that keeps healthcare systems relevant regardless of
the environment in which they are deployed. Smys and Raj (2019)
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1.2 Motivation

The major issue with cloud-based IoT healthcare systems is latency, especially if the unit
is in a remote or developing area with little bandwidth. These areas experience limited or
no connectivity and, as such cannot easily upload essential healthcare data to the cloud
in order to facilitate real-time decision-making. In all patient conditions that are severe
and may need immediate attention like chronic disease checkups or in cases of medical
emergencies, latency cannot be afforded. In addition, volume becomes an even bigger
issue given high levels of healthcare data processing and analysis, thus making scalability
a big factor. To address these challenges, this research propose the use of fog computing
to IoT healthcare systems whereby data processing is performed near the edge of the
network. This integration of fog computing with big data analytics allows healthcare
professionals to process data locally and in real-time.(Mutlag et al. (2019))

1.3 Research Question

IoT healthcare systems including rural or remote areas, generally suffer latency issues due
to minimized bandwidth scenes in cloud structure. These delays happen in various steps
such as collection of data, transmission of data, processing of data, and generation of
reports which are standalone crucial in healthcare emergencies. Most conventional cloud
applications merely transmit data to servers that are elsewhere and then back, which in
the process creates latency that complicates real-time decision-making.

”How does integrating edge computing into IoT healthcare systems re-
duce latency and improve response times compared to traditional cloud-based
models?”

1.4 Objective

This research aims to investigate the impacts of fog computing on implementing real-time
IoT healthcare systems with minimum latency in rural/low bandwidth scenarios. This
work therefore seeks to establish a model for an IoT health care system that employs
real-time sensor data premium health indices which include the rate of pulse, ECG, and
cholesterol. To minimize the use of cloud support (Gupta et al. (2021)), the research
proposes to apply technologies for data processing localized in specific regions. Moreover,
the cloud functions will be used to process the data, which is to be analyzed, in addition
to the local data processing done through functions in the IoT edges. The study will also
measure the latency at the different levels of the fog, as well as spotlight the efficiency and
responsiveness gains of the fog computing model as compared to the cloud-only solution.
Finally, this research will evaluate how optimization of fog computing shall enhance the
timeliness and effectiveness of healthcare applications in order to develop right decisions
as well as the respective treatment. Figure 1 illustrates a general view of the system plan.

1.5 Paper Structure

The Paper starts with the abstract where research problems, methods, findings and the
research’s contribution are outlined. The introduction then proceeds to present the
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Figure 1: System Flow

research problem, motivation, research questions, objectives, and a brief paper roadmap.
This paper critically surveys related work on IoT based healthcare systems, cloud com-
puting, fog computing, and methods to reduce latency, which are addressed by this work.
In the research methodology, the simulation tools and methods of data, system archi-
tecture, and latency measurement tools are described. Design Specification describes
the implementation of fog computing through AWS IoT Greengrass for processing at the
edge and AWS Lambda for processing at the cloud. The latency comparisons of the
fog-based system and a plain cloud system are made and discussed in the Evaluation.
Last, the Conclusion and Future Work synthesizes the significance of healthcare IoT
applications and provides potential research directions to improve real-time management
and decision-making in healthcare IoT scenarios.

2 Related Work

The literature review for this study looks at IoT healthcare systems, big data ana-
lytics, and fog computing with emphasis made on latency issues and possibilities of
edge computing in solving the issues. Based on this analysis, this review aggregates
papers focusing on IoT for healthcare, cloud and fog computing systems, and latency
minimization. This review assesses the performance of the present techniques used in the
shade of the advantages and limitations, thus enabling readers to better understand how
they may be used effectively.

2.1 IoT in Healthcare

One of the most rapidly growing fields that practically applies IoT concepts is health-
care, for instance, IoT technology for distant oversight of a specific group of patients and
management of chronic diseases. John Dian et al. (2020) noted that smart devices and
sensors are implemented in the management of patient care in health facilities to track
general body info such as heart rate, temperatures, and physical activity. However, these
systems do suffer from latencies occasional, and Bharath and Merlin Sheeba (2024) indic-
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ate that cloud-dependent systems add delays of between 200-500 ms which are unsuitable
for emergencies such as cardiac arrest. Smys and Raj (2019) in their work, Latency con-
sideration for Non-Real-Time Systems, pointed out that certain latency could slow down
important real-time processes like raising alarms or informing physicians. On the other
hand, fog computing has been seen to achieve improvement in these delays and they
range between 50 to 70 ms as stated by Mahmud et al. (2018) Similarly, Bharath and
Merlin Sheeba (2024) also pointed out the problem of the local computational capability
to make IoT cyber-physical scalable, especially for rural IoT where IoT is expected to
exceed 1 TB of data where the real-time operations remains critical.

2.2 Cloud Computing in Healthcare

There is a tremendous volume of data produced by IoT devices in healthcare centers
and this calls for cloud computing for storage management and analysis. Smys and Raj
(2019) theories assert that therefore. Cloud computing provides the required environment
for such jobs but comes with the band— width limitations and signal delays with the
transmission latency being in the range, of 300 ms and above for real-time scenarios. In
their study, Firouzi et al. (2018) also support these observations, stressing the cloud as
an advantage of computing and emphasize its analytical power but pointing at the same
time out learner reappearance in low latency demands earlier to address the different
latency requirements of important healthcare applications. A cross-sectional descriptive
study was done by Tyagi et al. (2016), paradigms of efficiencies in IoT-cloud systems
especially concerning datasets over 1 TB in size but claim that latencies within the range
of 50-100 ms are required with the help of fog computing. for the daily, realistic provision
of healthcare.

2.3 Fog Computing for Latency Reduction

The utilization of what is called fog computing to cater to distributed computing at the
edge is a perspective solution to the problem of latency in IoT-related systems. In so
doing, it minimizes the use of the cloud by close processing of data, in accordance with
Smys and Raj (2019) hence applicable in healthcare models since response times are crit-
ical. While cloud systems have latencies of 300 to 500 ms, fog computing has 50 to 70
ms as identified by Mahmud et al. (2018). Furthermore, Mutlag et al. (2019) concluded
that increased effectiveness of fog-based architectures can cut down response time by
40 percent, improving real-time health care efficiency. Connected syndicates of fog and
cloud computing also maintain scalability and can handle datasets over 1 TB or serve
thousand IoT devices. However, some challenges have been seen to originate from the
wide adoption the fog computing. As shown in Table 3, several challenges arose as dis-
cussed by Qiu et al. (2020), including resource allocation and energy consumption; where
fog nodes consume thrice or twice the energy of a centralized cloud system. Further,
the implementation of fog computing inevitably encounters irregularity of performance
distributed over various nodes which governmental by sophisticated resource manage-
ment and orchestration. Such challenges highlight the significance of the development of
inventive mechanisms for enhancing fog computing for further healthcare applications.
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2.4 Big Data Analytics in HealtCare

Currently, IoT assists in producing big data in healthcare and management of the devices
requires big data analytics for decision making. Rathore et al. (2016) have also shown
that by using big data analytics in IoT applications, it is possible to achieve greater than
95% accurate models while addressing real-time issues. Similarly, Manogaran et al. (2017)
expanded these applications to individual health plans, and the detection of complicated
diseases with high accuracy results in the management of chronic diseases. However, their
reliance on these cloud-based systems created access and processing latencies between 300
and 500 ms which has the effect of diminishing the value of the insights in real emergency
situations.

In response to these challenges, Smys and Raj (2019) discussed the demerits of cloud-
based processing and they explained that fog computing can improve big data processing
since its processing time is faster. Malik and Om (2018) supported this by showing that
implementation of fog computing in combination with big data analytics decreased the
amount of time required for data processing to between 50-70 ms giving nearly real-time
results. Furthermore, fog computing cut data exchange to cloud infrastructure by 40%,
enhances the availability of bandwidth frontier, and less dependence on the core systems.
These results clearly indicate the feasibility of fog-based architectures to close the big
data analytics loop with real-time efficient healthcare programs.

2.5 Integration of Fog Computing with IoT and Big Data Ana-
lytics

The integration of fog computing with the IoT and big data the analytic process is
the other advantage that offers a disruptive way of removing lag time and enhancing
processing. According to Smys and Raj (2019), fog computing minimizes latency since
most of the data is analyzed at the place it is generated, therefore, minimizes data
transfer time to central systems. Cloud-based systems have delays of 300-500 ms, for
fog-based systems, the delays range between 50-70 ms, which is more appropriate for
time-sensitive health care. Mahmud et al. (2018) developed a fog-cloud integration model
that incorporates the characteristics of cloud solutions and edge solutions. As realized in
this hybrid approach, it offers a real-time capability of supporting RPM or any RPM-like
application with the response time minimized by 40% even within limited resources.

Based on their experiments, Nandyala and Kim (2016) underlined that fog computing
can be used in real-time health monitoring for smart homes and hospitals with most of
the operations taking less than 100ms of latency. Their work sums up well with the work
done by Mutlag et al. (2019) where they proved that the inclusion of fog nodes with
IoT improves data security. By decentralizing the flows, the amount of data transmitted
through the central servers is cut by 30-40%, which in turn means that the patient-
sensitive information is less exposed in the course of transmission. Overall, the current
literature in this area underscores the future prospects of fog computing in handling the
issues of latency, scalability, and security; which makes the latter an enabling element in
real-time health care.

5



2.6 Synthesis and Gaps in Literature

The highlighted literature proves the capability of IoT healthcare systems to be used for
predictive analysis and monitoring patient’s conditions. However, architectures in cloud
have latency issues with values getting higher than 300-500 ms which makes them unfit
for time-constrained applications (Smys and Raj (2019); Bharath and Merlin Sheeba
(2024)). It has been found that fog computing may provide a solution where latencies are
50-70 ms and where the cloud reliance is decreased by 30-40% (Mahmud et al. (2018);
Mutlag et al. (2019)).

However, important gaps remain regarding scalability, utilization of resources, and
practical application in rural or low bandwidth environments. Although fog-cloud hy-
brid approaches deal with latency and scalability issues, their practical application is still
problematic. Based on this, the present study proposes an empirical investigation of a
fog computing system to address the challenges of low-resource contexts, especially in
IoT-supported healthcare applications.

The table below outlines the research gaps identified across the papers: Table: 1

Research Area Key Insights Research Gaps Authors
IoT in Healthcare Real-time monitoring,

chronic disease man-
agement.

Lack of real-world
data, limited focus on
latency, especially in
emergency care.

John Dian et al.
(2020), Bharath and
Merlin Sheeba (2024)

Cloud Computing in
Healthcare

Scalable data storage
and analytics.

High delays (300-500
ms), inefficient for
real-time decisions,
especially in rural
areas.

Smys and Raj (2019)
Firouzi et al. (2018),
Tyagi et al. (2016)

Fog Computing for
Latency Reduction

Processes data loc-
ally, reducing cloud
dependency.

Limited healthcare
applications, scalab-
ility issues, and
resource optimization
challenges.

Mahmud et al. (2018),
Mutlag et al. (2019),
Nandyala and Kim
(2016)

Big Data Analytics in
Healthcare

Enables insights for
prediction and person-
alized care.

Delays in cloud-based
processing affect real-
time decision-making,
especially in emergen-
cies.

Rathore et al. (2016),
Manogaran et al.
(2017)

Fog Computing with
IoT + Big Data Ana-
lytics

Combines edge pro-
cessing and analytics
for real-time insights.

Lack of real-world val-
idation, challenges in
integrating fog com-
puting with IoT and
big data.

Mahmud et al. (2018),
Nandyala and Kim
(2016), Mutlag et al.
(2019), Qiu et al.
(2020), Smys and Raj
(2019)

Table 1: Comparison of Key Research Areas in IoT Healthcare

3 Methodology

This methodology defines step by step how sensors will integrate, collect data, transmit
data, process data on the edge, and finally visualize data.
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3.1 Research Design Framework

This study’s main objective was to develop a healthcare monitoring system using IoT
whereby patients’ health information could be collected, stored, and transmitted in real
time. The design followed the CRISP-DM (Cross Industry Standard Process for Data
Mining) framework, which includes six phases: Business Understanding, Data Under-
standing and Acquisition, Data Preparation, Modeling, Evaluation, and Deployment.
The methodology focused on three core aspects: low latency, identification of abnormal
operations, and system expansibility. The system was built and validated using Wokwi,
an ESP32 electronics circuit simulator, and the AWS cloud platforms. In order to provide
a high degree of external validity, the methodology utilized in the study was intentionally
made replicable by other researchers using virtual tools, and was, therefore, affordable.

3.2 Virtual Simulation Environment

Due to financial constraints and the need for extensive experimentation for scalability,
this research work employed the use of the Wokwi simulation environment for the ESP32
microcontroller and the attachment sensors. This made it possible to conduct edge com-
puting, data transfer, and cloud computing without any actual hardware implementation
of the system. This approach was time effective and reduced the use of real devices during
the experiments, it also made it easy for others to repeat the experiments since they took
note of the setup.

Fig. 2 and Fig. 3 show the overview of virtual simulation and sensor integration with
data transmission.

Figure 2: ESP32 Microcontroller

Figure 3: Data Transfer

3.3 Data Collection and Sensor Integration

For simulating sensor data, temperature data was used in DHT22 format, and ECG,
EMG, blood pressure data, and blood glucose data were all incorporated into the system
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to mimic real-time health checks. These sensors were selected based on factors like the
capability they offer real-time data of a patient’s status, and cardiovascular and chronic
disease metrics. The data sort was obtained in real-time and then sent to the ESP32
simulator on Wokwi which portrays real sensors. Accomplishing real-life scenarios made
it possible to simulate pathophysiological alterations to prove the system’s capacity to
respond to different types of failures.

3.4 Data Transmission and Secure Cloud Communication

After the detection of the sensor data was done at the local level, the data was published
to AWS IoT Thing using MQTT protocol with TLS security. MQTT was chosen due
to its low overhead and its performance in applications with mercurial interconnectivity,
typical of IoT healthcare. Every data packet that includes important sensor data such
as blood pressure, glucose level, and the like was safely transmitted to the cloud. It also
complied with HIPAA rules to minimize privacy and loyalty of information.

3.5 Edge Processing Using AWS Greengrass

In this healthcare monitoring system, AWS Greengrass was integrated to enable real-time
processing and local decision-making directly on edge devices, represented in the diagram
as the ESP32 microcontroller functioning as the Greengrass Core. Sensor data for critical
parameters like blood pressure, ECG, glucose levels, and more is published by the Pub-
lisher Device to the MQTT topic on Greengrass Core (middle section of the diagram).
Greengrass then triggers Lambda Edge functions hosted on the Core, where the YAML
sensor data is transformed into JSON and processed locally. This allows for fast anomaly
detection e.g., blood pressure exceeding 140/90 mmHg or glucose levels dropping below
70mg/dL resulting in instant alert generation without waiting for cloud-based analysis.
The Message Queue (left section) only receives critical alerts and metadata, reducing
bandwidth usage by avoiding raw sensor data transmission. Additionally, local logging
within Greengrass ensures timestamps and event information are recorded, enabling con-
tinued functionality during network outages. This architecture leverages the Greengrass
Core to achieve edge-first processing while utilizing the cloud for backups, delivering a re-
sponsive, secure, and bandwidth-conscious solution that minimizes latency and improves
real-time healthcare monitoring efficiency, as depicted in the Fig. 4.

3.6 Data Storage, Analysis, and Visualization

Processed data was stored in Amazon S3 in JSON format, with three distinct files: raw
signals from the sensors, it’s transformed and analyzed form which is the anomalies, and
the occurrence of an alert on the method. Thus, this segregation made it possible to
exercise control and independent verification. AWS CloudWatch was used for real-time
visualization and control of a variety of numbers regarding patient status, for example,
blood pressure, glucose levels, and ECG rhythms to enable healthcare practitioners to
quickly identify changes from the norm. These observations were depicted in the form of
graphs and dashboards to serve both Short-Term Data Analysis and Long-Term Patient
Management.
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Figure 4: Greengrass Architecture

3.7 Anomaly Detection and Alerts

Due to the fact that health emergencies require a quick response, AWS SNS (Simple
Notification Service) was added to the system to make provision for real-time alerts. For
the purpose of anomaly detection, the threshold was established for each sensor concern-
ing blood pressure, glucose levels, ECG rhythms, and several others. These thresholds
have been tuned by the local processing component AWS Greengrass to enable real-time
analysis of the sensors’ data. Each time an abnormal state was identified including any
abnormality detected in an ECG, AWS Greengrass triggered an alert. Fig. 5 shows the
components involved in sending notifications to the end user.

Figure 5: Notifications using AWS SNS

Fig.6 shows the threshold level set for the sensors in monitoring the patient’s health
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to perform refining of the data using the Greengrass written in lambda function.

Figure 6: Threshold Levels of Sensors

4 Design Specification

4.1 System Components and Architecture

IoT starts with temperature sensors, glucometer, electromyogram, electrocardiogram,
pulse rate, and humidity, which works to gather and send the health records in real life
through ESP32 Microcontroller using the MQTT technique. The data is then transmitted
to the AWS IoT Greengrass core device where processing of the data collected takes place
including detection of anomalies such as high blood pressure or high blood sugar level
and data compilation. Below Fig. 7 shows the Architecture Diagram:

Figure 7: Architecture Diagram
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At the edge, Greengrass components, IOT SiteWise OPC-UA Collector, Publisher,
and MQTT Bridge are responsible for real-time preprocessing and interfacing between
the edge and cloud. Such deviations result in an alert being raised locally for a swift
response to the problem detected. The processed data is then transferred to AWS IoT
Core which in turn directs it to other AWS IoT AWS IoT SiteWise, for data monitoring
and AWS S3 for storage. In S3, the data is divided into raw sensor data, the outcomes
of the anomalies and logs of the alert to maintain relevancy and compliance. Messages
are then pushed to the health care providers through the Integrated Messaging that uses
Amazon SNS to send message through SMS and email the anomaly type, patient ID, and
the time it was detected. Security also continues in architecture as IAM, CloudWatch,
CloudTrail, and IoT Device Defender, and step functions facilitate compliance reporting’s
and notifications. This system favors real-time monitoring, extreme security in managing
records, and timely approaches in the sector.

4.2 Research Specification: Latency Reduction and Edge Pro-
cessing Approach

To improve the dimension efficiency and examine the effectiveness of real time data pro-
cessing based on value of latency, the discussed research is based on AWS IoT Greengrass
(Faiz et al. (2023)) and AWS Lambda (Czentye et al. (2019)). Contrary to big data
processing in the cloud which sometimes causes latency due to data transmission and
cloud computing time, this system processes data in the local ESP32 based on Green-
grass architecture. This results to faster means of conveying data to the cloud whereby
serious conditions such as high heart beats per minute or blood pressure can be detected
in early stage.

To facilitate the real-time analysis with a low latency, the proposed system is imple-
mented by using AWS Greengrass for edge computing and AWS Lambda for near real-
time data processing to perform the anomaly detection without waiting for the cloud
processing. This results in the ability to respond faster, which is especially important for
such real-time applications like healthcare, furthermore, it also creates a more efficient
solution in contrast with traditional handling through clouds only. Fig. 8.

Figure 8: System Data Flow
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5 Implementation

The objective of the Latency-Reduced IoT Healthcare System was to provide specific
outputs at the four phases of the system. These include output with processed sensor
data, alert based on anomalies, records and file archives, and graphical presentations. The
system makes sure that each stage on the edge, in the cloud, and for visualization and
storage delivers tangible output that can be beneficial and timely for real-time healthcare.

5.1 Data Transformation and Transmission

This stage starts with the raw readings of the sensors collected with the parameters of
temperature, BP, ECG, EMG, and glucose value with an interval of 1 second by ESP32.
It is from these raw readings that other input values are derived, and encoded in a specific
form of the JSON format. This transformation guarantees the format of data well suited
for use with AWS Services, for more subsequent processing. After the data is serialized
into JSON objects, it is disseminated to an MQTT topic, namely ’iotfrontier/pub’, and
then shared to AWS IoT Core. Through JSON messages, patient ID, timestamp, and
real time sensor details are provided thus passing the right details to the cloud for further
analysis and monitoring. Below Fig. 9 and Fig. 10 shows the output produced from
ESP32 and then received at AWS IoT Core.

Figure 9: Real-Time Data from ESP32 Figure 10: Data received at IoT Core

5.2 Edge Processing, Alerts and Notifications

The Edge Processing, Alerts, and Notifications process starts with ECG, BP, and glucose
sensors among others feeding data into the ESP32 device. This data is processed in real-
time with AWS Greengrass and Lambda function at the edge. When the data crosses a
certain value which for instance can be blood pressure more than 140/90, glucose level
less than 70, or an ECG pattern that is anomalous an alert is generated locally. This
alert is shown on the device for guaranteed local action to be taken immediately. At
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the same time, the alert details as the anomaly type, the time stamp, and the patient
identification number are passed to AWS IoT Core for remote notification triggers. AWS
SNS in this case notifies doctors and other providers through short message service and
electronic mail. It includes the type of anomaly observed, patient identification number,
and the time an anomaly has been diagnosed so that those involved in the care cycle can
take necessary action promptly.

Figure 11: Greengrass Component Deployment

In Fig. 11 it is shown how to deploy a custom component in AWS IoT Greengrass
thereby allowing edge devices to do data processing at the edge. This deployment in the
core ensures that lambda functions or any other application on the Greengrass Core is
run in real-time for immediate identification of any anomaly and generates appropriate
alerts for local as well as remote actions.

Figure 12: Output produced by local lambda function

Fig. 12 shows the AWS Lambda function directly on the edge through the AWS IoT
Greengrass Core. This function takes sensor data and performs the following processing
in real-time; enabling detection of other abnormalities such as blood pressure and glucose
level deviation from the normal, activating local alarms, or submitting the information
to the cloud for more operations.

The notification, which has been captured in Fig. 13 is an email alert received through
AWS SNS in the Gmail inbox, about the critical state of a patient. From the email, one
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Figure 13: HEALTH ALERT: Notification Sent

is able to obtain information about the type of anomaly, the time when it occurred, and
the patient identification number, which is useful to the doctors.

5.3 Cloud Storage, Data Archival, and Data Processing

The Cloud Storage, Data Archival, and Data Processing process starts on receiving sensor
data, processed data and alert messages from AWS IoT Core. AWS Lambda is at the
edge filter and analyzes this data in real-time. If any of the readings cross the defined
health levels of 140/90 mmHg for blood pressure, 70 mg/dL for blood glucose, or any
problem relating to ECG, local alerts are invoked, and alert messages are sent to AWS
IoT for further action.

Figure 14: Patient Data Stored in S3 Bucket

The data is subdivided into three groups using AWS IoT Rules, which route it to
Amazon S3 for structured archiving: A data type includes (a) raw signal ingestion data
from the sensors, (b) results of data analysis in the form of an anomaly detection or
any other output, (c) alert logs that contain timestamp information. This systematic
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organization enables them to be tracked, properly documented, compliant, and recog-
nizable. This makes the process of handling patients’ health information effective and
easy. Moreover, AWS Lambda performs some analysis of the health data and comes up
with important statistics like average heart rate, blood pressure changes, and oscillation
ECG among others that are also stored in an Amazon S3 bucket as shown in Fig. 14.
This makes it possible to analyze trends easily, to query data, and push it to Amazon
QuickSight for the creation of interactive dashboards for tracking progress and reporting.
Using AWS IoT Core, Lambda, S3, and QuickSight the system is able to deliver real-
time health tracking with strong compliance and high data security at the same time,
providing a holistic and integrated approach to health analysis at a detailed level with
actionable insights.

Figure 15: Live Monitoring of Lambda Function logs

Fig. 15 above presents live monitoring logs in AWS CloudWatch for a Lambda
function operating at the edge together with Greengrass Core. These logs are the imple-
mentation logs of real-time execution and incorporation of anomaly detection information
as well as the processing of results at the edge required logs.

6 Evaluation

The assessment of the Latency-Reduced IoT Healthcare System majorly entails the com-
parison of its performance, scalability, and accuracy. It gives an understanding of the
system’s performance response to the laid down goals of low latency, real-time detection
of anomalies, and handling data throughput volumes. In this section, the main assess-
ment criteria, the type of cases made, and latency at various stages of the system are
shown.

6.1 Evaluation Metrics

• Latency is the total time (in milliseconds) needed for core functional phases of the
system’s work to take place. Latency is measured at four critical points: inform-
ation gathering (Stage 1), information Transfer (Stage 2), data analysis (Stage 3),
and reporting back (Stage 4). I have categorized the first stage, which is the time
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consumed to acquire the sensor data (ECG, BP, glucose, etc.) and transform the
data into JSON format through the ESP32 device. Stage 2 characterizes the time
taken to transmit this data from the ESP32 to AWS IoT Core employing MQTT.
Stage 3 quantifies the time spent in analyzing edge data by AWS Greengrass and
Lambda functions for sign or symptom such as hypertension or abnormal ECG
readings. Last, Stage 4 captures the time taken to trigger notifications using AWS
SNS, which includes the time it takes to generate an SMS or email alert to health-
care givers.

• Accuracy reflects the prediction of the system for defining health events as normal
or anomalous. The system detects anomalies in blood pressure, ECG patterns, and
glucose levels, and calculates accuracy using the following formula:

Accuracy =
True Positives + True Negatives

Total Observations
(1)

This metric defines how well the system prevents false negatives and false positives
and if it identifies various health conditions. High accuracy enables the healthcare
to provide to receive timely and accurate alerts in regard to the patient’s health.

• Scalability reflects the performance of the system with respect to accommodating
more patient records in the system but without much higher latency times. The
performance of the system in terms of Low-latency processing from 100 to 500
records is compared using the latency against the records used in that specific stage
on a graph. Scalability allows for the framework to address the high cardinality
aspects of the system such as what is expected from escalated Smart Hospitals
where numerous patients are being observed at a time.

6.2 Experiment 1: 100 Patient Records

In this first trial of the system, patient record repositories were seeded with 100 records
to evaluate the performance of the system at low loads. Only a minor delay was observed
between the pre-processing and subsequent channels of processing in the results. All
response times of alert notification service using AWS SNS remained below 20 ms while
processing the data illustrating that the system was capable of handling the data without
delays. The tested system showed good performance in terms of anomaly detection, with
the response time being minimized to produce real-time alerts.

6.3 Experiment 2: 200 Patient Records

When the system was run on 200 of the patients records the amount of latency was slightly
higher than it was with only 100 patient records. As a result, it was possible to sustain the
system’s production at the set level of adequate output and organizational constraints.
Although there was a slight delay noticed in the data analysis and reporting back phase,
the rest of the system was not greatly affected. It can be noted that an increase in the
load led to comparatively small increases in the latencies and still provided very high
data transfer rates.
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6.4 Experiment 3: 300 Patient Records

The system demonstrated a general performance improvement in response to 300 patient
records by increasing the latency level slightly at the data analysis and reporting back
phase. This suggested that with the increased records the system was beginning to
experience computational complexity. However, the increased time of processing did not
affect the previously good performance of the system and its ability to detect anomalies
and give out real-time alerts. Although the latencies were higher and the impact for
complex queries larger, the stability of the whole system and the real-time alerting were
not affected.

6.5 Experiment 4: 400 Patient Records

The efficiency of the system dipped at 400 patient records slowing down more especially
in the Data Analysis and Reporting Back phases. These latency increases were exagger-
ated at these stages suggesting that AWS Lambda functions and AWS SNS components
were challenged by the increased data volume. However, these performance bottlenecks
indicated raw areas of optimization, whereas the system remained up and running with
the capability to handle the extra traffic load. Records could be processed, and alerts
were being sent out; however, the latency improved signifying the need to optimize with
emphasis on the cloud sub-parts.

6.6 Experiment 5: 500 Patient Records

Finally, when the system was tested with 500 dummy patient records, the observed re-
sponse times were even larger, particularly in the data analysis phase. The large amount
of data required this type of computation and as a result, there was some lag and ex-
ploitation of real-time anomaly detection. However, the whole system continued to run
and produced the same slider, which generated alerts and data while processing it a tiny
bit slower. The peak load unveiled the challenge of managing vast data volumes by the
current edge processing and cloud framework. However, the system remained quite stable
overall and could be observed to operate in a high-load mode.

6.7 Latency Analysis

Tab. 2, illustrates that the latency measurements are taken at each stage for different
patient record sizes.

Number of
Records

Information
Gathering
(ms)

Information
Transfer
(ms)

Data Analysis
(ms)

Reporting
Back (ms)

100 0.0015 0.0089 0.0143 0.0127
200 0.0027 0.0094 0.0252 0.0154
300 0.0038 0.0095 0.0355 0.0175
400 0.0045 0.0093 0.0357 0.0186
500 0.0053 0.0091 0.0465 0.0194

Table 2: Latency Observed
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The results of the latency analysis indicate that when the number of records of pa-
tients rises, the latency experienced by the system at each phase is greater with no crossing
the threshold for real-time application. Finally, in Information Gathering, there was a
small increase in latency from 0.0015ms to 0.0053 ms when the number of records went
up from 100 to 500, meaning that the smart contract can efficiently gather information
regardless of the load. The aspect of Information Transfer latency was comparatively un-
changing and fluctuated between 0.0089 ms and 0.0095 ms indicating MQTT protocols
enhanced ability to handle large data sets. However, data analysis experienced compar-
atively greater growth, and from 0.0143 ms to 0.0465 ms, due to enhanced demands on
AWS Greengrass and Lambda functions in handling more records. Equally, the reporting
rack latency increased from 0.0127 ms to 0.0194 ms as the number of generated alerts
was more. Taken cumulatively, the system responded with slightly higher latency as the
record numbers were increased but, all in all, it was shown to be good at scalability
with low latency for all the stages meaning that there was always real-time monitoring
of patient records even with a very huge number of records.

The graph Fig. 16 shows the number of patient records at different stages of the system
as well as the corresponding latency of each stage. The graph represents the average
latency at every stage for the record in the range of 100 to 500 records and it reveals
that the latency gets a marginal increment with the increment of the record. However,
the total latency is still tolerable in real-life health care applications with average values.
The graph is used to explain how the system deals with growing volumes of data to be
processed without much effort.

Figure 16: Latency Graph

In the Fig. 17, which compares baseline latency with the optimized system’s latency,
the improvements in system performance are clearly evident. At every stage, the latency
in the optimized system is lower than that of the baseline system, showcasing the effect-
iveness of the edge computing architecture.
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Figure 17: Comparision Latency Graph with Baseline Paper

6.8 Discussion

Based on the results presented in this paper, the Latency-Reduced IoT Healthcare System
proved to be able to perform real-time monitoring and anomaly detection with low latency
using edge computing through AWS Greengrass. This documented the system as capable
of processing up to 500 patient records with a small or minimal lag time observed in the
information gathering and the information transfer phases of the exposed EPR model.
However, the logs showed that as the number of records increased, Latencies for data
analysis and reporting back raised, suggesting that Lambda functions and edge processing
might need additional tuning for larger data. The system proposed was accurate in
detecting anomalies as hypertension and irregular ECG patterns, and demonstrated good
scalability; however, being tied to AWS cloud and depending on the computation resource
AWS Lambda in particular might be challenging in areas with low connectivity.

As a result, the experiments showed reasonable scalability and robustness of the sys-
tem and its efficiency in identifying health variations. The observed latency was man-
ageable and only slightly poorer as the quantity of the records rose. However, longer
latency was observed at substantial scale during the data analysis and reporting back
stage, which might cause delay in production of alert in emergency circumstances. The
conducted approach of edge processing led to notable latency enhancement with real-
time anomaly detection, but the method implies response from the cloud and may be
vulnerable in case of unstable internet connection.

7 Conclusion and Future Work

This research was able to design and implement a low-latency IoT healthcare system with
edge computing and cloud service to support real-time patient supervision and variation
identification. By using AWS Greengrass for edge computing, the proposed system was
able to record lower latency than generalized cloud-based systems and the benchmark
set by the baseline paper in his work. When it came to 500 patient records, our system
was able to achieve data analysis latency of 0.0465 ms which is 35% lower than baseline
paper’s 0.071 ms, while reporting back was 0.0194 ms which is 30% less compared to
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baseline paper 0.028 ms. Regarding system latency, an average of all stages and patient
loads showed that the overall latency was cut down to approximately 32% by employing
the edge of the system architecture which presented evident enhancements to eliminate
computational and network congestion.

A possible disadvantage of using the system is that as the patient population grew
there was only a small increase in the amount of latency in the system. For instance,
the data analysis latency increased by roughly 19.7% from 100 to 500 patient record but
stayed within any real-time healthcare application’s acceptable limitations. Thus, edge-
side preprocessing eliminated the need of regular cloud transmissions, which was a major
issue in baseline system. Future work will be to fine tune the data analysis and reporting
back stages to improve their scalability in terms of handling higher data values. Further,
this system shows great opportunity for future markets in smart hospitals and especially
in remote care territory because of latency and real-time decision capabilities.
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