[\
— 0. =

S
-, -
.

National
College
Ireland

A novel mechanism for the reduction of
latency and cost in AWS Lambda calls

MSc Research Project
Cloud Computing

Anilgovind Kokkoori Anilkumar
Student ID: x231764558

School of Computing
National College of Ireland

Supervisor: Dr Giovani Estrada

National College of Ireland National

Project Submission Sheet Col]ege of
School of Computing Ireland
Student Name: Anilgovind Kokkoori Anilkumar
Student ID: x231764558
Programme: Cloud Computing
Year: 2024
Module: MSc Research Project
Supervisor: Dr Giovani Estrada
Submission Due Date: 12/12/2024
Project Title: A novel mechanism for the reduction of latency and cost in
AWS Lambda calls
Word Count: 9259
Page Count: [27]

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature:

Date: 28th January 2025

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). O
Attach a Moodle submission receipt of the online project submission, to | [J
each project (including multiple copies).
You must ensure that you retain a HARD COPY of the project, both for | [J
your own reference and in case a project is lost or mislaid. It is not sufficient to keep

a copy on computer.

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only
Signature:

Date:
Penalty Applied (if applicable):

A novel mechanism for the reduction of latency and
cost in AWS Lambda calls

Anilgovind Kokkoori Anilkumar
x231764558

Abstract

Serverless computing, especially AWS lambda revolutionised software industry.
But cold start is a significant challenge, especially for latency-critical and sporadic
workloads. This research addresses this issue by proposing and evaluating novel
architectures. A light weight load balancer for reducing cold start and archi-
tectures for reducing cold start were implimented in this research. We analyzed
multiple strategies for minimizing cold starts, including invocation-based methods
using AWS EventBridge, SNS, and CloudWatch. Among these, a CloudWatch-
driven architecture demonstrated superior efficiency by selectively invoking inactive
Lambdas, avoiding unnecessary overhead. Additionally, the custom load balancer
consistently outperformed the AWS API Gateway in test scenarios. The solution
completely eliminated cold starts. It reduced latency by up to 80% and costs by
20% compared to using API Gateway for sporadic test events. The findings have
broader implications for designing responsive, cost-effective serverless applications.
And the solution can adapt for cross-platform deployments to unlock its full com-
mercial potential like vendor locking.

1 Introduction

A cloud in software industry is a collection of configurable servers, storage and services
accessible via internet on demand. There is various benefits for cloud computing over
the conventional software development and deployments. In a little glance these benefits
spreads over cost, performance, development, deployment and scalability [[] Developers
and architects were able to create new software models and development lifecycles with
the technologies of cloud computing. Event driven and microservice architectures have
a ambient implementation platform in cloud E] Microservices and Event driven architec-
tures are implimented in cloud via different ways using various cloud resources and its
popularity is increasing] A main service used for this architectures is AWS Lambda, a
serverless service.

Serverless computing is introduced by AWS in 2014 Iz_f] as its first usable implimenta-
tion in cloud. This new computing idea is revolutionasied the software architecture and
designs. Event driven invocation, No infrastructure management, and pay for usage are

https://www.oracle.com/ie/cloud/what-is-cloud-computing/top-10-benefits-cloud-computing
2https ://developer.ibm.com/articles/eda-and-microservices-architecture-best-practices
3https://codal.com/insights/understanding-the-rise-of-microservice-architecture

4h‘ctps ://georgemao.medium. com/the-ultimate-guide-to-aws-lambda-development-6e4aae00d964

https://www.oracle.com/ie/cloud/what-is-cloud-computing/top-10-benefits-cloud-computing
https://developer.ibm.com/articles/eda-and-microservices-architecture-best-practices
https://codal.com/insights/understanding-the-rise-of-microservice-architecture
https://georgemao.medium.com/the-ultimate-guide-to-aws-lambda-development-6e4aae00d964

the key benefits in serverless computing [] Serverless computing is a general term and
it can be computing, messaging, storage or gateway where the end user does not have
control over management, billing , lifecycle and configuration of the service E] Function
as a service provided by cloud service providers are for executing code in response to
events. The computation space is limited in memory, cpu and maximum duration of
the execution environment. But the users does not need to worry about the high level
infrastructures and creation of the servers for execution. According to a survey result
published by Datadog a popular log monitoring service. Over 70 percent of AWS users
and 60 percent of google cloud providers are using serverless resources [Z] In FaaS environ-
ment the hardware, environment and server management are responsibility of the cloud
service provider. The developers are entitled to focus on their development of their code.
Availability, scalability and pay for use are the key benefits of FaaS. For a FaaS environ-
ment there wont be a dedicated server running 24 hours. The function will execute only
through a external trigger called events.

AWS lambda is widely using for data processing, API backend, IoT device manage-
ment, natural language processing, image and video processing etc. Where as because
of there is no dedicated server running in the backend a cold start will occur in AWS
lambda if there is no active environment for execution. This is generally due to AWS
lambda need time to create the virtual environment for the execution. The AWS lambda
execution life cycle is going through four steps. Which are downloading the code from
the internal s3 bucket or ECR, creating the configured execution runtime environment,
preparing the code blocks outside the handler which may involves initialising layers, pack-
ages, establishing connection to database, initialising functions and variables outside the
handler. And at last stage executing the handler code. The first two stages of the exe-
cution lifecycle is not billed but the last two stages are billed according to the execution
time and invocations count Figure [I]

After completing execution the environment will be frozen and will be available for a

Download Code From
AWS S3 or ECR

Create Runtime
Environment Configured

Execute Code Blocks
Outside the Handler

Execute Code Inside
the Handler

LAMBDA EXECUTION LIFECYCLE- x23176458(Original)

Figure 1: Lambda Lifecyle

non-deterministic time period. This environment will be reused if any event comes for
execution before it is terminated else this environment will be automatically destroyed
by AWS. Cold start usually varies function to function according to its size, execution
environment and packages E] But for latency critical applications and services this is a
major issue, especially for sporadic services where there is no continuous use of function
code.

Shttps://www.ibm.com/topics/serverless

Chttps://www.ibm.com/topics/faas
"https://www.datadoghq.com/state-of-serverless/
8https://docs.aws.amazon.com/lambda/latest/dg/execution-environments.html

https://www.ibm.com/topics/serverless
https://www.ibm.com/topics/faas
https://www.datadoghq.com/state-of-serverless/
https://docs.aws.amazon.com/lambda/latest/dg/execution-environments.html

UN Sustainable Goals

Research like the one here introduced will help cloud architects to select the best strategy
in such a way that minimize energy, cost, and computations. Even cloud service providers
could potentially include lightweight AWS lambda services tuned to the application re-
quirements. These are also goals of UN Sustainable Development Goals(SDGs). Target
7.3 for improvement in energy efficiency [| and target 9.4 Upgrade infrastructure for
sustainability with increased resource-use efficiency [| are perfectly aligning with the
outcomes of this research.

This research is focusing on investigating methods to keep the AWS lambda execution
environment warm and reuse the existing virtual environment to minimise latency and
cost. The research is successful in evaluating and designing different architectural patterns
for keeping the AWS lambda warm and reusing the execution environment to reduce
latency and cost due to cold start.

1.1 Research gap

While AWS lambda is the most important feature in FaaS, little is known about best
strategies to keep it live. Strategies could vary with the task that has to be accomplished
via AWS lambda. Especially to optimise AWS lambda, developers have to deal with cold
start, cost and scalability [[]] Knowing that the active virtual environment will reduce
the cold start to a great extend the current strategies to use it are complex and cost
intensive. Exploiting the active virtual environment using a lightweight solution is need
of the software industry.

1.2 Research question

To clarify the above mentioned research gap, a detailed study is proposed here. The key
research question can be described as follows:

e What are the best ways to keep the AWS lambda environment active? Or, in other
words, what could be the best cloud architecture to minimise the cold start and
cost of AWS lambda?

1.3 Research objectives

In order to accomplish the research question, a number of steps have to be performed:

1. Analyse the cold start and serverless virtual environment. Then develop architec-
tures to keep the Virtual environment active.

2. Develop a lightweight load balancer to re-use the active virtual environment to
reduce cold starts.

3. Evaluated the use cases to identify the minimum viable time span to reduce cold
starts. And compare the quality of lightweight load balancer with API gateway in
terms of its latency and cost.

Ynttps://sdgs.un.org/goals/goal T#targets_and_indicators
Yhttps://sdgs.un.org/goals/goal9#targets_and_indicators
Uhttps://georgemao.medium. com/the-ultimate-guide-to-aws-lambda-development-6e4aae00d964

https://sdgs.un.org/goals/goal7#targets_and_indicators
https://sdgs.un.org/goals/goal9#targets_and_indicators
https://georgemao.medium.com/the-ultimate-guide-to-aws-lambda-development-6e4aae00d964

1.4 Outline

This report is organised as follows. Section [2| presents a critical analysis of closely related
work. Section |3] illustrates the evaluation approach to execute the research work. In
Section [The design of the proposed work and novel idea is described The Section
have all the details of enactment of research question. Whereas Section [6| have the details
of test results and its discussion. The Section [7] have the conclusion and future directions
of the research.

2 Related Work

Advantages of using serverless cloud resources gained drastic attraction of organisations
and software architects. Various researches to improve the cost, performance, security
and latency of serverless FaaS environments were executed by researchers. Due to the
unpredictability of the life cycle and varying cold start for function to function are major
problem experienced by all of the researchers. In the section below the recent and related
researches regarding lambda, load balancers and cold start issues were critically analysed.

2.1 Cold Start Related Researches

The cold start related studies, mitigating strategies and solutions are hot topics for cloud
researchers. The study of cold start at different deployment strategies were explored by
(Dantas et al.f 2022). The experiment and studies were focused on the container based
and zip file based deployments at runtime offered by AWS. 13 different types of functions
like image classifier, linear regression, factorial etc in node, python and java runtime were
experimented. Its a clear depiction of the real world. Both container based and zip based
deployments in arm64 and x86 architectures were tested. The experiment found that
above 10 minutes of inactivity will lead to the destruction of idle virtual environment.
And both java and node have faster initialisation on zip based deployments. Package size,
runtime, memory configuration and deployment style are affecting the cold start. The
research is highly useful for developers to choose a proper pattern according to their need.
Another focused study on the behavior of node and java in AWS lambda environment
were conducted by (Ferreira Dos Santos et al.; 2023)). Its contradicting the above said
research where it suggest node and java have faster and initialisation time. But this study
concluding that node were able to reduce the startup time to 82 percent. And the study
states that above seven minutes the reusing of containers seems to be drastically reducing.
And the study is primarily focused on low use AWS lambda based services where cold start
is a common scenario. The proposed research is also focusing on sporadic invocations at
regular intervals. The clear backup of metrics and same computational implementation
on both environment are justifying the recommendation of node over java runtime. But
limited tests and shorter observation periods are drawbacks of this research.

A sophisticated approach to avoid cold starts were done by (Solaiman and Adnanj
2020)) resulted into above 23 percent decrease in cold start of AWS environment. The
solution is built with a container management architecture. The solution have queue for
container states. It have states cold, warm and template. The containers will transition
according to their invocation, use, state and other parameters. And pre-prepared con-
tainers as templates are kept for handling concurrent requests. The proposed solution is

implemented on OpenLambda [T_Z] where it showed lower memory consumption, reduction
in cold start occurrence and duration. But the complex architecture, scalability and per-
formance at high load are not answered. Proper container orchestration and high level
architecture are a real drawback for this research adaption. Increasing cost and platform
dependent architectural designs are also a disadvantage.

The cold start in scientific workloads were addressed by (Bauer et al.; 2024). The re-
search discussing about the sporadic and dynamic demands in serverless computing. And
it outlining the demands and less exploration of the issue. This is the key area where
the proposed research is focused. The paper suggesting four different empirical analysis
and demonstrate trade-offs between build time, storage and cold start. The scientific
computing generally needs a vast amount of storage and its use. So the study is heavily
depended on Globus compute and Binder dataset which might not be the actual com-
mercial scenario. The paper discussing about the build times, cold start and impact of
warm start on containerized environments with four different strategies. The dummy
workloads and functions are used at the experiment setup. This idea is integrated in the
experimental functions to mimic the cold start.

A highly advanced research on container space utilisation were conducted by (Li
et al.; [2023). The paper is discussing about the new architecture that can be adapted for
serverless. It provides a comprehensive idea about the serverless platform and the need of
its restructuring to avoid the computation power loss. The idle functions will have extra
computational space for executions. The paper focusing on reusing it. Doing this the
UN SDG's in serverless platform can be more efficiently implemented. The study offers
a reusable resource architecture for new serverless platform designs, where less hardware
can have more load to handle. The suggested solution have less cold start, cost efficiency,
scalability and interoperability with existing Docker technologies. Overall the suggested
solution outweighs its drawbacks. But the solution need direct control of the underlying
infrastructure for end user to implement in popular CSP’s. This will be a good solution
to use resources efficiently for CSP’s.

A application level solution is created by (Liu et al.; 2023) is identifying and separ-
ating the indispensable code from the optional code. The optional code will be loaded
at demand only. This strategy is well suited for the serverless environment to reduce the
latency and cost. A very big portion of the libraries and code are loaded to the execu-
tion environment at every events. The tool comprised of two separate modules one for
identifying and removing unwanted files, identifying the entry points, optional functions
generation. The second module is for function level rewriting of the code to optimise
the on demand loading mechanism. By doing this only indispensable code will be loaded
first and optional codes are loaded when necessary. The solution is able to achieve 78%
of reduction in code loading latency and 42% reduction in total cold start latency. Fur-
ther studies and development on this topic have great potential in cold start mitigation
solutions.

2.2 Machine Learning Based Solutions For Cold Start

The time span and active containers in a execution environment were determined using
using deep neural network and LSTM (Long short-term memory). And this model sugges-
tions can be used to prewarm the AWS lambda environment. Based on this idea (Kumari
et al.; [2022) have developed a ML based solution for pre warming the AWS lambda. The

?https://github.com/open-lambda/open-lambda

https://github.com/open-lambda/open-lambda

proposed solution had two separate layers one for reducing frequency of cold start and the
second one for reducing cold start delay reduction. The dynamic approach for adjusting
the pre-warmed containers reduced the latency. The matrices discussed are underlin-
ing the high performance of the adaptive solution. The solution is tested with different
computation tasks in the test environment created in Openwhisk. The solution have a
complex architecture thus inviting cost constraints. The heavy dependency on the log
dataset will be a issue in its performance and scalability. A very similer research done by
(Htet et al.; 2024]) uses XGBoost model for forecasting the incoming requests. Based on
this the environment is pre-warmed. The solution experimented with image extract func-
tion on AWS lambda, image classification on containerised function and image processing
in step functions. The ML model was able to reduce the cold start to over 80 percent
in all the scenarios. But the dataset used server hit pattern might not match with the
real world scenarios. And the paper itself acknowledges the limitations of the solution in
means of its cost, prediction accuracy, and the lack of testing on other CSPs like Azure
and GCP. Where as the research of (Kumari et al.; [2022)) were able test their system
in multiple CSP’s. The results received in both of these research have high discrepancy.
The former one shows less than 40% improvement in average response time, whereas the
later one have above 80% reduction in cold start. But a comparison of these are not
possible due to difference in matrices and functions used for testing.

A more advanced solution combining light weight Kata containersF_S] and pre-invoke
function using ML model were proposed by (Karamzadeh and Shameli-Sendjij [2024). The
suggested solution have kubernetis for managing the containers and gateway for gather-
ing logs, predictive module for forecasting invocations, data store and a pre-invocation
module for warming the function. Improved security through enhancing container isola-
tion and mitigate risks of container escapes which is a critical vulnerabilities in serverless
environments. Increased security and above 80% reduction in cold start are impressive.
But still the cost is a main concern with complex architecture. The experiment is ex-
ecuted with low frequency requests. Though in a high frequency real world scenarios the
predictive components performance will be a great concern. Another solution to reduce
cold start using reinforced learning algorithm is advocated by (Htet et al.; |2024)). It uses
a learning agent for adaptive decisions, and the architecture is working on a feedback loop
and uses Q-learning ML-algorithm. resource optimization, dynamic adaptability and im-
proved performance are observed in this research. Whereas resource costs, training and
making a capable ML model and scalability are practical issues in adapting the solution.
Simplified workload, limited evaluation metric are other areas which need significant im-
provements. Even though with very minimal iterations the the RL agent was able to
show high performance is a great sign. But the research lacks groundbreaking reduction
of cold start comparing with other researches and need improvements in its overall tuning
and selection of ML algorithm.

2.3 Cold Start Analysis, Studies, Reviews And Suggestions

A systematic study of cold start and possible solutions were suggested by (Alisha et al.;
2024)) in their research. The research is focusing on understanding the root causes of cold
start and suggesting practical solutions to overcome the latency issues. The efficiency of
the solution discussed are depended on the computation task on the FaaS, workload and
infrastructure capabilities and the ability to balance the resource. The solutions proposed

3https://katacontainers.io/

https://katacontainers.io/

are not feasible for small solutions and it have complex architectures. Focus on synergy
of hybrid and serverless models showing the current trends and future path for serverless
computing. A very recent review paper based on cold start latency in serverless computing
done by (Verma et al.; 2024) is a single point for analysing current trends, progressions
and recent examinations in the serverless domain. The paper examines different other
researches and found research gaps in tweaking warm-Up strategies, Optimizing Container
Reuse Policies and Financially savvy Provisioning. These research gaps suggested by
(Verma et al.; 2024)) are trying to solve by the this research. The four different strategies
to keep the AWS lambda warm and reusing containers by cost effective manner are the
outcomes focused under the proposed research.

A well structured, extended and classification of existing cold start mitigation re-
searches were done by (Ebrahimi et al.; 2024). The paper categories the existing works
into four different sets. Application based, checkpoint based, invocation time prediction
based and cache based. The study critically analysing the existing solutions and pointing
the drawbacks. The research successfully addressed existed research gap in classifica-
tion of works. The one main issue raised by this paper is the lack of benchmarks to for
evaluating and studying the cold start in serverless platform. This is a real problem in
conducting and classifying the researches on this particulate topic. The paper reviews
some existing benchmarks like FunctionBench, ServerlessBench and SeBs and concluding
that these tools are not covering all the required matrices for analysing cold start, latency
and resource usage. And the author urges for setting new standards for benchmarks. the
studies and suggestions in this paper is a great point for understanding the cutting edge
of the cold start related researches and decision making for future studies.

2.4 Load Balancing Based Researches

Balancing load across the available servers are vital to have better scalability, reliability,
distribution of workload and performance. Various researches were done on this topic to
improve the above said aspects of a server. Designing and implementing a load balancer
is a challenging task. The load balancers importance, concept and methodologies are
described by (Mishra et al.; 2020)) in their paper. The paper acknowledges key matrices
that are vital for load balancers like time consumption, energy consumption, response
time, throughput, scalability and migration. A load balancer should be focused on these
matrices and want to have better performance on each of these constraints. The paper
discussing static and dynamic load balancing algorithms and published the CloudSim
simulation results. The diversity of the algorithms discussed are a proof of the compre-
hensive approach to address the load balancing challenges. It serve as a guide for the
researchers to understand and improve the efficiency and reliability of cloud solutions.
Simplistic assumption of the workload and lack of real world validation outside CloudSim
seems to be a limitation.

A more structured and comparative study of load balancers were discussed and a
new fault tolerant load balancing framework using ML technologies were put forward by
(Shafiq et al.f 2022). Like the studies of (Mishra et al.; 2020) this paper also discussing
about static and dynamic load balancers and variety of algorithms. Nature inspired
algorithms are also a covered topic in the research. Overall the paper review 58 different
algorithms and compares its strength, weakness. The discussed key matrices, balanced
analysis of algorithms, comprehensive coverage and proposing a solution in light of the
research is helpful for the development community. The need of energy efficient, fault

tolerant, reliable load balancers and its complexity are thoroughly covered in this paper.
The proposed solution of fault-tolerant load balancer uses dual load balancer design this
is to handle failures and fault prediction using machine learning. But the complexity of
the load balancer, limited evaluation, integration with the existing systems, efficient ML
model and algorithms are the area to improve and need clarity.

The research of (Devine et al.f [2000) is describing a dynamic load balancer for par-
allel applications named Zoltan. The tool is empowered with multiple load balancing
algorithms based on geometric methods and graph based methods. The object oriented
call back functions is qualifies the tool to have easy integration with wide variety of ap-
plications. The static high frequency workload and the dynamic capabilities can cause
issues in this load balancer. A research on optimising load balancer on multi path rout-
ing network is done by (Yoheswari; [2024). The optimised solution is highly beneficial
for high volume data intensive applications. The research choose Genetic Algorithms
(GA) and Particle Swarm Optimization (PSO) as the candidates. Incorporating these
algorithms with multi path routing protocols improved the the nature of load balancer
to a dynamic one from the traditional static or heuristic methods. Enhanced efficiency,
reduced latency and scalability are the achievements of this research. This research is
also underlines the complexity of computation overhead, parameter tuning, scalability
and integration complexity of designing a load balancer.

An serverless focused load balancing tool named Hedgi was designed and implemented
by (Aslanpour et al.; 2024)). Hedgi is a heterogeneous serverless edge computing platform
for handling Al based data intensive edge computing. The authors introduced a method
to classify the edge nodes based on their performance using different metrics such as
throughput, response time, cost and energy consumption. It helps to understand the
capabilities and limitation of each node in the system. Using this data the weighted
round-robin load balancing is implemented. The research is focused on edge computing
and its difficulties in handling the serverless platform. It gives valuable information about
the difficulties in handling different capacity edge nodes using serverless. A load balancer
having varying capacity nodes to handle has to face performance variability, dynamic
workloads, bottlenecks if any and scalability issues. These are key points to consider
while developing a load balancer.

An extensive survey and analysis of cloud based load balancing researches and al-
gorithms were done by (Mishra and Majhi; 2020)). The paper analyses a wide variety of
algorithms including traditional, heuristic, meta heuristic, and hybrid approaches. And
these algorithms were analysed using parameters like throughput, fault tolerance, , re-
sponse time and consumption of energy. It provides a single source for developers and
researchers for validating, comparing and understanding existing works. The paper sug-
gesting the importance of future work on enhancing Al based hybrid algorithms, minim-
ising energy consumption and validating algorithms with real world deployments. These
suggestions are still need to be addressed properly, especially the energy efficient solu-
tions. Whereas the taxonomy provided for load balancers and survey of survey framework
introduced in this research are useful for future classification studies too.

The study of (Dantas et al.; 2022) and (Ferreira Dos Santos et al.; 2023) are contra-
dicting in terms of its active AWS lambda environment time span. This is probably due
to the region difference. Finding the best viable time through experiments is a respons-
ibility of this research in us-west-1. The suggestion of node (Ferreira Dos Santos et al.;
2023) for reducing cold start will consider for this research and solution will implement in
node. The research of (Bauer et al.; 2024) states the less exploration of sporadic events.

TOPIC

POSITIVE

NEGATIVE

(Dantas et al.; 2022)

Developers can take de-
cisions for their solution de-
ployment, runtime selection
according to their code do-
main

Tests were executed for a
short amount of time. Only
on AWS with limited ver-
sions of runtimes. Future
runtimes may change these
findings.

(Ferreira Dos Santos et al.;
2023)

Infrequent applications will
benefit from Node.js due
to its reduced cold start
latency.

At high frequency and low-
frequency high throughput
environments, the beha-
viour is not addressed.

(Solaiman and Adnanj

2020)

WLEC uses approximately
50% less memory while
maintaining performance.

Additional components in-
crease system complexity
and require resource-heavy
components

(Kumari et al.j 2022)

Workloads with predictable
load will have an added ad-

vantage.

Handling unpredicted load
scenarios will be an issue.

(Alisha et al.; 2024]))

Hybrid models enhance
overall system responsive-
ness.

Maintaining warm instances
in hybrid setups will incur
higher costs.

(Htet et al.; 2024)

Consistent invocation pat-
terns will benefit from pre-
warming.

Computation overhead of
ML models and dependency
on model prediction ac-
curacy during unpredicted
load.

(Li et al}; 2023)

Reusing idle or underutil-
ized container resources en-
sures efficient resource util-
ization.

Additional layer of monit-
oring and resource manage-
ment is cost-consuming.

(Karamzadeh and Shameli-
Sendi 2024)

Increased security of the

execution environment
by mitigating container
escapes.

Configuring and managing
Kata Containers, Kuber-
netes, and CRI will add cost
and maintenance.

Table 1: Cold Start Related Research Positives And Negatives

Contributing to this area are need of the industry. Similar to this research we too need
to mimic the cold starts to study its implication in possible way. All the ML related cold
start mitigation strategies high architectures which need extra computation and cost. A
light weight solution will be a better idea. The research of (Verma et al.; 2024)) found
research gaps in AWS lambda warm up techniques, one of the main objective of this
research. As (Ebrahimi et al.; [2024)) states proper benchmark is a problem for studying
cold start on AWS lambda. The research need to implement its own testing functions.
The load balancing papers describing the complexity of its implementation via different
algorithms. Our system is focusing on utilising the active virtual environment. The nor-
mal load balancers are not fit for this solution. Because our design has to be aligned with
AWS lambda life cycle. The recap of literature review is organised in Tables [I] and [2|

TOPIC

POSITIVE

NEGATIVE

(Devine et al.; [2000)

Adaptive capacity in dy-
namic systems is great for a
load balancer.

The complexity in the mi-
gration.

(Shafiq et al.; [2022)

It groups 58 existing load
balancing algorithms,
providing a platform for
understanding various stud-
ies.

Experiments extensively
used simulation tools,
which do not fully depict
real-world scenarios.

(Mishra et al.f 2020)

Dynamically reallocating
tasks will improve system
reliability and scalability.

Dynamic load balancing in-
troduces computational and
communication overhead.

(Mishra and Majhi; 2020)

Sets a best foundation for
developing efficient, scal-
able, and energy-efficient
load balancers.

Proposed solutions lack
practical implementation
and validation in real-world
environments.

(Yoheswari; 2024)

Best for real-time applica-
tions like video streaming.

Integration complexity and
computation overhead are
key issues.

(Aslanpour et al.; [2024])

Able to overcome central
bottleneck issues such as
scalability and single points
of failure in IoT.

Centralized load balancers
fail to perform well under
high workloads.

Table 2: Pros and cons of load balancers

3 Methodology

According to CRISP [] understanding the business needs and AWS lambda working,
generating a solution, implementation, evaluation, testing and fine tuning the solution
are part of this research methodology. The research has to fine tune via different iterations
by understanding the AWS lambda, research objectives and test results.

3.1 Business understanding

The main disadvantage in the serverless function is its cold start time. This is a major
drawback of the FaaS services in high throughput environments and sporadic environ-
ments. AWS lambdas which are failing to scale and having high latency in software
solutions will end up in business loss and unhappy customers. Though handling the cold
start is became developers responsibility for latency critical applications.

3.2 Analysis How AWS Lambda Works

Active AWS lambda container reuse and strategies to keep the container active are the
two focus points of this research. For sporadic requests if multiple requests are incoming
to a AWS lambda in a short time span there is high chance of creating new execution
environments and resulting cold start. Once the AWS lambda get its first event and

“https://www.datascience-pm.com/crisp-dm-2

10

https://www.datascience-pm.com/crisp-dm-2

it started execution of the first request, any subsequent request hitting the same AWS
lambda after starting the first lambda can reuse the VM. A simple background test is
done with node by hitting the lambda. Via this test able to understand that generation of
new execution environment will create a new log stream in AWS cloudwatch. The initial
invocation will have a Separate log in the AWS cloudwatch. The initial “REPORT” log
entry will have “Init Duration”. series request resulted reusing the AWS lambda VM.
The experiment was able to understand three scenarios where cold start is highly likely
to happen:

1. when a code change or new deployment occur;
2. when the inactive time between two events to the AWS lambda is higher;

3. when the AWS lambda is scaling.

3.3 Potential solution

Different architectures keeping lambda warm and best fir time frame has to be found for
the Ireland region. Then a light weight solution has to be build and it has to be tested
with API Gateway services to meet the research gap. A dynamic load balancing solution
is considered initially with ML technologies. But from the literature review it is clear
that ML based solutions have scalability issues and complex architecture.

From the initial experiments and research it is clear that the AWS lambda need
to be invoked at regular intervals to keep it warm. This can be done using different
architectures according to the implementing solution. There is a number of ways to
keep the lambda warm and active so that incoming requests will be served fast [°?] An
optimised architecture to keep lambda warm by controlled periodic invocation will be
a great solution. It could be implemented as part of a circuit breaker patternE], or a
customised retry with back off design pattern}

To reuse the active virtual environment requests should be blocked from accessing
the lambda runtime. By handling it one after one will result improvements in latency,
cost, computation power and carbon footprint. For reducing the cold start it is better
to hold the request dynamically by assessing the load. In simple words we need to
efficiently serialize the requests which might cause a scaling cold start. A lightweight
load balancer for this can be created with existing cloud tools. The solution must be
tested and to ensure its reusing the active environment via section and redesigned if
fails to accurately follow CRISP.

3.4 Test Cases and Execution

The project have two separate sections to test. First one the keep AWS lambda VM
warming architecture and second one the load balancer. The first one have three different
architectures. 3, 5, 7 and 10 minutes interval invocations are tested with the lambda
warming architectures to find out optimum time span. The test period is determined to

5https://medium. com/\spacefactor\@m{}marcos.duarte242/keeping-your-aws-lambdas-warm-strategies-to

https://docs.aws.amazon.com/prescriptive-guidance/latest/cloud-design-patterns/
circuit-breaker.html

Yhttps://docs.aws.amazon.com/prescriptive-guidance/latest/cloud-design-patterns/
retry-backoff.html

11

https://medium.com/\spacefactor \@m {}marcos.duarte242/keeping-your-aws-lambdas-warm-strategies-to-avoid-cold-starts-c3b50a001a6c
https://docs.aws.amazon.com/prescriptive-guidance/latest/cloud-design-patterns/circuit-breaker.html
https://docs.aws.amazon.com/prescriptive-guidance/latest/cloud-design-patterns/circuit-breaker.html
https://docs.aws.amazon.com/prescriptive-guidance/latest/cloud-design-patterns/retry-backoff.html
https://docs.aws.amazon.com/prescriptive-guidance/latest/cloud-design-patterns/retry-backoff.html

be 12 hours. The test logs is gathered from the AWS cloudwatch and analysed its cold
starts and warm starts. The selection of this time gap is from the literature review it
is clear that 5 to 15 are the range suggested by researchers. So a best fir case of 3 and
a boundary case of 5 is selected. Then test the system with 7 and 10 minutes too. If
the lambda have same performance on 3 and 10 minutes we decided to increase the time
according to the test result. It is clear that an accurate time is not able to find due to the
non deterministic time of lambda lifecycle. Though we need to find a time span which
will be a best fit to keep the environment warm.

The load balancer is tested with normal load and sporadic load. A randomised load
test has to be done for the endpoints. A 1000 hits in a 1000 seconds are planned for
this. The sporadic test is conducted using a input file this input file will have three
arrays. In each array there is random times to hit the lambda. The array size is 5,15
and 25 respectively. The same file will be tested for each CRUD endpoint. The time
period between two array of requests is set to be 5 and 15 minutes. And the test cases
should be executed for varying cold start for AWS lambda. For this research artificially
we introduce 1,3, and 5 seconds of cold strts to the lambda endpoints. Both API gateway
and load balancer will be tested in the same fashion. The total execution time, total cold
starts and estimated cost can be determined from the cloud watch report logs. All the
above said tests will be executed through node scripts.

3.5 Implementation and evaluation

While implementing the knowledge gained from section [2/has to be taken in consideration.
The implementation of the whole project will be on AWS due to its huge market share
and cloud features. Evaluating results and solution in terms of cost, latency, scalability
are crucial. The normal application architecture is depicted in Figure [2a] and the newly
proposed architecture is described in Figure

From section [2] it is clear that there is a lack of proper benchmark for testing the
coldstart (Ebrahimi et al.; 2024). So a normal CRUD functions has to be implemented to
match the real world scenario. A basic read write application in AWS lambda configured
with AWS API gateway, AWS dynamoDB and AWS cloudwatch has to be implimented.
The common used packages can be deployed as a seperate layer and configure in the AWS
lambda. This CRUD function should be tested with AWS API gateway and suggested
load balancer. Node can be utilised for as a best solution for implementing the CRUD
funcrions (Ferreira Dos Santos et al.; 2023)). Upon failures and undesired results various
iteration on the configuration of the solution and business understanding has to be done
to follow CRISP methodology pattern. The collected logs can be analysed using Google
collab [[Pko have total response times and billed durations. A estimated cost can be
calculated by from the test results using the billed duration. Any discounts or tiered
pricing are not considering for cost comparison. Adding these to the solution and to the
current scenario logically wont give any meaning.

8https://colab.research.google.com/drive/12qSmyoA2hMMqz0Hyw2vP6Bf 3MDaVqcrK 7usp=
sharing

Yhttps://colab.research.google.com/drive/1IKOHrAhAQ6fqGVY8Jezio-1jvvhgQZ4q?usp=
sharing

12

https://colab.research.google.com/drive/12qSmyoA2hMMqz0Hyw2vP6Bf3MDaVqcrK?usp=sharing
https://colab.research.google.com/drive/12qSmyoA2hMMqz0Hyw2vP6Bf3MDaVqcrK?usp=sharing
https://colab.research.google.com/drive/1IKOHrAhAQ6fqGVY8Jezio-1jvvhgQZ4q?usp=sharing
https://colab.research.google.com/drive/1IKOHrAhAQ6fqGVY8Jezio-1jvvhgQZ4q?usp=sharing

'&‘+__*[H]+__, ceremeRon roneon «_*Egi
_—
‘Amazon API ‘Amazon
Gateway DynamoDB
RURFUNETION DELETE FUNCTION

NORMAL APPLICATION WORKFLOW- x23176458(Original) PROPOSED APPLICATION WORKFLOW- X23176458(Original)

(a) Using API Gateway (b) Using Suggested Gateway

Figure 2: CRUD Application With API Gateway and Proposed Gateway

4 Design Specifications

Lambda is perhaps one of the most important AWS services. It is indeed the key compon-
ent in FaaS. In the course if this research, it was found out a capacity problem AWS API
Gateway. API Gateway gets saturated at a relatively low number of lambda functions.
A comparatively simpler approach, a load-balancer, is presented as a viable and efficient
alternative to the default AWS service.

The solution have implications for both performance and vendor locking of cloud pro-
viders. The widely used existing lambda warming architectures are invoking lambda at
regular intervals regardless of lambda is used by user or not. Designing new architectures
for keeping lambda alive and integrating it with a load balancer is an efficient solution.

5 Implementation

5.1 Tools And Services

In light of literature review it is evident that node have clear advantage on the the existing
runtimes (Ferreira Dos Santos et al.; 2023) though node can be used in the lambda
environments for reduced latency. Functional code can be deployed to AWS lambda.
DynamoDB can be used as the datastore for the lambda CRUD functions. The lambda
endpoint can be exposed and routed through API gateway. AWS Cloudwatch can use
for collecting logs from AWS lambda and AWS API gateway. The in-build metrics and
query capability of AWS Cloudwatch is highly useful for the project implementation in the
cloud. The Ec2 instance is used for implimenting load balancer. An express app is working
as a router here. Selection of express framework is purely because of its advanced routing
capability and asynchronous nature of node. Apart from that lightweight, scalability
and middleware support m also advantages of express. To make routing decision the
understanding of the existing load is important. A shared storage space is mandatory for
this.

AWS provides Redis ElastiCache services with very low latency for its read and write
operations. This service can be used for keeping the current execution load record.
Storing the details in a secret manager will be beneficial to have added security and faster
easy access. AWS VPC, subnets and security groups can be implemented in the project

2Ohttps://data-flair.training/blogs/expressjs-advantages-and-disadvantagesare

13

https://data-flair.training/blogs/expressjs-advantages-and-disadvantagesare

environment to control the access and protect the application from threats. To control
the development versions and code management Git hub was used E, E, @ The manual
deployment will be time consuming due to the bulkiness of AWS services using. Deploying
them separate and handling it is a tedious task. The serverless framework can be utilised
here for automatic deployments @ Deployment stage controlling, creating resources and
configuring resources, etc. can be done by commands and code in serverless.

Winston is used for logging. Its not only useful for configuring log level and transport
options but also good for improved debugging and error handling. Moment package
is used for date operations. It provides useful functions for calculating time related
operations. The validator is used for validating the incoming request formats. Apart
from this a random uuid generator from crypto package is used for creating specific log
entries in the cloudwatch. Lambda execution environment provided aws-sdk package
are used for accessing services and data inside the AWS. The above said packages are
imported to functions through AWS lambda Layers.

5.2 Architectures to keep lambda warm

A number of different cloud architectures have been devised to keep lambda “warm” or
“alive”.

1. AWS EventBridge Invocations. AWS EventBridge invocations are widely used
to keep the lambda warm. AWS EventBridge will send events to lambdas separately
with a pre-configured payload. Figure |3al depicts the architecture of this method.
AWS EventBridge provides event rules which will specifies the invocation pattern
and payload to its destination.

oy

Destination
Lambda 1

.
Destination
@) .
Amazon Lambda to keep : :"‘Zm"ns‘"f‘ie ’

Functions Warm (Amazon SNS)

@

Destination
Lambda 3

R ar la
R unction
SNS INVOCATION WORKFLOW- x23176458(Original) ,
APPLICATION WORKFLOW- x23176458(Original)

Lambda Destination
Function 4 Lambda 4

(a) AWS EventBridge rule- (b) Publisher and Subscriber Architecture to Keep Lambda
based invocations for Lambda Warm

Figure 3: Event Bridge and SNS Architectures for Lambda Invocations
2. SNS Invocations. SNS fan-out architecture are well suited for keeping the lambda

alive. Here separate configurations for each lambda can be avoided. SNS can be
acted as a publisher and lambda can act as subscriber to its events. Any event

2Ihttps://github.com/anilgovind-nci/ric-crud-application
2Znttps://github.com/anilgovind-nci/Lambda-Layer
Znttps://github.com/anilgovind-nci/RIC-LOAD-BALANCER
2nttps://wuw.serverless.com/#How-It-works

14

https://github.com/anilgovind-nci/ric-crud-application
https://github.com/anilgovind-nci/Lambda-Layer
https://github.com/anilgovind-nci/RIC-LOAD-BALANCER
https://www.serverless.com/#How-It-works

passed to the SNS will broadcasted to subscribed lambdas. Though a self invoking
lamnda can post a message to the SNS topic and the SNS topic trigger and pass
this payload to every lambdas which are configured. The architecure is described
below in Figure [3b]

Amazon Centralised Logs
EventBridge A

(3 Triggers Lambda—»| ® |« fetch Iogs
ambdalto keej
unctions Warn

__CHECK AND INVOKE LAMBDA @

Lambda specified time
Lambda Lambda function Amazon
Function Function EventBridge

)
fhoinjocation o injocation i no invocation oo
| | |
CRUD
OPERATIONS [l Y Y. Y Y
Lambda Lambda
— Bt et N &

ALL LAMBDA WRITES INVOCATION
LOGS TO THIS CENTRALISED LOG

Function Function

Amazon DynamobB Stream Lambdal Lambda2 Lambdad Lambdad

DynamoDB

CENTRALISED LOGS INVOCATION WORKFLOW-

APPLICATION WORKFLOW- x23176458(CQriginal) X23176458(Original)

(a) Invoking Lambda from DynamoDB Streams (b) Invoke Lambda by Assessing Last Invoca-
tions

Figure 4: Invocation From DynamoDB Streams and Last Invocation Assessment

3. DDB Stream Invocations. The aforementioned architectures will invoke the
destination lambdas even if the lambda is active. It is inefficient in terms of waste
of computation and unwanted interrupt to the user functions lambdas. To avoid
this a better solution is using DynamoDB stream to evaluate the last invocations
and invoke the lambda if there is no invokes. For this a event bridge enabled lambda
auto invokes and check the stream at regular intervals. The proposed architecture
is depicted in Figure [da] Where as comparing with other architectures this ar-
chitecture cannot be used in every scenarios. The limitations are the destination
lambda should want to have a DDB write operation to have a log in DDB stream.
Apart from that any validation issues or internal server errors in the lambda will
not effect a write operation in DDB. This scenario will also result into unwanted
invoke request to the destination lambda. The GET operations will not generate
DDB stream, so invoking destination GET lambdas is also not possible via this
architecture. This architecture is a proposal from this research. EL

4. Cloud Watch Analysed Invocations Keeping the Lambda warm from cloud-
watch is depicted in Figure [db] Here all the lambdas which need to be invoked will
be writing its invocation logs to a centralised AWS cloudwatch log. AWS Event
bridge is configured with a single lambda and this lambda will be invoked at reg-
ular intervals. The lambda will query through the log and distinguish whether a
destination lambda have invoked or not in the configured time span. If no, the
lambda will send a invocation event to the destination lambda. The destination
lambda have code blocks to distinguish the normal used request and keep warm
request. Keep warm requests will handle at the very starting of AWS lambda to
reduce cost and execution time. This proposed architecture have clear advantage

2%https://docs.aws.amazon . com/amazondynamodb/latest/developerguide/Streams.html

15

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Streams.html

over any other architectures in terms of its ability to avoid unwanted triggers to
the destination lambda. Thus reducing its load when the function is serving user
requests. And a single point configuration for all the destination lambda is also
highly beneficial.

5.3 Application Design

The AWS API gateway integrated test design is depicted in Figure Where routing,
load handling, authentication, authorisation, logging, version management, etc are con-
trolled by AWS gateway. The newly proposed architecture is depicted in Figure [The
system is updated with a keep lambda warm architecture [4b] discussed in Section [, And
in place of API Gateway the proposed light weight load balancer is implemented to reuse
the containers.

WS Coud 8
<N
a AWS Secrets pass new
/ Manager — O\ execut ition
times query function
/ T

= g .= UPDATE REDIS
C2 Instance Contents FUNCTION

nede
: FEE
express i
(oo o]
Registry ["é‘]

I / Amazon ElastiCache
@k

Router

Load Balancer LB

VPC subnet J

APPLICATION WORKFLOW:- x23176458(Original)

Figure 5: High Level Architecture of Application Workflow

e User requests: Incoming requests to the CRUD functions

e Router: An Express app to handle the the incoming route and add middleware
like redis handler to the incoming request.

e Load balancer functions: It handles the incoming requests to have minimum
response time. A detailed explanation of how the load balancer works is explained
in section [5.4]

e Registry: for each endpoints an associated registry will be there. This registry have
credentials like lock keys to handle the incoming request. A detailed explanation is
in section [5.4]

e Ec2 Instance: This instance is the part where router, registry and load balancer
is implemented.

16

e Redis AWS elastic cache: The elastic cache have records of active and deac-
tivated lambda node records and average time of execution and average cold start
time. These values are used by load balancer. The redis will be updated continu-
ously by the update redis function in periodic intervals with new cold start average
and execution time.

e Update Redis Function: Update redis function will be invoked by query function.
This will function will read and update the redis values. Qeury function will invoke
update redis funnction with keys to access secret manager and new average times.
Then the function will fetch secret value from AWS secret nanager and update redis
with new average time execution and new average cold start time.

e Query Function: This function will check every individual logs of the CRUD
functions by executing a query on the logs. If the logs returned new execution
average and cold start average it will call the redis update function with by passing
the respective values with function secret manager key.

e VPC: The EC2 instance, Redis and update Redis function are configured inside a
VPC and smiler security groups. This is to have increased security to the envir-
onment and the Redis is integrated with the VPC Yl The Redis and its accessing
environments is kept in same VPC.

e Secret Manager: For added security the credential details such as Redis endpoint,
Redis keys associated with each CRUD function are kept in the secret manger.

e CRUD Functions Logs: There is separate logs for each of the functions. The
REPORT log generated by AWS after every lambda invocation is vital important
for keeping the system dynamically adjusting with the code changes and response
time delays. This can be read from these logs using query function and update the
redis.

e CRUD Functions: These are the test functions for CREAT,READ,UPFATE and
DELETE from AWS dynamoDB.

e DynamoDB: DB service for storing data.
e Centralised Logs: This is for CRUD function to write its invocations logs.

e Keep Lambda Warm Function: The lambda will query through the centralised
logs and invoke CRUD functions if needed.

5.4 Implementing a load balancer

The core part of the project is to set up a load balancer programmatically. From the
literature review it is clear that none of the existing load balancer algorithms or framework
wont match for the proposed load balancer. A new load balancer based in express routing
and custom routing logic has to be implemented. The load balancer should be built
according to the nature of lambda and its behaviour. Because its motive is to exploit
lambda active environment. The router will route user request to proper destination
file. For every endpoints there will be a separate load-balancing pattern via configurable
parameters. The load balancing logic and workflow is same for every request. The
workflow of the load balancer is depicted in Figure [6] At the server start load balancer

26nttps://docs.aws.amazon.com/AmazonElastiCache/latest/dg/VPCs.EC.html

17

https://docs.aws.amazon.com/AmazonElastiCache/latest/dg/VPCs.EC.html

"Adding Redis Handler as Midileware

REDIS HANDLER
user request 17 StateManager
Registry
Router Routing to respecive router ‘
isable redis rea vos

Release the
Lambda Node:

Figure 6: Load Balancer Workflow: it starts with a user request

will initialise connection with the Redis and initialise state objects for every endpoint.
This object will be kept alive during the entire service life of the server. The attached
middleware of Redis handler is accessible to every request for handling Redis operations.
The state manager object will be attached to every incoming request at the routing stage.

The load balancer will add a lambda node having the function details and aver-
age time to complete the AWS lambda function to Redis for the very first request in
server. The physical meaning of lambda node is there is one active environment in AWS.
Subsequently it will call the recursive function of remove lambda node. This recursive
function efficiently handle the life of each lambda node. A lambda node have active life
time of 3 minute, then it will be deactivated and destroyed after 5 minutes. This is to
overcome the discrepancies that might occur in the lambda node at calculating average
execution time. When the node is deactivated no new request will use this lambda node.
The recursive function once activated will keep running the entire lifetime of the server
and it will make sure that at least one active node is kept in the redis all the time.

For every request there is a redis read lock recursive function. This function will call
recursively if the state manger value for redis read block is true. if one request is able
to read the value from redis, immediately it exists and lock the redis read again. So any
subsequest request will be locked in the above loop untill the flag value changes. After
reading redid the response will be validated and fetch active nodes from it. At a given
time there can be active and de-active nodes. Once the active nodes have fetched the
node with minimum load will be selected. Code will check whether the node is already
crossed its limit. The maximum number of requests that a lambda node will handle can
be calculated from the following equation.

Average cold start time

Limit of holding requests in an active node = : 8
Average execution time

Initially global variables were used in place of Redis. But this will create a problem if
the solution has to have scalability. Then DynamoDb is also considered but the latency
for its read write operation will an issue in the performance of the system. Using the
above mentioned equation we can find the maximum number of request in a single node

18

and successfully serialise the parallel concurrent requests. This is basically using the time
gap difference between cold start and warm start. There is no maximum nodes set in the
solution, so in scaling condition it can scale upto the limit of AWS inbuilt restrictions,
but can handle more requests. If the average time for a lambda node is above its cold
start limit, lambda will be called directly and redis will update with a new node. Which
means one more active environment in AWS. If the condition check fails the redis will be
updated with added average execution time for the current node. Then the state lock
parameter will be set to false to free the earlier locked requests. The redis operations
are fast comparing with lambda fetch operation. Calling lambda directly will cause a
cold start. To mitigate this request have to go through one more recursion. Where it
will check any previous request is already executing. This is through keeping the current
executing lambda node keys in a array. If the array does not have the key, which means
the execution environment is free at AWS and we can invoke it. Before this call lambda
node key will be added to the state manager to lock upcoming requests. Through this
function we ensuring that the lambda invoked in one after another. After getting the
response the redis lambda node data for average execution time is decremented and
lambda node key will be removed from the array. Then response will be send back to
customer.

5.5 Setting The Environment

The project need AWS services of lambda, DynamoDb, Redis, Ec2, Cloud watch, gate-
way,Event bridge, Secret Manager, VPC, Security groups and Subnets as cloud resources.
The test environment of CRUD applications and architectures to keep lambda warm were
developed and deployed using serverless. Serverless framework create a zip of the config-
urations and user code then upload it to s3. From there using cloud formation template
service of AWS, serverless automatically deploy all the resources to AWS. This whole
process can be done using a single command from the local machine.

The VPC, Ec2, Redis, lambda layer and DynamoDB are created manually and con-
figured in the serverless package for deployment of other services. Its mandatory that
Redis and its accessing resources has to be in same VPC. VPC, associated subnets and
security group were created from AWS console. While creating VPC the required subnet,
internet gateway and route tables were creted. The security group is also created from
the AWS console and configured inbound rules asmport 80 for http, 6379 for redis and
port 22 for ssh. The outbound is set to everywhere. After creating the security group,
VPC, subnet etc the AWS elastic redis cache is implimented. While configuring the redis
the previously created security group, subnets and VPC is configured. AWS elastic-
ache provides four kinds of caching service Valkey caches, Memcached caches, Redis OSS
caches, Global datastores. Out of this redis is used due to its advanced datastructure
storing capacity, persitance, performance and scalability. To scale the redis horizontally
at peak times the cluster mode is enabled while creating redis 7}

The Ec2 is created using AWS free tier t2.micro instance. The ubuntu image is
selected for server and a EBS volume of 8Gb is attached to it. A private key pair is
used for establishing the ssh connection. The newly created VPC and security groups
were used while setting up the Ec2 instance. The instance has to be in the VPC of redis
to access redis. While developing the load balancer the redis was unable to fetch from
outside VPC resources like lambda or Ec2. The public ip created and assaigned to the

2Thttps://github.com/alessandroprudencio/aws-elasticache-redis-lambda

19

https://github.com/alessandroprudencio/aws-elasticache-redis-lambda

Ec2 instance to have stable ip and connection string. Node and required environments
were installed in the AWS Ec2.

The CRUD functions were using some common packages like winston, moment, val-
idator etc. All these packages were installed in a node project and the zip file is uploaded
as a layer in lambda. Various versions of a layer can be configured in lambda. The layer
arn is used for configuring the serverless file. DynamoDB is created via AWS console is
configured to have provisioned read and write range of 1 to 10 and with read and write
capacity auto scaling on.

6 Evaluation

In order to understand the best architectures to keep lambda warm, three architec-
tures were implimented. Namely, using AWS EventBridge, AWS SNS, and AWS Cloud-
Watch. The frequency of requests were further simulated as coming at regular intervals
or sporadic.

6.1 Lambda Warm Experiment 1

The initial testing was conducted with invoking lambda at 3 minutes of interval. The
experiment conducted for 12 hours and a total of 241 invocations were evaluated. The
gained output is depicted in Table[3] The experiment expected outcome is to understand
the cold start in smaller time intervals.

METHOD | COLD START RATE (%) METHOD | COLD START RATE (%) METHOD | COLD START RATE (%)
GET 4.15% GET 2.90% GET 3.73%
POST 5.40% POST 3.32% POST 2.90%
PUT 2.90% PUT 4.15% PUT 3.32%
DELETE 3.32% DELETE 3.32% DELETE 2.90%
EventBridge SNS CloudWatch Logs

Table 3: Cold Start Rates of Endpoints for 3-Minute Invocation Time Span

6.2 Lambda Warm Experiment 2

The testing of lambda warming architectures were done with invoking lambda at a time
gap of 5 minutes. The results obtained is explained in Table [d The experiment is con-
ducted for 12 hours. Each endpoint invoked 144 times in this time span. The experiment
is expected understand lambda cold start in moderate time intervals.

METHOD | COLD START RATE (%) METHOD | COLD START RATE (%) METHOD | COLD START RATE (%)
GET 5.56% GET 7.64% GET 8.33%
POST 6.94% POST 6.25% POST 4.86%
PUT 6.25% PUT 4.86% PUT 6.25%
DELETE 6.94% DELETE 6.25% DELETE 6.25%
EventBridge SNS CloudWatch Logs

Table 4: Cold Start Rates of Endpoints for 5-Minute Invocation Time Span

6.3 Lambda Warm Experiment 3

The third experiment was done with 7 minutes intervel. The experiment conducted for
12 hours and 102 invocations are evaluated. The result is depicted in Table 5] Through

20

this experiment the we can understand lambda cold start in moderately high intervals of

invocation time
METHOD | COLD START RATE (%) METHOD | COLD START RATE (%) METHOD | COLD START RATE (%)
GET 100.00% GET 100.00% GET 100.00%
POST 100.00% POST 100.00% POST 100.00%
PUT 100.00% PUT 100.00% PUT 100.00%
DELETE 100.00% DELETE 100.00% DELETE 100.00%
EventBridge SNS CloudWatch Logs

Table 5: Cold Start Rates of Endpoints for 7-Minute Invocation Time Span

6.4 Lambda Warm Experiment 4

The experiment conducted with invoking time span of 10 minutes were depicted in
Table [6] 72 invocations were evaluated and the experiment duration was 12 hours. This
test is for understanding the lambda cold start in high interval invocations.

METHOD | COLD START RATE (%) METHOD | COLD START RATE (%) METHOD | COLD START RATE (%)
GET 100.00% GET 100.00% GET 100.00%
POST 100.00% POST 100.00% POST 100.00%
PUT 100.00% PUT 100.00% PUT 100.00%
DELETE 100.00% DELETE 100.00% DELETE 100.00%
EventBridge SNS CloudWatch Logs

Table 6: Cold Start Rates of Endpoints for 10-Minute Invocation Time Span

6.5 Randomised Load Test

In this experiment 1000 requests were sent to each endpoint within 1000 seconds. This
test is for understanding the performance of load balancer in real world scenarios. The
requests are randomised. So there is no any clear pattern for request hitting. The results

are depicted in table [7]

SOURCE

METHOD

COLD STARTS

TOTAL BILLED DURATION (ms)

TOTAL MEMORY USE (MB)

TOTAL USER RESPONSE TIME (ms)

APT Gateway

GET

2

37696

104303

132300

APT Gateway

POST

40920

111248

164686

APT Gateway

PUT

40736

111098

134660

APT Gateway

DELETE

=l ro| ot

39335

110331

135828

APT Gateway

Total

[
w

158687

436980

567474

Load Balancer

GET

32040

102908

147869

Load Balancer

POST

34554

109130

150741

Load Balancer

PUT

34372

110000

153918

Load Balancer

DELETE

34971

111986

153003

Load Balancer

Total

olo|lo|o|e

135937

433024

605531

Table 7: Performance Comparison for API Gateway and Load Balancer with Cold Start
and User Response Time

6.6 Sporadic Experiment 1

The below experiment is conducted with 1 second cold start latency. Experiment had 3
waves of 5, 15 and 25 requests at a time frequency of 5 minutes depicted in table [§] and
15 minute depicted in [0} The main goal for this test is to understand performance of load
balancer in lower cold start functions.

21

SOURCE | METHOD | COLD STARTS | TOTAL BILLED DURATION (ms) | TOTAL MEMORY USE (MB) | FAILURE RATE | TOTAL USER RESPONSE TIME (ms)
Load Balancer GET 0 1845 4500 0 5920
Load Balancer POST 0 1663 5040 0 5984
Load Balancer PUT 0 1806 4995 0 5860
Load Balancer | DELETE 0 1910 4950 0 5961
APT Gateway GET 2 2160 4458 0 10712
API Gateway POST 2 2228 4979 0 10088
API Gateway PUT 2 2320 4946 0 11401
API Gateway | DELETE 2 2444 4976 0 10120

Table 8: Performance Comparison for 1-second Cold Start Invocation Invoked in 5 Minute

Frequency
SOURCE | METHOD | COLD STARTS | TOTAL BILLED DURATION (ms) | TOTAL MEMORY USE (MB) | FAILURE RATE | TOTAL USER RESPONSE TIME (ms)
Load Balancer GET 0 1695 4526 0 5571
Load Balancer POST 0 2009 5040 0 6233
Load Balancer PUT 0 1848 4995 0 6251
Load Balancer | DELETE 0 1893 4950 0 5686
APT Gateway GET 19 5142 4457 0 43015
API Gateway POST 20 4854 4831 1 46387
APT Gateway PUT 19 4520 4832 1 44463
APT Gateway DELETE 20 4847 4716 2 46803

Table 9: Performance Comparison for 1-second Cold Start Invocation Invoked in 15
Minute Frequency

6.7 Sporadic Experiment 2

The below experiment is conducted with 3 second cold start latency. Experiment had
3 waves of 5, 15 and 25 requests at a time frequency of 5 minutes depicted in table
and 15 minute depicted in[11] The goal of this test is to understand performance of load

balancer in moderate cold start functions.

SOURCE | METHOD | COLD STARTS | TOTAL BILLED DURATION (ms) | TOTAL MEMORY USE (MB) | FAILURE RATE | TOTAL USER RESPONSE TIME (ms)
Load Balancer GET 0 1782 4454 0 6237
Load Balancer POST 0 1747 4905 0 7013
Load Balancer PUT 0 1836 4950 0 6479
Load Balancer DELETE 0 1759 4950 0 6161
API Gateway GET 4 2675 4462 0 20356
API Gateway POST 1 3659 4378 5 74219
APT Gateway PUT 4 2656 4947 0 21933
APT Gateway DELETE 5 2884 4937 0 34967

Table 10: Performance Comparison for 3-second Cold Start Invocation Invoked in 5
Minute Frequency

SOURCE | METHOD | COLD STARTS | TOTAL BILLED DURATION (ms) | TOTAL MEMORY USE (MB) | FAILURE RATE | TOTAL USER RESPONSE TIME (ms)
Load Balancer GET 0 1651 4455 0 9081
Load Balancer POST 0 1763 4905 0 9590
Load Balancer PUT 0 1567 4950 0 8750
Load Balancer | DELETE 0 1686 4950 0 8037
API Gateway GET 23 4979 3249 12 91408
APT Gateway POST 25 4740 3280 15 108238
API Gateway PUT 25 4570 2953 18 125908
API Gateway | DELETE 16 4240 4523 4 63011

Table 11: Performance Comparison for 3-second Cold Start Invocation Invoked in 15
Minute Frequency

6.8 Sporadic Experiment 3

The below experiment is conducted with 5 second cold start latency. Experiment had
3 waves of 5, 15 and 25 requests at a time frequency of 5 minutes depicted in table
and 15 minute depicted in[13] The goal of this test is to understand performance of load
balancer in high cold start functions.

22

SOURCE | METHOD | COLD STARTS | TOTAL BILLED DURATION (ms) | TOTAL MEMORY USE (MB) | FAILURE RATE | TOTAL USER RESPONSE TIME (ms)
Load Balancer GET 0 1906 4410 0 5732
Load Balancer POST 0 1796 4948 0 5781
Load Balancer PUT 0 1780 4995 0 5287
Load Balancer | DELETE 0 1901 4950 0 5789
APT Gateway GET 15 1651 4455 6 35051
API Gateway POST 5 1763 4905 0 39615
API Gateway PUT 5 1567 4950 0 36024
API Gateway | DELETE 5 1686 4950 0 35995

Table 12: Performance Comparison for 5-second Cold Start Invocation Invoked in 5
Minute Frequency

SOURCE | METHOD | COLD STARTS | TOTAL BILLED DURATION (ms) | TOTAL MEMORY USE (MB) | FAILURE RATE | TOTAL USER RESPONSE TIME (ms)
Load Balancer GET 0 1606 4449 0 5298
Load Balancer POST 0 1740 4950 0 5817
Load Balancer PUT 0 1652 4995 0 5340
Load Balancer | DELETE 0 1625 4950 0 5015
APT Gateway GET 25 4917 2460 20 149874
API Gateway POST 16 3436 3292 15 93451
APT Gateway PUT 25 4614 2735 20 153225
API Gateway | DELETE 16 3463 3307 15 94077

Table 13: Performance Comparison for 5-second Cold Start Invocation Invoked in 15
Minute Frequency

6.9 Discussion: Lambda Warm Test Results

As can be seen, all the three implemented architectures were very efficient in keeping
the lambda active. It was tested with varying time ranges. The outcome is depicted
in Sections [6.1] [6.2] [6.3] and From the table [b] and table [] it is clear that above 5
minutes of inactivity the lambda environments are not active. Assessing the result it is
evident that for the proposed load balancer the keep lambda module should be configured
to invoke at 5 minutes interval or less than that. An advantage of the invoking lambda
from checking the cloud watch is that in the testing environment according to the use
of lambda unwanted triggers were avoided. Especially on the 5 minute frequency test
scenarios. This was helpful to maintain a clean log at peak times and usage times. And
it reduces load to the CRUD functions. A general outcome from tables 3| [4] [}, [0] is that
lower the invocation time higher the efficiency to reduce cold start. We have the lowest
(2.9%-5.4%) for 3 minutes invocation frequency, a slightly increased (4.86%-7.64%) for
5 minute invocation. Both are ambient for keeping lambda warm. 7 and 10 minute
invocations frequency are not good for keeping lambda warm. This result is negating
findings of (Dantas et al.; |2022). which says above 10 minutes reusing of containes were
reduced. But aligning with findings of (Ferreira Dos Santos et al. 2023 as above 7
minute lambda reusing capacity reduces.

6.10 Discussion: Randomized load test

The randomized Load Test result depicted in the table [7] are good place for cost and
latency comparison for normal load. The insight of the table is depicted in Figure [7a]
Figure[7bl This means in frequently accessed services the latency is high, but cost is lower
for lambda functions with the proposed solution. On long run there is no much cold starts
so the API gateway can out perform the custom load balancer. There was 13 occurance of
cold start during the entire tests in API gateway but none for the implemented solution.
The AWS API gateway seeming to use more memory than the load balancer which is due
to its cold starts.

23

Total Billed Duration: API Gateway vs Load Balancer Response Time Comparison: API Gateway vs Load Balancer

POST T DELETE GET POST PUT DELETE
aaaaaaaaaaaaaa

(a) Billed Duration for 1000 requests in 1000 (b) User Response Duration for 1000 requests in
seconds 1000 seconds

Figure 7: Comparison of latency and billed duration for API gateway and Custom Load
Balancer

6.11 Discussion: Load Balancer Test Results

The executed test results were illustrated in Sections [6.6] and An interesting fact
noticed in the test result is on sporadic intervals the load balancer outperformed the API
gateway in terms of its throughput handling and latency . The API Gateway is failing
continuously to scale above 10 VM. This is because of the current configuration wont
allow more than 10 VM of a single lambda at a given time. Whereas the custom Load
balancer was able manage the load efficiently. None of the tests were experienced cold
start during its execution. It is evident from tables [9[8] [11][L0] , . Whereas API
gateway experienced a total of 311 cold starts during the sporadic tests. This means the
solution was 100% effective in test cases explained in section [6.6] [6.7/6.8] This means
complete reuse of existing virtual environment in AWS as we targeted. When cold start of
a lambda increases the failure rates for sporadic events were drastically increasing in API
gateway. It is evident from the tables [9|[8], [L1][I0] [I2][I3] Though the proposed solution
fitness will improve when cold start increases. The Custom design was able to reduce
cost to nearly 20% and user experiencing latency to 80% when considering tables [8] [10]
[12] A exact approximation is hard due to the failed cases in API gateway. Even though
with less energy, cost and latency the system was able to do more computation. This is
closely aligning with UN SDG’s. Considering the invocations of both load balancer and
API gateway the memory use seems to be nearly same and non deterministic. The main
technologiacal advantage of this research is its ability to mitigate the maximum number
of active lambda environments and reduced latency and cost of lambda. The proposed
load balancer have a wide variety of use cases in software industry. Some of it are listed
below.

e Ticket and Events Booking: In these applications high request rate and sales
can occur at the release of events and ticket. To have better latency and less cost
the proposed architecture can perform better.

e Marketing Campaigns or Flash sales: The marketing campaigns or flash sales
will introduce additional load to the respective server blocks. keeping these blocks
in the load balancer will be beneficial

e Scheduled Jobs: For scheduled jobs like report generation, event triggered high
throughput jobs.

24

e JTot devices: Its quite common that IoT devices updating cloud with batch jobs.
In these scenarios the custom load balancer can perform better for high cold start
functions.

e Satellite Communication: Lambda functions which using telemetry data from
a satellite, decode and store the results in a database, and trigger downstream
analytics (e.g., generating weather reports or detecting environmental changes).
The satellite will send data to ground stations periodically.

e Unlocking Vendor Locks: Using this light weight portable load balancer AWS
API gateway load balancer can be unlocked. The load balancer can be in a private
cloud or in other CSP.

6.12 Limitations

On high concurrent loads the proposed system is failed to work better and crashing. There
is a number of recursive functions in the solution this will run and crash the application
or make it non responsive. This is because of high memory consumption and frequent
garbage collection. The redis read write operations and discrepancies were occurring and
ending up at loosing of performance. The system has to have the capacity of handling
high load concurrently. The performance on real world scenarios are still need to be tested
and verified for the solution. Algorithms to change the recursive patterns is crucial due to
its complexity generation in the working environment. The state manager registry kept
at locally will affect the scalability of the load balancer, keeping it in a shared memory
in case of scalable environments are preferred. On longer run the cold starts occurances
are very less comparing with low frequency events. So for continuously using endpoints
the solution is not perfect. After a change and release of new lambda the time to change
the current average cold start and execution time will aslo affect the performance of the
system.

7 Conclusion and Future Work

This research explored how to minimize cold start latency in AWS Lambda. The primary
objective was to design and evaluate architectures to keep Lambda environments warm
and reuse active environments through a lightweight custom load balancer. The results
gave revolutionary practicality by filling the research gap for reducing latency and cost for
sporadic as well as latency critical environments. This research successfully developed and
tested various lambda warming architectures. The research validated that the latency can
be reduced by carefully timed invocation strategies.And it also validated contradictions
in previous researches about the invocation time span for active lambdas. By targeting
only inactive lambda AWS cloudwatch driven lambda invocation is most efficient. The
designed load balancer reduced cold start completely under sporadic test cases. And it
outperformed API gateway in cost and latency. The light weight load balancer was able
to achieve a 80% reduction of latency and 20% reduction of cost for sporadic events. For
randomised load the solution was able to reduce cold start completely. Thus it fulfilling
the research question and pave path for future studies in serverless. In sporadic and
latency critical environment the developers can have more responsive and cost effective
light weight solution without any vendor locking. The solutions can be implemented in

25

dedicated servers or CSP’s for having multicloud architectures. The research is an altern-
ative for API gateway for better scalability in unpredicted high traffic environments. For
future work the system faced challenges in handling high load of concurrent requests due
to redis bottle-neck. A advanced in-memory database will be a better solution. Imple-
mentation of the research in other CSP’s and assess its effectiveness. And Configuring the
light weight load balancer in a FaaS services and evaluating its performance are for fu-
ture. Overall this research provides a solid foundation for advancing serverless computing
efficiency.

References

Alisha, S. H., Mohasin, S. M., Sai, B. N. V. S., Vajrapu, D., Tumuluru, P. and Burra, L. R.
(2024). Analyzing cloud performance optimization: Strategies to enhance cold start

latency, 2024 5th International Conference on Smart Electronics and Communication
(ICOSEC), pp. 487-492.

Aslanpour, M. S., Toosi, A. N., Cheema, M. A., Chhetri, M. B. and Salehi, M. A. (2024).
Load balancing for heterogeneous serverless edge computing: A performance-driven

and empirical approach, Future Generation Computer Systems 154: 266—280.
URL: https://www.sciencedirect.com/science/article/pii/S0167739X24000207

Bauer, A., Gonthier, M., Pan, H., Chard, R., Grzenda, D., Straesser, M., Pauloski,
J. G., Kamatar, A., Baughman, M., Hudson, N., Foster, I. and Chard, K. (2024).
An empirical investigation of container building strategies and warm times to reduce
cold starts in scientific computing serverless functions, 2024 IEEE 20th International
Conference on e-Science (e-Science), pp. 1-10.

Dantas, J., Khazaei, H. and Litoiu, M. (2022). Application deployment strategies for
reducing the cold start delay of aws lambda, 2022 IEEFE 15th International Conference
on Cloud Computing (CLOUD), pp. 1-10.

Devine, K., Hendrickson, B., Boman, E., St. John, M. and Vaughan, C. (2000). Design of
dynamic load-balancing tools for parallel applications, Proceedings of the 14th Interna-
tional Conference on Supercomputing, ICS ’00, Association for Computing Machinery,
New York, NY, USA, p. 110-118.

URL: https://doi.org/10.1145/335231.335242

Ebrahimi, A., Ghobaei-Arani, M. and Saboohi, H. (2024). Cold start latency mitigation
mechanisms in serverless computing: Taxonomy, review, and future directions, Journal
of Systems Architecture 151: 103115.

URL: https://www.sciencedirect.com/science/article/pii/S1383762124000523

Ferreira Dos Santos, P. O., Jorge de Moura Costa, H., Leithardt, V. R. Q. and Jorge
Silveira Ferreira, P. (2023). An alternative to faas cold start latency of low request
frequency applications, 2023 3rd International Conference on Electrical, Computer,
Communications and Mechatronics Engineering (ICECCME), pp. 1-6.

Htet, T. Y., Shwe, T., Mendonca, I. and Aritsugi, M. (2024). Pre-warming: Alleviating
cold start occurrences on cloud-based serverless platforms, 2024 IEEE 10th Interna-
tional Conference on Edge Computing and Scalable Cloud (EdgeCom), pp. 66-72.

26

Karamzadeh, A. and Shameli-Sendi, A. (2024). Reducing cold start delay in serverless
computing using lightweight virtual machines.
URL: https://www.sciencedirect.com/science/article/pii/S1084804524002078

Kumari, A., Sahoo, B. and Behera, R. K. (2022). Mitigating cold-start delay using warm-

start containers in serverless platform, 2022 IEEFE 19th India Council International
Conference (INDICON), pp. 1-6.

Li, B., Zhan, Y. and Ren, S. (2023). A fast cold-start solution: Container space reuse
based on resource isolation, Electronics 12(11).
URL: https://www.mdpi.com/2079-9292/12/11/2515

Liu, X., Wen, J., Chen, Z., Li, D.,; Chen, J., Liu, Y., Wang, H. and Jin, X. (2023).
Faaslight: General application-level cold-start latency optimization for function-as-a-

service in serverless computing, ACM Trans. Softw. Eng. Methodol. 32(5).
URL: https://doi.org/10.1145/3585007

Mishra, K. and Majhi, S. (2020). A state-of-art on cloud load balancing algorithms,
International Journal of computing and digital systems 9(2): 201-220.

Mishra, S. K., Sahoo, B. and Parida, P. P. (2020). Load balancing in cloud computing:
A big picture, Journal of King Saud University - Computer and Information Sciences
32(2): 149-158.

URL: https://www.sciencedirect.com/science/article/pii/S1319157817303361

Shafiq, D. A., Jhanjhi, N. and Abdullah, A. (2022). Load balancing techniques in cloud
computing environment: A review, Journal of King Saud University - Computer and
Information Sciences 34(7): 3910-3933.

URL: https://www.sciencedirect.com/science/article/pii/S131915782100046X

Solaiman, K. and Adnan, M. A. (2020). Wlec: A not so cold architecture to mitigate cold
start problem in serverless computing, 2020 IEEE International Conference on Cloud
Engineering (IC2E), pp. 144-153.

Verma, P.; Goel, P. and Rani, N. (2024). A review: Cold start latency in serverless
computing, 2024 Sizth International Conference on Computational Intelligence and
Communication Technologies (CCICT), pp. 141-148.

Yoheswari, S. (2024). Optimization techniques for load balancing in data-intensive applic-
ations using multipath routing networks (1st edition), Journal of Science Technology
and Research (JSTAR) 5(1): 377-382.

27

	Introduction
	Research gap
	Research question
	Research objectives
	Outline

	Related Work
	Cold Start Related Researches
	Machine Learning Based Solutions For Cold Start
	Cold Start Analysis, Studies, Reviews And Suggestions
	Load Balancing Based Researches

	Methodology
	Business understanding
	Analysis How AWS Lambda Works
	Potential solution
	Test Cases and Execution
	Implementation and evaluation

	Design Specifications
	Implementation
	Tools And Services
	Architectures to keep lambda warm
	Application Design
	Implementing a load balancer
	Setting The Environment

	Evaluation
	Lambda Warm Experiment 1
	Lambda Warm Experiment 2
	Lambda Warm Experiment 3
	Lambda Warm Experiment 4
	Randomised Load Test
	Sporadic Experiment 1
	Sporadic Experiment 2
	Sporadic Experiment 3
	Discussion: Lambda Warm Test Results
	Discussion: Randomized load test
	Discussion: Load Balancer Test Results
	Limitations

	Conclusion and Future Work

