

 A Smart Cloud – Based Document Search
Engine for Query Retrieval Using Large

Learning Models (LLM's)

MSc Research Project
 MSc in Cloud Computing

 Rohith Konan Ravi
Student ID: 23195983

School of Computing
National College of Ireland

Supervisor: Abubakr Siddig

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.
ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author's written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Assignments that are submitted to the Programme Coordinator Office must be placed
into the assignment box located outside the office.

Student ID: 23195983

Programme: MSc in Cloud computing Year: 2024.

Module: MSc Research Project

Supervisor: Abubakr Siddig

Submission
Due Date:

12/12/2024

Project
Title:

A Smart Cloud – Based Document Search Engine for Fast Query
Retrieval Using Large Learning Models (LLM's)

Word Count:
1163 Page Count : 18

Signature: Rohith Konan Ravi

Date: 12/12/2024

Attach a completed copy of this sheet to each project (including multiple
copies)

□

Attach a Moodle submission receipt of the online project
submission, to each project (including multiple copies).

□

You must ensure that you retain a HARD COPY of the project, both
for your own reference and in case a project is lost or mislaid. It is not
sufficient to keep a copy on computer.

□

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

Introduction:

The configuration manual is the manual for the step by step instruction to run the
implementation of cloud based document retrieval engine , this mainly explains the software
tools and the methods which are mainly used in the implementation of the research , it mainly
explains the code which we employed while training the model with different datasets to
achieve the goal, and main aim of this manual is to help researchers and practitioners
identifying and following the steps and resources which will be helpful for further research
and development.

System requirements

All the implementa,on and research performed on the MacBook M1 air laptop with Mac
opera,ng system With M1 chip

1. Hardware: Quad-Core CPU, 16GB RAM, 50GB storage, NVIDIA GPU with CUDA
support.

2. Software: Python 3.8+, OS (Windows 10/11, macOS, or Linux), libraries (pandas,
torch, transformers, etc.).

3. Dependencies: Pre-trained models (facebook/bart-large,), ~10GB storage for
models/embeddings.

4. Tools: Jupyter/VSCode, internet for downloads, cloud (Colab/AWS).

• Imports essen,al libraries for GUI (Tkinter), data handling (Pandas), and NLP tasks
(SentenceTransformers, NLTK).

• Extracts passages from a DataFrame and encodes them into embeddings using a bi-encoder
model for seman,c similarity tasks.

• Performs semantic search by encoding a query, retrieving relevant passages, re-
ranking them with a cross-encoder, and returning the top results.

• Reads a CSV file, processes the documents column to remove whitespace, and converts it to
string type.

• Loads pre-trained bi-encoder and cross-encoder models from pickle files for use in seman,c
search.

• Loads precomputed embeddings, passages, and context from files. Takes user input for a
query and performs seman,c search, prin,ng the top results.

recursive summariza1on fine-tuning

• Mounts your Google Drive to the Colab environment, enabling access to files stored in your
Drive.

• Installs the datasets library for handling datasets and rouge_score for evalua,ng text
summariza,on. The commented line suggests upgrading the accelerate library if needed.

• Loads essen,al libraries for dataset handling, tokeniza,on (nltk), and model pipelines
(transformers). punkt is downloaded for text tokeniza,on, and the huggingface-hub
library is installed for accessing Hugging Face tools.

• Imports libraries for numerical opera,ons (numpy), model handling (transformers),
evalua,on metrics (rouge_scorer), progress bars (tqdm), and PyTorch (torch).

• Downloads the CNN/DailyMail dataset version 3.0.0 for summariza,on tasks using the
datasets library.

• Filters the dataset by ensuring ar,cles have at least 50 words and summaries ("highlights")
have at least 5 words. Returns a cleaned dataset.

• Accesses the first record from the train split of the cleaned dataset.

• Opens a file in write-binary mode to save the cleaned_dataset.
• The pickle.dump function serializes the dataset and writes it to a .pkl file for future use.

• This snippet uses the pickle library to load a preprocessed CNN/DailyMail dataset
(cnn_dailymail_preccesd.pkl) in binary read mode (rb) from the specified file path.
• The loaded dataset is assigned to the variable cnn for further use in summarization tasks.

• Loads the XSum dataset for summariza,on tasks using the datasets library.

• Filters the dataset to retain only documents with at least 50 words and summaries with
at least 5 words.

• Segregates the cleaned data into train, test, and validation splits.

• Serializes the dataset and saves it as a .pkl file.

• Loads the serialized xsum dataset from the .pkl file for use in the code.

• Converts a JSON Lines file into a Python dictionary.
• Each line of the file is treated as a JSON object and added to the dictionary with an

index as the key.

• Segregates data into train, test, and validation splits based on the fold field in
data_dict.
• Retains only records with articles having at least 50 words and summaries with at least 5
words.

• Saves the new_dict containing preprocessed WikiHow data as a .pkl file for future use.

• Loads the previously saved WikiHow dataset (wikihow_preprocessed.pkl) using
pickle.

• Imports tqdm for progress bars during loops and installs torch for PyTorch-based
operations.

• Accesses the first data record in the test split of the wikihow dataset.

• Assigns the test split of the wikihow dataset to the wikihow variable.

• Accesses the first record from the current wikihow dataset variable, which is now likely the
test split.

This code:

1. Device and Model Initialization:
o Sets computation device (cuda or cpu) and loads the facebook/bart-large-

cnn model with tokenizer.

2. Pipeline Setup:
o Creates a summarization pipeline and initializes the ROUGE scorer.

3. Summarization in Chunks:
o Splits large text into chunks for summarization and combines chunk

summaries into a final summary.

4. Processing Articles:
o Randomly selects articles from the dataset, generates summaries, and

evaluates them using ROUGE scores.

5. Result Storage:
o Appends ROUGE scores of each summary to a list and prints the results.

• Saves the summariza,on results and evalua,on metrics as a forma]ed JSON file in Google
Drive.

• Imports essen,al libraries for text summariza,on, evalua,on, dataset handling, and
hardware accelera,on.

• Configures the Torch device and loads the BART-large CNN model and tokenizer.

• Performs text summariza,on using the model pipeline with fine-tuned parameters like
num_beams, length_penalty, and max_length.

• Splits a long text into manageable chunks based on max_tokens with optional overlapping
tokens.
• Converts tokens back into text for further processing.

1.
o Recursively processes large text by splitting it into smaller pieces using the

split_text_into_pieces function.
o Summarizes chunks, concatenates them, and re-summarizes if the result

exceeds the max_length.
o Ensures iterative summarization for long texts until the desired length is met.

• Processes a random sample of articles from the WikiHow test set.
• Generates summaries using the recursive_summarize function, evaluates them using
ROUGE scores, and appends the results to a list.

• Serializes and saves the summariza,on results, including ROUGE scores, into a JSON file with
proper forma`ng.

• Loads precomputed ROUGE scores from a JSON file and calculates the total
number of summaries evaluated.

• Randomly samples 10,000 ar,cles from the WikiHow training dataset for analysis or
processing.

• Imports essen,al libraries for dataset handling, tokeniza,on, training, and visualiza,on.

• Filters ar,cles based on the number of tokens, ensuring they meet the model's input limit.

• Loads filtered ar,cles for training from a JSON file.

• Converts loaded JSON files into Hugging Face Dataset objects for training and valida,on.

• Preprocesses ar,cles and summaries by tokenizing them and maps the preprocessing
func,on over the datasets for training and valida,on.

• Ini,alizes the BartForConditionalGeneration model and fine-tunes it using the
Trainer class with specified training arguments (e.g., batch size, epochs, weight decay).

• Saves the fine-tuned model to the specified directory for later use.

• Sets up a summariza,on pipeline with the fine-tuned model and saves both the model and
tokenizer to the specified directory.

• Loads the fine-tuned model and defines a summariza,on func,on with parameters like
max_length, min_length, and num_beams for evalua,on.

• Splits long text into chunks based on token limits with overlapping sections for
context preservation.

• Uses recursive logic to generate summaries for large text chunks and re-summarizes
concatenated outputs if required.

• Iterates over a sample of ar,cles, generates summaries using the recursive summarizer, and
stores results.

• Saves summariza,on results as a JSON file and creates a DataFrame comparing the
reference, base model, and fine-tuned model summaries.

